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We study the problem of closing the detection loophole in three-qubit Bell tests, the experimentally most
relevant case beyond the usual bipartite scenario, and show that the minimal detection efficiencies required can
be considerably lowered compared to the two-qubit case. The lowest reported detection efficiency thresholds for
two and three qubits so far are ∼66.7 and 60%, respectively. Using the three-qubit W state and a three-setting
Bell inequality, we beat these thresholds and with an eight-setting Bell inequality we reach 50.13%. We also
investigate generic three-qubit states which allow us to attain a detection efficiency of 50% in a four-setting Bell
test. We conjecture that the limit of 50% is unbeatable using three-qubit states and any number of measurements.
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I. INTRODUCTION

One of the most surprising features of quantum mechanics
is the prediction that distant parties performing measurements
on a shared entangled state are able to generate correlations
which rule out any local hidden variables explanation. These
nonlocal correlations can be witnessed by the violation of
Bell inequalities [1,2]. By now, many Bell experiments using
various matter systems have been performed (e.g., recently
in [3–8]) providing strong indication for the existence of
nonlocal correlations in nature [9]. However, imperfections
in the technical implementations of these experiments make it
possible to reproduce the experimental data by a local hidden
variables model. In order to avoid such a classical explanation,
all possible loopholes have to be closed simultaneously in
a Bell experiment. There are two main technical loopholes,
the locality loophole and the detection loophole. The former
one can be closed if there is spacelike separation between the
observers such that no signal can propagate from one observer
to the other. This condition could only be met so far in photonic
experiments [10–12].

In the present paper, we would like to address the latter one,
the so-called detection loophole. This loophole is most relevant
in Bell tests which use photons, in which case measurements
frequently give undetected events. These no-click events have
to be included in the observed data, and nonlocal correlations
are witnessed detection loophole free only if there is no local
hidden variables model of the full statistics taking into account
the no-click events as well [13]. The detection loophole has
been closed in different physical systems such as ions [3],
superconductors [4], atoms [5], and more recently in photonic
systems as well [6,7].

As we have seen, the only system where both primary
loopholes have been closed is that of photons, albeit these
were not closed in the same experiment. Though important
steps have been made both experimentally (see references
above) and theoretically [14], such a loophole-free violation of
a Bell inequality has not been performed yet. A comprehensive
review on this subject can be found in [15].

Let us mention that closing the detection loophole is also
relevant from a practical point of view. The more recent devel-
opment of device-independent quantum information protocols
crucially relies on a detection loophole-free violation of Bell

inequalities. In these protocols, there is no need to assume any
knowledge regarding the internal workings of the experimental
devices used (see [16] for a recent review of the field). For
instance, it would allow two distant parties to establish a
certified secret key [17], generate genuinely random numbers
[18], or perform black-box state tomography [19].

In order to close the detection loophole, we construct
Bell inequalities which are suited to reveal nonlocality using
detectors with low efficiencies. We will consider the relatively
unexplored case of three-party Bell inequalities involving finite
detection efficiencies. In particular, we will focus on the case
when each party detects particles with the same η detection
efficiency. The critical detection efficiency ηcrit below which
nonlocality cannot be guaranteed depends both on the Bell
inequality considered and the quantum state used in the Bell
test.

In the two-party case, ηcrit ∼ 66.7% [20] is required to
violate the Clauser-Horne-Shimony-Holt inequality [21] with
a partially entangled two-qubit state. For two qubits, to the
best of our knowledge, there is no known Bell inequality (with
possibly more than two settings and more than two outputs),
which would give a lower threshold. Using four-dimensional
quantum states and a four-setting Bell inequality, this threshold
can be slightly lowered (down to ∼61.8% [22]); however, it is
still too high when compared to efficiencies achievable with
current technology.

One possible approach to go below these threshold values
is to consider multipartite Bell tests, i.e., more than two
observers. Buhrman et al. [23] and more recently [24] have
showed that an arbitrarily small efficiency η can be tolerated as
the number of parties n and the number of settings m become
large. However, these results are interesting mainly from a
theoretical point of view. Indeed, in the experimentally more
relevant case of a small number of settings, the known results
are less promising. For instance, if the number of settings per
party is fixed to 2 (m = 2), the lowest threshold efficiencies us-
ing the Mermin inequality [25] and its generalized version [26]
were shown to approach ηcrit = 50% for large n [27]. The same
limit can be approached if we use the many-site generalization
of the Clauser-Horne inequality [28]. Also, a multipartite
two-setting Bell test based on single-photon entanglement
(i.e., a W state shared between multiple parties) was shown to
approach ηcrit � 66.7% for large n [29]. These above examples
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considered a large number of parties and two settings. There
exist other constructions for a class of multipartite two-setting
inequalities (e.g., [30,31]). Note, however, that due to [32]
the critical efficiency for two-setting inequalities cannot be
lower than n/(2n − 1). Hence, none of these inequalities may
allow us to go below ηcrit = 60% for three parties and below
ηcrit = 50% for an infinite number of parties.

In contrast to two settings and a large number of parties,
the case of more than two settings per party and a moderate
number of parties is much less explored. Indeed, in the case of
three parties (n = 3) and a few number of settings m, which
is the experimentally most interesting setup beyond the usual
two-party scenario, only a few results are known. To the best of
our knowledge, for three parties the lowest detection efficiency
is attained in [28] giving ηcrit = 60% using m = 2 settings. The
aim of this paper is to go beyond two measurement settings
per party, which opens the door to more efficient multisetting
Bell inequalities. In particular, we explore numerically the
best detection efficiencies for the emblematic three-qubit
W state [34], and also perform a detailed numerical search
when the underlying state is a more general symmetric three-
qubit pure state. Note that the search for critical detection
efficiencies using the famous Greenberger-Horne-Zeilinger
(GHZ) [37] state was carried out recently in [24], attaining the
lowest efficiency ηcrit = 12/17 � 70.59% so far using m = 17
settings per party (for an explicit construction of the Bell
inequality, please see the website [38]). Before this work the
best bound of ηcrit = 75% for a GHZ state was provided by
Larsson [39] using the Mermin inequality.

Here we report a considerable improvement over the above
values by showing that detection efficiencies as low as 50%
can be tolerated in tripartite Bell tests featuring a reasonable
number of measurements. However, our setups turn out to be
very fragile to noise; hence, we believe that the experimental
implementation remains a challenging issue.

II. SETUP

We consider a Bell scenario with three observers (n = 3)—
Alice, Bob, and Cecil—who carry out experiments in distant
laboratories. Each observer can choose among m possible
inputs and receive two possible outcomes. Let us identify
the inputs of the three parties with i,j,k = 1, . . . ,m which
correspond to a set of m possible measurements {Ai}, {Bj },
{Ck} for each party. Without loss of generality, we can label
with +1 and −1 the two different outcomes α,β, and γ for the
respective parties. The experiment is fully characterized by the
conditional probabilities P (αβγ |AiBjCk). We use the short-
hand notation P (AiBjCk) ≡ P (111|AiBjCk) and similarly
for a subset of the parties, such as P (AiBj ) ≡ P (11|AiBj ) and
P (Ai) ≡ P (1|Ai), etc. It can be seen that these probabilities
fully determine the joint distribution P (αβγ |AiBjCk); hence,
it is enough to consider them.

Throughout this work we stick to symmetric Bell in-
equalities, that is, inequalities which are symmetric for all
permutations of the parties. In addition, our Bell inequalities
will not contain single party marginal terms; they are built up
only by two-particle and three-particle correlation terms. We
will also assume without loss of generality that the classical
bound of the Bell inequalities is zero. The Bell inequalities

considered in [24,28] are similarly restricted. As we will see,
this simplification allows us to treat the problem with the tools
of linear programming. We can write such a Bell inequality as

m∑
i,j=1

M
(2)
ij [P (AiBj ) + P (AiCj ) + P (BiCj )]

+
m∑

i,j,k=1

M
(3)
ijkP (AiBjCk) � 0, (1)

where

M
(3)
ijk = M

(3)
ikj = M

(3)
jik = M

(3)
jki = M

(3)
kij = M

(3)
kji ,

M
(2)
ij = M

(2)
ji , (2)

and the Bell coefficients M
(3)
ijk and M

(2)
ij are chosen such that

the classical bound is zero.

A. Local bound

Let us first compute the local limit of the above Bell
inequality (1) allowing any classical mechanism. In order to
do that, it is enough to consider deterministic strategies: Each
of the parameters ai , bi , and ci , where i runs from one to m,
may take the value of either zero or one, and a deterministic
strategy is defined by a particular choice. This corresponds to
a definite outcome for each measurement value for each party.
For example, ai = 1 means that the probability for Alice to get
the value +1 for her ith measurement is 1, that is P (Ai) = 1.

To set the classical bound of the Bell inequality (1) to zero,
we must ensure that

m∑
i,j=1

M
(2)
ij (aibj + aicj + bicj ) +

m∑
i,j,k=1

M
(3)
ijkaibj ck � 0 (3)

for all deterministic strategies. Equation (3) gives 23m linear
constraints for the Bell coefficients. Due to the permutational
symmetry in Eq. (2), two strategies which may be derived from
each other by swapping the strategies of any two participants
(e.g., by swapping the values of ai and bi) lead to the same
constraint, which makes it possible to reduce the number of
constraints. Also, Eq. (3) is trivially fulfilled for any strategy
assigning nonzero values for only one of the participants. We
note that it follows from Eq. (3) that M

(2)
ij � 0. We may get

this from strategy ai = 1, bj = 1, while all other a and b and
all c values are zero.

B. Quantum bound

Now let us consider the quantum case. The maximum
quantum violation of a two-outcome Bell inequality, i.e.,
the one presented in Eq. (1), is always attained by von
Neumann measurements [40]. Moreover, it is sufficient to
restrict ourselves to pure states |ψ〉, that is, ρ̂ = |ψ〉〈ψ |. Then

P (AiBj ) = 〈ψ |Âi ⊗ B̂j ⊗ Î |ψ〉,
P (AiCj ) = 〈ψ |Âi ⊗ Î ⊗ Ĉj |ψ〉,

(4)
P (BiCj ) = 〈ψ |Î ⊗ B̂i ⊗ Ĉj |ψ〉,

P (AiBjCk) = 〈ψ |Âi ⊗ B̂j ⊗ Ĉk|ψ〉,
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where Âi , B̂j , and Ĉk are the measurement operators of Alice,
Bob, and Cecil, respectively, projecting onto the subspace
corresponding to outcome +1 in the subspace of the participant
concerned, and Î is the unity operator in that subspace. Along
this study, we will restrict ourselves to three-qubit states;
hence, the measurement operators Âi , B̂j , and Ĉk are in fact
projectors in the qubit space.

C. Quantum case with limited detection efficiency

Let us consider the quantum case when all participants
detect their particles with the same limited detection efficiency
η. As a side remark, we note that interesting results have been
obtained in the asymmetric case, that is, when the parties
feature different efficiencies [22,41] or when measurements
corresponding to the same party have different efficiencies
[42]. In our symmetric scenario, the participants agree to
output −1 in case of no detection. In this case, we get the
joint probabilities of detecting outcome +1 by two and by all
three participants if we multiply the probabilities of Eq. (4)
by η2 and by η3, respectively, that is, by the probability of the
detection of the particles concerned. Then the condition for
the violation of the Bell inequality in Eq. (1) can be written as

〈ψ |M̂η|ψ〉 ≡ η2M(2) + η3M(3) > 0, (5)

where

M(2) ≡
m∑

i,j=1

M
(2)
ij (〈ψ |Âi ⊗ B̂j ⊗ Î |ψ〉

+ 〈ψ |Âi ⊗ Î ⊗ Ĉj |ψ〉 + 〈ψ |Î ⊗ B̂j ⊗ Ĉk|ψ〉), (6)

M(3) ≡
m∑

i,j,k=1

M
(3)
ijk〈ψ |Âi ⊗ B̂j ⊗ Ĉk|ψ〉, (7)

and M̂η is the effective Bell operator at η efficiency. As we
have shown earlier, M

(2)
ij � 0, therefore M(2) � 0. Therefore,

if η is very small, according to Eq. (5), there is no Bell violation.
The critical detector efficiency above which the violation may
be detected is

ηcrit = −M(2)

M(3)
. (8)

To find the Bell inequality which minimizes ηcrit in case of
a particular choice of the state and the measurement operators
is a problem of standard linear programming. To ensure that
the classical bound is zero, the set of linear constraints given
by Eq. (1) must be satisfied. As the Bell coefficients may
be multiplied by any positive number, we may fix the norm
by fixing the value of M(2). We may choose any negative
number. In particular, let us choose M(2) = −1. This provides
an additional linear constraint. Then we must maximize M(3),
which is a linear expression for the Bell coefficients. The
symmetries according to Eq. (2) are further linear constraints to
be enforced, but instead of doing that we may restrict ourselves
to coefficients M

(3)
ijk , with i � j � k and M

(2)
ij , with i � j , and

rewrite the constraints and the expression to be maximized
in terms of these independent parameters. This way we get a
much smaller problem to solve.

TABLE I. Table for critical detection efficiencies using the W
state. The numbers in brackets refer to the Bell inequalities. In the
first column ijk refers to the respective number of settings i, j , and k

for the parties Alice, Bob, and Cecil. Detection efficiency thresholds
are rounded up to five digits.

Settings ηcrit Equation

222 0.83747 (13)
223 0.6 (18)
333 0.6 (14)
444 0.509036 (15)
666 0.502417 (19)
888 0.501338 (19)

Let the set of measurement operators be the same for all
parties, and let us confine ourselves to real measurement
operators. This particular restriction was also proved to be
useful in other studies for exploring nonlocality of the W

state [33]. In this case the operator Âi = B̂i = Ĉi can be
characterized by a single real variable �i :

Âi |0〉 = 1
2 (1 − cos �i)|0〉 − 1

2 sin �i |1〉 ≡ c−
i |0〉 + si |1〉,

Âi |1〉 = − 1
2 sin �i |0〉 + 1

2 (1 + cos �i)|1〉 ≡ si |0〉 + c+
i |1〉.

(9)

If �i = 0, the measurement gives the value +1 with probabil-
ity 1 for the |1〉 state.

Let the quantum state be also symmetric in terms of the
permutations of the parties. One such state is the three-qubit
GHZ state [37], which case has been already investigated
thoroughly [24,39]. In this paper our primary concern is the
three-qubit W state [34] but we also study generic symmetric
three-qubit states. In the following section we focus on the
W state (Sec. III) and then we move on to investigate the
more general case in Sec. IV. Our main results concerning
the found detection efficiency thresholds are summarized in
Tables I and II for the W state and the generic three-qubit
states, respectively.

III. DETECTION EFFICIENCIES USING THE W STATE

The W state is defined by [34]

|W 〉 = 1√
3

(|001〉 + |010〉 + |100〉), (10)

TABLE II. Table for critical detection efficiencies using sym-
metric three-qubit states. The numbers in brackets refer to the Bell
inequalities. In the first column ijk refers to the number of i, j , and
k settings for the parties Alice, Bob, and Cecil. Detection efficiency
thresholds are rounded up to five digits.

Settings ηcrit Equation

222 0.6 (13)
223 0.6 (18)
333 0.51678 (27)
444 0.5 (28)
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where we have used the shorthand notation

|αβγ 〉 ≡ |α〉 ⊗ |β〉 ⊗ |γ 〉. (11)

Now, by using Eqs. (9)–(11), it is straightforward to calculate
the quantum conditional probabilities appearing in Eqs. (6)
and (7):

〈W |Âi ⊗ Âj ⊗ Î |W 〉 = 1
3 (2sisj + c−

i c+
j + c+

i c−
j + c−

i c−
j ),

〈W |Âi ⊗ Âj ⊗ Âk|W 〉 = 2
3 (c−

i sj sk + sic
−
j sk + sisj c

−
k )

+ 1
3 (c−

i c−
j c+

k +c−
i c+

j c−
k +c+

i c−
j c+

k ).

(12)

If the number of measurement settings per party is small, we
can scan the space of measurement angles with an even step
size, and solve the linear programming problem for each set
of angles. In each case the optimal Bell inequality we arrive at
has to be a tight one in the symmetrized probability space. We
refer to [35] for the framework of symmetric Bell inequalities
and to further studies which make use of this framework [36],
reducing considerably the complexity of the problem. There is
a finite number of such inequalities, so we get the same solution
for a whole range of angles. Therefore, if our step size is not
too large, we will certainly get the Bell inequality that gives
the smallest critical efficiency with the |W 〉 state. Then for the
known inequality we may calculate the optimum measurement
angles. Also, due to the tightness, the Bell coefficients can
always be normalized such that they are integer numbers.

Next we list our results for different numbers of settings,
where the numerical study was carried out up to eight settings
per party.

A. W state, m = 2

For two measurement settings per party we got the
following Bell coefficients:

M
(2)
11 = −1 M

(3)
111 = 2 M

(3)
112 = 1 M

(3)
122 = −1. (13)

Here we only show the values of the independent Bell
coefficients, that is, M (2)

ij with i � j and M
(3)
ijk , with i � j � k.

The values of the coefficients that cannot be derived from
the coefficients given above by some permutation of the
parties, e.g., M

(2)
12 , are zero. This inequality is equivalent to

the inequality 22 in the list of Sliwa [43]. The optimum angles
for this inequality are �1 = 2.28059 and �2 = 0.33432, and
the critical efficiency is ηcrit = 0.83747. We will see later that
the |W 〉 state is not the best choice for this inequality.

B. W state, m = 3,4,5

For m = 3 and 4 we have got the inequalities with the
smallest ηcrit if we have chosen small measurement angles. In
the case of m = 3, the nonzero independent Bell coefficients
of this inequality are

M
(2)
11 = −6, M

(2)
23 = −3, M

(3)
123 = 3, M

(3)
223 = 2,

M
(3)
233 = 2, (14)

while for m = 4 we have got

M
(2)
12 = −6, M

(2)
34 = −2, M

(3)
112 = 6, M

(3)
114 = −6,

M
(3)
122 = 6, M

(3)
123 = 3, M

(3)
124 = 3, M

(3)
134 = −1,

M
(3)
223 = −6, M

(3)
234 = −1, M

(3)
334 = 2, M

(3)
344 = 2. (15)

For both inequalities the optimal angles for all measurement
settings approach zero near the threshold efficiency. This
observation allows us to make some analytical considerations.

Let x be small, and let us consider the measurement angles
proportional to this small number, that is, �i ≡ φix. Then,
Eq. (12) may be approximated as

〈W |Âi ⊗ Âj ⊗ Î |W 〉 ≈ 1

6
[1 − cos x(φi + φj )] + x4

48
φ2

i φ
2
j ,

(16)

〈W |Âi ⊗ Âj ⊗ Âk|W 〉 ≈ x4

48
(φiφj + φiφk + φjφk)2. (17)

We have neglected terms of sixth and higher order in x. We
have used Eq. (9) defining the quantities appearing in Eq. (12),
which may be approximated at leading order as si ≈ −φix/2,
c+
i ≈ 1 and c−

i ≈ φ2x2/4. Also, it is easy to see that 2sisj +
c−
i c+

j + c+
i c−

j = [1 − cos(�i + �j )]/2. Due to Eq. (17),M(3)

[see Eq. (7)] is fourth order in x. Then, according to Eq. (8), we
may only get a finite value for ηcrit if M(2) defined in Eq. (6)
is also fourth order in x. This is true if whenever the M

(2)
ij Bell

coefficient is not zero the corresponding measurement angles
satisfy φi + φj = 0.

We may get the Bell inequalities of Eqs. (14) and (15)
by solving the linear programming problem using the small
angles limit, that is, Eqs. (16) and (17), when calculating
M(2) and M(3), and dropping the overall factor x4. In case of
m = 3 [Eq. (14)], we take φ1 = 0 and φ2 = −φ3 = 1 (that is,
we choose x = �2). This way, there are no free parameters
left. With this choice M

(2)
11 and M

(2)
23 may take a nonzero value,

as �1 = −�1 = 0 and �2 = −�3 = x. Indeed, these are the
nonzero M

(2)
ij coefficients in Eq. (14). Actually, the solution

of the linear programming problem in this case is not unique,
there are other Bell inequalities leading to the same ηcrit. We
have shown the one having the smallest number of nonzero
Bell coefficients. Now, from Eq. (8) we can easily calculate the
value of ηcrit. Using the measurement angles defined above,
〈W |Â1 ⊗ Â1 ⊗ Î |W 〉 ≈ 0 and 〈W |Â2 ⊗ Â3 ⊗ Î |W 〉 ≈ x4/48
[see Eq. (16)]. Furthermore, 〈W |Â1 ⊗ Â2 ⊗ Â3|W 〉 ≈
〈W |Â2 ⊗ Â2 ⊗ Â3|W 〉 = 〈W |Â2 ⊗ Â3 ⊗ Â3|W 〉 ≈ x4/48.
Also, due to the permutational symmetry of the state |W 〉,
the matrix elements are the same for all permutations of
the operators. Therefore, by substituting the values for the
measurement angles and the Bell coefficients into Eq. (6),
we get M(2) = −18x3/48. Similarly, from Eq. (7), we arrive
at M(3) = 30x3/48. Therefore, ηcrit = 3/5 = 0.6. We have
noted that this is not the only Bell inequality with the same
threshold efficiency. The reason is that the quantum value does
not depend on M

(2)
11 , M

(3)
111, as the matrix elements they are

multiplied with are zero, being �1 = 0. The requirement of the
zero classical value does not define uniquely these coefficients.

In the case of m = 4, similarly to Eq. (14) for m = 3,
Eq. (15) can also be derived by using the small angles limit.
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Now, we choose the measurement angles �1 = −�2 = x and
�3 = −�4 = λx. Now we have a single parameter λ. It is
enough to consider |λ| � 1. We get the required inequality if
we choose any value for λ between 0.21 and 0.78. We show
in the Appendix that the optimum is λ = 0.466715, which is
a root of a fifth-order equation, and then ηcrit = 0.509036.

We have also derived the optimal m = 5 Bell inequality
similarly to the smaller ones in Sec. III B, with measurement
angles �1 = 0, �2 = −�3 = x, and �4 = −�5 = λx. It
turned out to be equivalent to the m = 4 case, so we got no
improvement on the critical efficiency.

C. W state, mA = 3 and mB = mC = 2

If we do not require permutational symmetry, we may
create a Bell inequality with the same ηcrit = 0.6 as for the
mA = mB = mC = 3 case using the |W 〉 state with only two
measurement settings for Bob and Cecil. As before, Alice’s
measurement settings Â1, Â2, and Â3 are characterized by
�A

1 = 0, �A
2 = x, and �A

3 = −x, respectively. However, for
Bob and Cecil the measurement angles will be chosen as
�B

1 = 0, �B
2 = x and �C

1 = 0, �C
2 = −x, respectively. Here

we used the upper indices to distinguish between the parties.
The asymmetric inequality will have the same quantum value
as the symmetric one for any η, if the sums of the Bell
coefficients multiplying matrix elements that have the same
numerical value are the same for both inequalities. At the
same time we must ensure that the classical bound is also
the same, that is, zero. In the case of a known symmetric
inequality, these requirements define a set of linear constraints
for the coefficients of the asymmetric one. It is a problem of
linear programming to decide whether these constraints can
be satisfied or not. In the present case the problem is solvable;
the simplest Bell inequality we have got, after dividing each
coefficient by a factor of 6, is

S ≡ − P (11|A1B1) − P (11|A1C1) − P (11|B1C1)

−P (11|A3B2) − P (11|A2C2) − P (11|B2C2)

+P (111|A1B2C2) + P (111|A2B1C2) + P (111|A3B2C1)

+P (111|A2B2C2) + P (111|A3B2C2) � 0. (18)

We have also tried to derive asymmetric Bell inequalities
with a smaller number of measurement settings for some of
the parties from the m = 4 case given by Eq. (15), and also
from the inequalities we will show later, but we have found no
solution for the problem involved.

D. W state, m � 6

For m = 6, using �1 = −�2 = x, �3 = −�4 = μx, and
�5 = −�6 = νx, we got a new inequality, with ηcrit =
0.502417, marginally better than before. Now the optimal
choice for the parameters is μ = 0.495815 and ν = 0.295435
(see the Appendix). The nonzero independent Bell coefficients
of this m = 6 inequality are

M
(2)
12 = −18, M

(2)
34 = −18, M

(2)
56 = −18, M

(3)
112 = 18,

M
(3)
114 = −18, M

(3)
122 = 18, M

(3)
123 = 9, M

(3)
124 = 9,

M
(3)
136 = −9, M

(3)
156 = 8, M

(3)
223 = −18, M

(3)
245 = −9,

M
(3)
256 = 4, M

(3)
334 = 18, M

(3)
336 = −18, M

(3)
344 = 18,

M
(3)
345 = 9, M

(3)
346 = 9, M

(3)
356 = 1, M

(3)
445 = −18,

M
(3)
456 = 5, M

(3)
556 = 4, M

(3)
566 = 8. (19)

For m = 7 we have got no further improvement.
For m = 8 there are three free parameters. The angles

are given as �1 = −�2 = x, �3 = −�4 = ρx, �5 = −�6 =
σx, and �7 = −�8 = τx. The optimal choice of the parame-
ters is ρ = 0.498442, σ = 0.306395, and τ = 0.169989. Then
ηcrit = 0.501338. The nonzero independent coefficients are

M
(2)
12 = −6, M

(2)
34 = −6, M

(2)
56 = −6, M

(2)
78 = −6,

M
(3)
112 = 6, M

(3)
114 = −6, M

(3)
122 = 6, M

(3)
123 = 3,

M
(3)
124 = 3, M

(3)
136 = −3, M

(3)
223 = −6, M

(3)
245 = −3,

M
(3)
334 = 6, M

(3)
336 = −6, M

(3)
344 = 6, M

(3)
345 = 3,

M
(3)
346 = 3, M

(3)
358 = −3, M

(3)
378 = 2, M

(3)
445 = −6,

M
(3)
467 = −3, M

(3)
478 = 2, M

(3)
556 = 6, M

(3)
558 = −6,

M
(3)
566 = 6, M

(3)
567 = 3, M

(3)
568 = 3, M

(3)
578 = 1,

M
(3)
667 = −6, M

(3)
678 = 1, M

(3)
778 = 2, M

(3)
788 = 2.

(20)

We have not tried any larger numbers of settings; the
number of constraints is too large. We may have got further
improvement, but we do not expect we could go below 0.5
with the critical efficiency.

We summarized critical detection efficiencies we found in
this paper for the three-qubit W state in Table I.

IV. DETECTION EFFICIENCIES FOR SYMMETRIC
THREE-QUBIT STATES

By considering a more general symmetric state we have
been able to reach ηcrit = 0.5 exactly already with m = 4. But
we found improvement even for m = 3. The state considered
is

|ψ〉 = cos α|W 〉 + sin α|111〉. (21)

This state is also symmetric for the permutations of the parties;
therefore, the matrix elements of the tensor products of single
party operators will not depend on the order of those operators.
In the above state we find that the weight of |111〉 goes to zero
as the threshold efficiency is approached. Like before, the
measurement angles also vanish at ηcrit.

Now, besides the matrix elements calculated with the
|W 〉 state [see Eqs. (12), (16), and (17)] for the conditional
probabilities of Eq. (4) appearing in Eqs. (6) and (7) we also
need

〈W |Âi ⊗ Âj ⊗ Î |111〉 = 1√
3
sisj ≈ x2

4
√

3
φiφj ,

〈W |Âi ⊗ Âj ⊗ Âk|111〉 = x2

4
√

3
(c+

i sj sk + sic
+
j sk + sisj c

+
k )

≈ x2

4
√

3
(φiφj + φiφk + φjφk),
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〈111|Âi ⊗ Âj ⊗ Î |111〉 = c+
i c+

j ≈ 1,

〈111|Âi ⊗ Âj ⊗ Âk|111〉 = c+
i c+

j c+
k ≈ 1. (22)

These matrix elements, including their limits for small angles,
may be calculated similarly to the ones given in Eqs. (12),
(16), and (17). We have also used the same notations. For
small angles we have kept only the leading-order terms.
Equation (22) shows that the matrix elements 〈W |M̂η|111〉
and 〈111|M̂η|111〉 of the effective Bell operator [see Eq. (5)]
for small measurement angles, that is, for small x, will be
second and zeroth order in x, respectively. With |ψ〉 given in
Eq. (21) we can write

〈ψ |M̂η|ψ〉 = cos2 α〈W |M̂η|W 〉+ 2 sin α cos α〈W |M̂η|111〉
+ sin2 α〈111|M̂η|111〉. (23)

Let us make the same restriction as before, namely, let
M

(2)
ij = 0, whenever the corresponding measurement angles

do not satisfy φ1 + φ2 = 1, which makes sure that 〈w|M̂η|W 〉
is fourth order in x. Then 〈ψ |M̂η|ψ〉 is also fourth order, if the
mixing angle α is taken proportional with x2, that is, α = ax2.
For small x we may write

〈ψ |M̂η|ψ〉 ≈ 〈W |M̂η|W 〉 + 2x2〈W |M̂η|111〉a
+x4〈111|M̂η|111〉a2. (24)

With this choice, all matrix elements appearing in M(2) and
M(3) according to Eqs. (6) and (7) are fourth order in x, and
we may derive the Bell inequalities with the smallest critical
efficiency using linear programming exactly the same way as
we have done with the |W 〉 state. There is one extra parameter
a characterizing the mixing angle. From Eq. (24) it is easy to
determine the optimum choice for this parameter. The equation
defines a parabola as a function of a, and its maximum value
is given as

a = −〈W |M̂η|111〉/x2〈111|M̂η|111〉. (25)

We note that 〈111|M̂η|111〉 � 0 for small x, which follows
from the condition that the classical bound is zero, and that
all values of matrix elements involved are approximately one
[see Eq. (22)]. Then the quantum value with the optimum a

may be written as

〈ψ |M̂η|ψ〉 ≈ 〈W |M̂η|W 〉 − 〈W |M̂η|111〉
〈111|M̂η|111〉 . (26)

The optimum value of a depends on the Bell coefficients to
be determined, so what we can do is to try some initial values
for a, determine the Bell inequality with linear programming,
calculate the optimum a for this inequality, then repeat these
steps until convergency, which typically means just a few
iterations.

Let us first start with the smallest number of settings
considered.

A. Symmetric state, m = 2

Choosing the parameter a according to Eq. (25) in the
state |ψ〉 in Eq. (21), noting that α = ax2, we may get
ηcrit = 0.6 in the limit of small measurement angles with

m = 2 measurement settings per party. If we choose �1 = 0
and �2 = x, we get the same Bell inequality as we got with the
|W 〉 state, which we have shown in Eq. (13). The marginally
small admixture of the |111〉 state lowered the value of ηcrit

from 0.83747 to 0.6, with considerably different measurement
angles. The inequality is the same as the three-party one given
by Larsson and Semitecolos [28], and which is number 22
on the list of Sliwa [43]. However, in [28] the state they
considered is the |000〉 state with a very small admixture
of the |W 〉 state, that is, their state approaches a separable
state at the threshold efficiency. Also, in their case, the second
measurement angle is zero, and not the first one. Surprisingly,
their very different solution does lead to the same ηcrit = 0.6.
We have calculated the maximum violation of the inequality
numerically for several detector efficiencies above ηcrit. It
turned out that it is always enough to consider permutationally
symmetric real states and to take the same real measurement
operators for each party. Therefore, the state can be written
as a linear combination of |W 〉, |111〉, and |000〉 (the fourth
independent real symmetric state can always be eliminated by
an appropriate choice of the local coordinates).

The maximum violation as a function of the detector
efficiency is shown in Fig. 1. Near the threshold efficiency
the maximum violation scales as the third power of �η = η −
ηcrit. The optimum state approaches the |W 〉 state, while the
coefficients of the |111〉 and the |000〉 states are proportional
to �η and �η3/2, respectively. If we take the coefficient of
the |000〉 state to be exactly zero, the maximum violation
remains basically the same. Near the threshold the difference is
negligible, and it is just a little more than 3% around η = 0.9.
Therefore, the optimum solution may be reproduced almost
exactly with the state we have considered in the present paper.
Near ηcrit the measurement angles �1 and �2 scale as �η3/2

and �η1/2, respectively. It is the first angle that tends to zero
faster. If we take this angle to be exactly zero, as we have
done in this paper, the scaling behavior of the maximum
violation will not change, but its value will be smaller by a
factor approaching 6.25 near ηcrit, and by a factor of 1.33 at
η = 1 (see Fig. 1). If we take the basis used in [28], given by
the |000〉 and the |W 〉 states, the threshold efficiency remains

0.00001 0.0001 0.001 0.01 0.1η−ηcrit
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FIG. 1. The maximum violation as a function of the detector
efficiency for the Bell inequality with two settings per party.
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0.6, but near ηcrit we get much smaller violations: it will scale
as the fourth power of �η. This time �2 goes to zero faster than
�1. If we take �2 = 0, it will hardly affect the violation near
ηcrit, while it will reduce it by about 30% at η = 1. The result
is shown in Fig. 1 We may conclude that for this inequality our
solution is much closer to the optimal arrangement than the
one of Larsson and Semitecolos [28]. However, their approach
may directly be generalized to a larger number of parties.

B. Symmetric state, m = 3

The independent Bell coefficients we got for m = 3 are

M
(2)
11 = −2, M

(2)
23 = −1, M

(3)
111 = 4, M

(3)
112 = 1,

M
(3)
113 = 1, M

(3)
122 = −2, M

(3)
123 = 1, M

(3)
133 = −2,

M
(3)
223 = 1, M

(3)
233 = 1. (27)

For this Bell inequality ηcrit = (19 + √
937)/96 ≈ 0.516776

(see the Appendix), significantly smaller than the 0.6 value we
got with the |W 〉 state for m = 3.

C. Symmetric state, m � 4

For m = 4 the coefficients are

M
(2)
12 = −2, M

(2)
34 = −2, M

(3)
112 = 2, M

(3)
114 = −2,

M
(3)
122 = 2, M

(3)
123 = 1, M

(3)
124 = 1, M

(3)
133 = −2,

M
(3)
134 = 1, M

(3)
223 = −2, M

(3)
234 = 1, M

(3)
244 = −2,

M
(3)
334 = 2, M

(3)
344 = 2. (28)

In the Appendix we show that ηcrit is exactly 1/2 for this
inequality. We have tried m = 5 and 6, but we have got no
improvement, so for three participants we could not find a
Bell inequality for which the critical efficiency goes below
1/2.

We summarized critical detection efficiencies we found in
this paper for the symmetric three-qubit states in Table II.

V. SUMMARY

We have shown that the required detection efficiencies to
demonstrate a loophole-free Bell violation can be significantly
lowered if three parties are involved (instead of the usual
two-party scenario). Before, no practical three-party Bell tests
featuring efficiencies lower than 60% were known to the best
of our knowledge. This value has been attained by Larsson and
Semitecolos in 2001 in a three-party two-setting Bell scenario
[28]. We beat this limit using a W state and three measurements
per party. Moreover, for eight settings we reach the value of
50.13%. On the other hand, using a coherent mixture of the W

state with a product state |111〉 allows us to obtain ηcrit = 50%
even with four settings. We conjecture that ηcrit = 50% cannot
be beaten in either way.

It is left as an open question if one of our inequalities could
be generalized beyond three parties similarly to the family of
Bell inequalities by Larsson and Semitecolos [28].
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APPENDIX: DETAILED CALCULATION OF CRITICAL
DETECTION EFFICIENCIES

In the Appendix we calculate the critical detector efficien-
cies for the Bell inequalities given in the main text. According
to Eqs. (5)–(7), and taking into account the permutational
symmetry of the states considered, the matrix element of the
effective Bell operator may be written as

〈ψ |M̂η|ψ〉

= η2
m∑

j=1

m∑
i=j

M
(2)
ij πij0〈ψ |Âi ⊗ B̂j ⊗ Î |ψ〉 +

× η3
m∑

k=1

m∑
j=k

m∑
i=j

M
(3)
ijkπijk〈ψ |Âi ⊗ B̂j ⊗ Ĉk|ψ〉, (A1)

where πijk is the number of permutations of indices i, j , and
k, that is, πijk = 6 if all three are different, πijk = 3 if two
indices agree, and πijk = 1 if i = j = k.

The condition for the violation of the Bell inequality by the
results of the measurements performed on the |W 〉 state is

〈W |M̂η|W 〉 > 0, (A2)

and the values of the matrix elements necessary to evaluate
〈W |M̂η|W 〉 for small measurement angles are given by
Eqs. (16) and (17). It makes the calculations simpler if
we notice that these matrix elements do not change if
we reverse the signs of the measurement angles concerned
simultaneously. Also, if one of the measurement angles is �

and another one is −�, then the three particle matrix element
will not depend on the third angle. These statements are also
true for the matrix elements shown in Eq. (22) in the limit of
small angles, which we will need when we consider the state
defined by Eq. (21).

We have already shown that for the m = 3 inequality given
by Eq. (14) ηcrit = 0.6.

Now let us consider the m = 4 case given by Eq. (15).
The measurement angles to be taken now are �i = φix, with
φ1 = −φ2 = 1 and φ3 = −φ4 = λ. By using Eqs. (16), (17),
(A1), and (A2), straightforward calculation leads us to

−3 − λ4 + η[6 − 3(1 − 2λ)2] > 0 (A3)

for the condition of the quantum violation. Here we have
simplified the expression by a factor of x2η2/(48 × 12). At
η = ηcrit the left-hand side of the equation is zero, therefore
ηcrit = 3(1 + 4λ − 4λ2)/(3 + λ4). It has its minimum value
if λ satisfies 2λ5 − 3λ4 − λ3 − 6λ + 3 = 0. The appropriate
root calculated numerically is λ = 0.466715, which leads to
ηcrit = 0.509036.
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For the the m = 6 case shown in Eq. (19) we can follow the
same steps as above. Now the measurement angles are given
by φ1 = −φ2 = 1, φ3 = −φ4 = μ, and φ5 = −φ6 = ν. With
these angles we get for the condition of quantum violation,
after a simplification by a factor of x2η2/(48 × 36),

− 3(1 + μ4 + ν4) + η[6 + 6μ4 + 4ν4 − 3(1 − 2μ)2

− 3(μ2 − 2μν)2 − 3(μ − ν − μν)2] > 0. (A4)

Again, at η = ηcrit the left-hand side of the equation is zero,
and we must choose the parameters μ and ν such that ηcrit

is minimal. We get three equations for the three unknown
values, and if we solve those equations numerically we get
μ = 0.495815, ν = 0.295435, and ηcrit = 0.502417.

For the inequality with m = 8 given by Eq. (20) the
expression corresponding to Eq. (A4) is

− 3(1 + ρ4 + σ 4 + τ 4) + η[6 + 6ρ4 + 6σ 4 + 4τ 4

− 3(1 − 2σ )2 − 3(ρ2 − 2ρσ )2 − 3(σ 2 − 2στ )2

− 3(ρ − σ − ρσ )2 − 3(ρσ − ρτ − στ )2] > 0. (A5)

Here we have followed the same steps as for m = 6 taking mea-
surement angles φ1 = −φ2 = 1, φ3 = −φ4 = ρ, φ5 = −φ6 =
σ , and φ7 = −φ7 = τ . From the equation we get numerically
ηcrit = 0.501338 with ρ = 0.498442, σ = 0.306395, and τ =
0.169989.

Now let the state be the one shown in Eq. (21). From
Eq. (26), if we choose the optimal mixing angle, the condition
for quantum violation is

〈W |M̂η|W 〉 − 〈W |M̂η|111〉
〈111|M̂η|111〉 > 0. (A6)

The matrix elements of the Bell operator may be calculated
from Eq. (A1), which is also valid if the state vectors are
different in the bra and the ket positions, provided both are
permutationally symmetric. The matrix elements of the two
and three particle operators appearing in the right-hand side
of the equation are given in Eqs. (16), (17), and (22). We are
concerned with the small angles limit.

First, let us take the m = 2 inequality of Eq. (13).
With the choice of φ1 = 0 and φ2 = 1, we get
〈W |M̂η|W 〉 = −3η3x4/48, 〈W |M̂η|111〉 = −3η3x2/4

√
3,

and 〈111|M̂η|111〉 = −3η2 + 2η3 for the matrix elements

of the effective Bell operator. By substituting these values
into Eq. (A6), and taking into account that the left-hand side
of the equation is zero at η = ηcrit, it is easy to see that
ηcrit = 3/5 = 0.6.

We may take the same steps for m = 3. The inequality is
shown by Eq. (27), and the measurement angles are given
by φ1 = 0, φ2 = 1, and φ3 = −1. Then the matrix elements
of the effective Bell operator are 〈W |M̂η|W 〉 = −6η2x4/48,
〈W |M̂η|111〉 = −√

3η2x2(2η − 1/2), and 〈111|M̂η|111〉 =
−η2(12 − 5η). Then the condition that the left-hand side
of Eq. (A6) is zero at η = ηcrit leads to the equation
48η2

crit − 19ηcrit − 3 = 0, whose appropriate root is ηcrit =
(19 + √

937)/96 ≈ 0.516776.
In the case of the m = 4 inequality of Eq. (28) the

measurement angles are given by φ1 = 1, φ2 = −1, φ3 = λ,
and φ4 = −λ. From these it follows that 〈W |M̂η|W 〉 =
η2x4[−1 − λ4 + η(1 + 4λ − 8λ2 − 4λ3 +
λ4)]/4, 〈W |M̂η|111〉 = −√

3η2x2(1 + λ2)(1 − 3η), and
〈111|M̂η|111〉 = −24η2(1 − η). If we substitute these values
into Eq. (A6), we can get

η2

8(1 − η)

[
r

(
η − 1

2

)2

+ p

(
η − 1

2

)
− q

]
> 0, (A7)

where

r ≡ 4λ4 + 8λ3 + 34λ2 − 8λ + 7

= 5λ4 + 2(λ + 1)4 + 6λ2 + 4(2λ − 1)2 + 1 > 0,
(A8)

p ≡ 5λ4 + 6λ2 + 5 > 0,

q ≡ (λ2 + 4λ − 1)2

4
� 0.

In Eq. (A7) the prefactor is positive for 0 < η < 1. As r is
strictly positive, the inequality is satisfied above the upper root
of the second-order expression. Below that the expression is
negative for all η � 0, as one can easily see. Therefore, we get
the critical efficiency as (ηcrit − 1/2) = (

√
p2 + 4rq − p)/2r .

As r > 0, p > 0, and q � 0, the smallest possible value the
right-hand side may take is zero, when we choose λ such
that q = 0, that is, λ = −2 ± √

5. With this optimal choice
ηcrit = 1/2.
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