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Reentrant behavior of the breathing-mode-oscillation frequency in a one-dimensional Bose gas
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Exciting temporal oscillations of the density distribution is a high-precision method for probing ultracold
trapped atomic gases. Interaction effects in their many-body dynamics are particularly puzzling and counter-
intuitive in one spatial dimension (1D) due to enhanced quantum correlations. We consider 1D quantum Bose
gas in a parabolic trap at zero temperature and explain, analytically and numerically, how oscillation frequency
depends on the number of particles, their repulsion, and the trap strength. We identify the frequency with
the energy difference between the ground state and a particular excited state. This way we avoided resolving
the dynamical evolution of the system, simplifying the problem immensely. We find an excellent quantitative
agreement of our results with the data from the Innsbruck experiment [Science 325, 1224 (2009)].
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All existing ultracold-gas experiments are carried out
with systems which are spatially inhomogeneous due to
the presence of an external confining potential [1,2]. Excit-
ing temporal oscillations of the gas density distribution in
such a confined geometry is a basic tool for investigating
the spectrum of collective excitations and phase diagram
[3–9]. One-dimensional (1D) gases have their own specifics:
Enhanced quantum correlations affect their collective exci-
tations spectrum drastically, masking out signatures of the
Bose and Fermi statistics of the constituent particles [10,11].
The exactly solvable homogeneous Lieb-Liniger gas model
[12] is a paradigmatic demonstration of that statement. There
bosons interact through a δ-function potential of strength
g1D > 0. Increasing g1D suppresses spatial overlap between
any two bosons. This leads to a many-body excitation spectrum
identical to that of a free Fermi gas in the limiting case of
infinite repulsion, g1D = ∞, known as the Tonks-Girardeau
(TG) gas [13]. The presence of an external parabolic poten-
tial makes the low-lying part of excitation spectrum to be
discrete. The first excited state of the gas, a dipole mode, is
interaction independent. It is associated with the center-of-
mass oscillations at a trap frequency ωz. The second excited
state is doubly degenerate for g1D = 0 and g1D = ∞. One
mode with the interaction-independent frequency 2ωz comes
from center-of-mass oscillations. Another mode is called the
breathing (or compressional) mode. Being excited by a small
instantaneous change of the trapping frequency ωz, this mode
has the frequency ω which depends on g1D > 0, the number
of particles N in the trap, and the gas temperature T .

Experimental investigations of the breathing mode oscilla-
tions in 1D ultracold-gas experiments have been reported by
several groups [14–16]. It was found that the frequency ratio
ω/ωz, as a function of the interaction strength, goes through
two crossovers: from the value 2 down to

√
3 and then back

to 2 (see, e.g., Fig. 2), as the system goes from noninteracting
to weakly interacting and then from weakly interacting to
strongly interacting regime [15]. The latter crossover has
been described theoretically for N going to infinity, by the
approach based on the local density approximation (LDA)
[17]. A description of the former crossover has been done

only numerically for the few particles: N � 5 by using the
multilayer multiconfiguration time-dependent Hartree method
[18] and N � 7 using numerical diagonalization [19]. Exper-
iments [14,16] were done in the regime of weak coupling,
for which ω/ωz = √

3 is expected as N goes to infinity at
zero temperature. To what extent are the observed deviations
from the value

√
3 due to finite N and T is an open question.

Answering it paves a way towards understanding interaction
effects in dynamics and thermalization of 1D quantum gases.

In this Rapid Communication we present the analytic and
numerical results for the breathing-mode-oscillation frequency
ω in the repulsive Lieb-Liniger gas in a parabolic trap of
frequency ωz. Using the Hartree approximation we explain
how the decrease of ω/ωz from the value 2 down to

√
3 as

the interparticle repulsion increases is linked to a transition
from the Gaussian Bose-Einstein condensate (BEC) to the
Thomas-Fermi (TF) BEC regime. By further increasing the
repulsion strength, ω/ωz goes back to the value 2. This return
is associated with the transition from the TF BEC to the
Tonks-Girardeau regime and is described within local density
approximation. We perform extensive diffusion Monte Carlo
simulations for a gas containing up to N = 25 particles. As the
number of particles increases, predictions from the simulations
converge to the ones from the Hartree and LDA in their
respective regimes. This makes our results for ω applicable
for arbitrary number of particles and value of the repulsion
strength. We find an excellent quantitative agreement with the
data from the Innsbruck experiment [15]. We also estimate
relevant temperature scales for the Palaiseau experiment [16].

Model and sum rules. The model we consider is the
Lieb-Liniger gas of repulsive bosons in a parabolic trap. The
Hamiltonian for N particles is

H = − �
2

2m

N∑
i=1

∂2

∂z2
i

+ g1D

∑
i<j

δ(zi − zj ) +
N∑

i=1

V (zi). (1)

Here m is the particle mass, and V (z) = mω2
zz

2/2 is the
particle potential energy in a parabolic trap. The length scales
in the model are set by the s-wave scattering length a1D,
related to the coupling constant g1D = −2�

2/(ma1D) and
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FIG. 1. The Tonks-Girardeau (TG), the Thomas-Fermi Bose-
Einstein condensate (TF BEC), and the Gaussian BEC regimes of
the repulsive Lieb-Liniger gas in a parabolic trap, Eq. (1), are shown
as a function of the Hartree parameter λ = −a1D/(Naz) for a given N.

Density profiles are semicircle, inverted parabola, and the Gaussian
deep in these regimes, respectively. The local density approximation
(LDA) parameter � is related to λ as � = N3λ2. The TG and the TF
BEC regimes are separated with � = 1.

by the harmonic oscillator length az = √
�/(mωz). Three

zero-temperature quantum regimes shown schematically in
Fig. 1 are identified for model (1) based on its thermodynamic
and local correlation properties [20].

We employ a sum rule approximation, which makes it
possible to get ω for arbitrary a1D, az, and N from ground-state
properties of Hamiltonian (1) solely [21]. More specifically, ω
is obtained by calculating the response of the gas to a change
of the trap frequency:

ω2 = −2
〈Q〉

∂〈Q〉/∂ω2
z

, (2)

where Q = Qc ≡ ∑N
i=1(zi − Zcm)2, and Zcm = ∑N

i=1 zi/N is
the center-of-mass coordinate. The average 〈· · · 〉 is taken with
respect to the ground-state wave function ψgs(z1, . . . ,zN ) of
Hamiltonian (1). Neglecting Zcm in Qc amounts to replacing
Qc with Q0 ≡ ∑N

i=1 z2
i , the latter operator being used in

Ref. [17].
By changing ωz one excites many modes rather than a

single breathing mode. These modes cause ω given by Eq. (2)
to be different from the breathing mode frequency. Their
contribution could be diminished by a proper choice of Q.

How good is our choice, Qc, for that purpose is seen by
comparing the exact spectrum of model (1) for N = 2 with
ω given by Eq. (2) for arbitrary value of −a1D/az. We found
that ω given by Eq. (2) with Q = Q0 misses up to 50% of the
deviation from 2ωz value, while with Q = Qc it misses 4% at
most.

Gaussian BEC to TF BEC crossover. We approximate ψgs

(normalized to 〈ψgs|ψgs〉 = 1) with the Hartree variational
wave function ψH

gs (z1, . . . ,zN ) = ∏N
i=1 ϕ(zi) for N � 1. This

function is found by minimizing the functional E[ψH
gs ] ≡

〈ψH
gs |H |ψH

gs 〉 with respect to ϕ(z). The procedure amounts
to solving the Hartree eigenvalue equation (same as the
Gross-Pitaevskii equation)[

−1

2

∂2

∂x2
+ x2

2
+ 2

λ
|ϕ̃(x)|2

]
ϕ̃(x) = εϕ̃(x) (3)

for the minimal possible ε. Here ϕ̃(x) = √
azϕ(z), and x and

ε are dimensionless length and energy given in units of az and

�ωz, respectively. The Hartree parameter λ reads

λ = − a1D

Naz

. (4)

The ground-state density distribution found with respect to
the Hartree state |ψH

gs 〉 is nH (z) = N |ϕ(z)|2 and the average
of the operators Qc and Q0 is 〈Qc〉 = 〈Q0〉 = ∫

dz z2nH (z).
Substituting this expression into Eq. (2) and taking into
account that 2∂λ/∂ωz = λ/ωz we find that ω/ωz depends on
a1D,az, and N through a single parameter λ within the Hartree
approximation.

We explore the dependence of ω/ωz on λ. Deep in the
Gaussian BEC regime, λ � 1, we use a series expansion in the
harmonic oscillator wave functions for ϕ(z) and solve Eq. (3)
perturbatively. We get

ω2/ω2
z � 4(1 − cλ−1), λ → ∞, (5)

where c = 1/
√

8π . Perturbation theory for the many-body
wave functions of Hamiltonian (1) extends the validity range of
Eq. (5) to arbitrary N � 2. Note that the Hartree approximation
is only valid in the large N limit. Indeed, Eq. (3) in which λ is
replaced with λN = −a1D/[(N − 1)az] minimizes the energy
functional for any N � 2. This implies 〈Q0〉 = N〈Qc〉/(N −
1) = ∫

dz z2nH (z). Being substituted into Eq. (2) both 〈Q0〉
and 〈Qc〉 lead to Eq. (5) with λ replaced by λN, that is, to
the result which is correct in the large N limit only. Note
also that the ground-state wave function of Hamiltonian (1)
obtained with perturbation theory and used for the sum rule
(2) with Q = Qc gives Eq. (5) correctly. This supports our
approach to DMC simulations (detailed later in the Rapid
Communication), in which we rely on Eq. (2) and Q = Qc.

In the case λ 
 1 Eq. (3) results in an inverted parabola
density profile, characteristic of the TF BEC regime

nH (z) = N
(9λ)

1
3

4az

(
1 − z2

Z2

)
θ

(
1 − z2

Z2

)
, λ → 0. (6)

Here θ is the Heaviside step function, and Z/az = (3/λ)1/3.
Substituting Eq. (6) into Eq. (2) we get ω/ωz = √

3.
In the case of arbitrary λ we solve Eq. (3) numerically.

The plot of ω2/ω2
z as a function of λ is shown in Fig. 2. We

observe a smooth crossover between the λ 
 1 (TF BEC) and
λ � 1 (Gaussian BEC) regimes. We find that ω2/ω2

z ≈ 3.5 at
λ = 1, defined as a reference point separating these regimes
(see Fig. 1).

TF BEC to TG crossover. This crossover is associated to
an interplay of the parameters λ and N−3/2; see Fig. 1. It may
not be captured within the Hartree approximation, which does
not contain N−3/2 as a parameter independent of λ. Instead,
we may use LDA [17]. It is only valid in the large N limit and
is based on the assumption that the local chemical potential at
a point z is equal to the chemical potential in a homogeneous
system that has the same density n(z). Therefore μloc(n(z)) =
V (Z) − V (z) for |z| � Z and vanishes for |z| > Z in model
(1). Here Z is the Thomas-Fermi radius of the gas cloud, whose
value is set by the normalization condition

∫ Z

−Z
dz n(μloc(z)) =

N. The dependence of μloc on n in the homogeneous Lieb-
Liniger model (Eq. (1) with V = 0) was found in Ref. [12].
Using Eq. (2) with 〈Qc〉 = 〈Q0〉 = ∫

dz z2n(z) we get ω/ωz

021601-2



RAPID COMMUNICATIONS

REENTRANT BEHAVIOR OF THE BREATHING-MODE- . . . PHYSICAL REVIEW A 92, 021601(R) (2015)

a1D Naz

Ω
2

Ω
z2

10 3 10 1 101

3.0

3.5

4.0

1
2 3

4 5

6

7

25

800

8000

Hartree
LDA
Innsbruck
Palaiseau

DMC 2
DMC 3
DMC 4
DMC 10
DMC 17
DMC 25

FIG. 2. (Color online) Ratio ω2/ω2
z as a function of the Hartree

parameter λ = −a1D/(Naz). Dashed (black) line: the Hartree ap-
proximation. Solid (black) lines: LDA for N = 25, 800, 8000 in
the equation � = N3λ2. Dashed (colored other than in black) lines:
interpolations for data points obtained with diffusion Monte Carlo
(DMC) simulations for N = 2,3,4,10,17,25 particles (top to bottom).
Large (black) circles: Innsbruck experiment [15], for which N = 25.
Large (blue [gray]) boxes: Palaiseau experiment [16], for which N is
given in Table I. The Gaussian BEC regime corresponds to λ > 1, as
defined in Fig. 1.

readily. The result depends on a1D, az, and N through a single
parameter � = Na2

1D/a2
z = N3λ2 within LDA [17,22,23].

In the limiting case of impenetrable bosons, � = 0, the
local chemical potential is equal to the Fermi energy, μloc =
(π�n)2/(2m). This leads to the semicircular LDA density
profile n(z) = √

2Na2
z − z2θ (2Na2

z − z2)/(πa2
z ), characteris-

tic of the TG regime; see Fig. 1. Excitation spectrum of model
(1) deep in the TG regime, � 
 1, can be found perturbatively
in a1D. For that we use a mapping from the gas of strongly
repulsive bosons to that of weakly attractive fermions [24]. A
perturbative solution for the ground-state energy is given in
Ref. [25]. Analyzing the excited states results in the expansion
[26]

ω2/ω2
z � 4(1 − CN

√
�), � → 0, (7)

where CN is calculated for all N � 2 :

CN = 3
√

2N

π
√

π

�
(
N − 5

2

)
�

(
N + 1

2

)
�(N )�(N + 2)

× 3F2

(
3

2
,1 − N,−N ;

7

2
− N,

1

2
− N ; 1

)
. (8)

The � → 0 expansion of the LDA solution reproduces Eq. (7)
and the coefficient C∞. Note that the coefficient c entering
Eq. (5) does not depend on N, while CN grows monotonously
from C2 = 1/

√
4π ≈ 0.282 to C∞ = 32

√
2/(15π2) ≈ 0.306.

In the case � � 1, local chemical potential is of the Gross-
Pitaevskii form, μloc = g1Dn, and the shape of the density
profile is given by Eq. (6), characteristic of the TF BEC regime.
This implies ω/ωz = √

3.

In the case of arbitrary � we solve the Lieb’s integral
equations connecting μloc and n numerically. We see from
Fig. 3 that ω/ωz connects smoothly � 
 1 (TG) and � � 1
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FIG. 3. (Color online) Ratio ω2/ω2
z , as a function of LDA param-

eter � = Na2
1D/a2

z . Dashed (black) line: the Hartree approximation
for N = 25 in the equation � = N3λ2. Solid (black) line: LDA. DMC
and experimental data points are the same as in Fig. 2. The TG regime
corresponds to � < 1, as defined in Fig. 1.

(TF BEC) regimes [17]. We find that ω2/ω2
z ≈ 3.3 at � = 1,

defined as a reference point separating these regimes (see
Fig. 1).

DMC simulations. How does ω/ωz depend on model
parameters for small N , and how good are the Hartree
approximation/LDA in that case? To answer these questions
quantitatively we perform large-scale numerical simulations
based on the diffusion Monte Carlo (DMC) algorithm [27].
This algorithm amounts to solving many-body Schrödinger
equation in imaginary time and makes it possible to calculate
ground-state energy to arbitrarily high precision. The con-
vergence rate of the simulations can be enhanced greatly by
doing an importance sampling with a guiding wave function
ψT . We use ψT (z1, . . . ,zN ) = ∏N

i=1 exp(−cvarz
2
i )

∏N
j<k(|zj −

zk| − a1D), with the parameter cvar minimizing the variational
energy. This function is known to work very well in a number
of 1D systems [28–31].

We use the sum rule approximation (2), which only requires
the knowledge of the ground-state properties of the model. For
the number of particles ranging from N = 2 to 25 we pushed
DMC to its limits to perform high-accuracy simulations.
Specifically, up to 104 processing hours were used to get
each data point for ω/ωz. The results obtained are shown
as a function of λ in Fig. 2 and of � in Fig. 3. Dashed lines
interpolating the data points are obtained by using a Padé
approximation and Eqs. (5) and (7) for the asymptotic values
of ω/ωz. We see in Fig. 2 that the Hartree and DMC curves
are indistinguishable from each other for λ > 1 at any N . The
minimal value of λ at which these two curves are close to each
other decreases with increasing N. It reaches the value ≈0.1,
and the minimal value of ω2/ω2

z reaches ≈3.2, at N = 25. We
may thus locate the TF BEC regime of the model from Fig. 2 by
setting where ω2/ω2

z ≈ 3. Figure 3 shows the same data points
as in Fig. 2, as a function of the LDA parameter �. Evidently,
LDA and DMC curves coincide for � < 0.1 at any N .

Comparison with experiments. The Innsbruck group loaded
three-dimensional (3D) BEC of 133Cs atoms into an array of

021601-3



RAPID COMMUNICATIONS

GUDYMA, ASTRAKHARCHIK, AND ZVONAREV PHYSICAL REVIEW A 92, 021601(R) (2015)

TABLE I. Comparison with the data for the Palaiseau experiment.
The number of particles N in the tube and the density n0 at the tube
center are from the raw data used in Ref. [16]. The ratio ω2/ω2

z is
taken from Fig. 3(a) of Ref. [16] and is shown as the large (blue
[gray]) boxes in Figs. 2 and 3 of the present Rapid Communication.
The temperature T is obtained by requiring that the height of the
thermal gas density profile at the trap center is equal to n0. The
parameter Tco determines when the finite-temperature effects are
important according to Ref. [35].

Point 1 2 3 4 5 6 7

10−3N 7.8 6.8 5.8 3.2 2.3 1.9 1.4
n0 (μm−1) 66 58 52 33 23 18 13
ω2/ω2

z 2.94 2.99 2.99 3.07 3.09 3.38 3.77
T (μK) 0.40 0.40 0.34 0.23 0.21 0.21 0.19
Tco (μK) 1.08 0.95 0.82 0.50 0.38 0.33 0.22

1D tubes formed by retroreflected laser beams. The frequency
of the external parabolic potential along the tube direction
is ωz = 2π × 15.4 Hz, and the maximal number of atoms per
tube is about 25. The Innsbruck group data shown in Figs. 2 and
3 of the present Rapid Communication are taken from Figs. 2
and 3(a) of Ref. [15] for g1D > 0. We see that DMC simulations
for N = 17 and 25 are compatible with the experimental data
points. This match suggests that the temperature effects play
little role in the experiment. The temperature T of the 1D
gas can be estimated by assuming that it is inherited from the
3D BEC, whose temperature is between 1 and 10 nK [32].
The degeneracy temperature of an ideal Bose gas, defined
as TQ = N�ωz/kB (kB is the Boltzmann constant) is about
18 nK. We see that T is at least twice as low as TQ.

The ETH experiment examined what happens with the
breathing oscillations if the temperature of the 3D BEC
prepared to be loaded into an array of 1D tubes gets higher
[14]. The parameters a1D, az, and N correspond to the TF
BEC regime of the 1D gas. It was found that the breathing
mode persists and ω2/ω2

z grows from the value 3 to 4 (with the
uncertainty about 0.1). These findings could be interpreted as
the increase of ω due to the increase of the temperature of the
1D gas, assuming that it is in thermal equilibrium.

The Palaiseau group prepared a single tube with 87Rb
atoms using atom-chip setup [16]. The number of atoms in the
tube is given in Table I, and ωz = 2π × 9.0 Hz. Data points
from the Palaiseau group shown in Figs. 2 and 3 of the present
Rapid Communication are taken from Fig. 3(a) of Ref. [16].
The parameters a1D, az, and N correspond to the TF BEC
regime for all data points. We see that the frequencies for
the first five of them match our theoretical predictions within
the error bars. The frequencies for the last two of them are
higher than the theory predicts. We get the gas temperature by
comparing the height of the density profile in the tube center,
n0, calculated theoretically [33] with the one measured in
experiment [16]. The values of n0 and T are given in Table. I.
According to Ref. [35], finite-temperature effects are relevant
above Tco = 3N�ωz/[kB ln(�/4)] for the range of parameters
chosen in the experiment. We see from Table I that T/Tco

increases monotonously from the value ≈0.4 for the first
data point to ≈0.9 for the last one. Note that TQ is nearly
three times larger than Tco (and, therefore, than T ) for all data
points. Thus, TQ may not define the crossover temperature in
the experiment [16].

Summary. We investigated the breathing mode frequency
ω in model (1) at zero temperature by identifying the energy
difference between a particular excited state and the ground
state. This way we avoided dealing with the dynamical
evolution of the initial state of the system. Our theory predicts
the reentrant behavior of ω and fully explains the recent
experiment [15] for the repulsive interparticle interaction.
The extension of the present theory to the finite-temperature
case requires a separate study. The existing phenomenological
approaches [16,36] are yet to be tested against the predictions
from the exact dynamical evolution of the system.
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