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Deuteron and triton magnetic moments from NMR spectra of the hydrogen molecule
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We present a theory and calculations of the nuclear magnetic shielding with finite nuclear mass effects
and determine the magnetic moments of deuteron and triton using the known NMR spectra of HD and HT
molecules. The results μd = 0.857 438 234 6(53)μN and μt = 2.978 962 471(10)μN are more accurate and in
good agreement with the currently accepted values.
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When a molecule is placed in a homogeneous magnetic
field �B, its nuclei experience the field that is shielded by
the surrounding electrons (1 − σ̂ ) �B. The magnitude of the
shielding factor σ , typically of the order 10−5, depends on
the relative distance between nuclei, which means that nuclear
magnetic resonance (NMR) can be used as a tool for obtain-
ing information on the structure of complicated molecules.
However, when the molecular structure can be calculated,
high-precision NMR spectra can be used to determine the
relative magnitude of the nuclear magnetic moments [1].
Namely, the ratio of nuclear magnetic moments is proportional
to the ratio of measured frequencies that flip the nuclear spins,

μA(1 − σA)

μB(1 − σB)
= fA

fB

IA

IB

. (1)

The accuracy to which μB is known can be transferred to μA

provided that one knows with sufficient precision the σA − σB

difference. Here, we report on results of the calculation of this
shielding difference for HD and HT molecules. Employing
these results, we determine the magnetic moment of deuteron
and triton using recent high-accuracy measurements of the pro-
ton magnetic moment [2] and the ratio of spin-flip frequencies
[3–6].

Magnetic shielding of the nuclear magnetic moment due to
the surrounding electrons has been first considered by Ramsey
in Ref. [7] with the help of the nonrelativistic Hamiltonian
in the external magnetic field. His result for the isotropic
shielding factor is

σ (0)(R) = α2

3

[
〈φ|

∑
b

1

xb

|φ〉

+ 〈φ|
∑

a

�xa × �pa

1

E − H

∑
b

�xb × �pb

x3
b

|φ〉
]
, (2)

where α is the fine-structure constant, �xb is the position of the
electron b with respect to the nucleus, �pb is its momentum, H

is the molecular Hamiltonian in the Born-Oppenheimer (BO)
approximation, φ is the electronic BO wave function, and
R is the distance between nuclei. An immediate conclusion
that can be drawn from this formula is that the shielding of
the proton and deuteron (triton) in the HD (HT) molecule
is the same. Upon averaging with the nuclear function χ ,
σ (0) = 〈χ |σ (0)(R)|χ〉, the difference in the shielding still
vanishes, not only for the ground state but also for any excited
state. Clearly, one has to go beyond the BO approximation and

also include finite nuclear mass effects in the coupling to the
external magnetic field. There have been several attempts to
calculate the shielding difference in HD (HT), and they are
all incorrect or incomplete. In 1977, Neronov and Barzakh [4]
derived the formula and obtained the result of

δσ (HD) ≡ σd (HD) − σp(HD) = 15.0 × 10−9,
(3)

δσ (HT) ≡ σt (HT) − σp(HT) = 20.4 × 10−9,

but they started with an incomplete Hamiltonian, i.e., their
formula (4) does not include the nuclear spin-orbit interaction
[see gA − 1 terms in Eq. (4) below]. Later, the calculations by
Jaszuński et al. [8] simulated nonadiabatic effects by an arti-
ficial charge difference. Their result of δσ (HD) = 9 × 10−9,
although of the correct magnitude, is not well substantiated
from the physical point of view, nor is it complete. Finally, in
the most recent calculations, Golubev and Shchepkin [9] used a
more realistic treatment of nonadiabatic effects, but their result
of δσ (HD) = 9 × 10−9 was also incomplete. Undoubtedly, the
coupling of electron motion to the nuclear motion is partially
responsible for the difference δσ , but this is not the whole
effect.

A derivation of the finite nuclear mass correction to the
shielding closely follows that of Refs. [7,10] and starts with the
Hamiltonian for electrons and nuclei, which includes coupling
to the external electromagnetic field and all possible nucleus
A spin-orbit interactions, i.e., (� = c = 1),
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where �π = �p − e �A, �A is an external magnetic vector potential,
gA is a g-factor of the nucleus A, which is related to
the magnetic moment by μA = eAgAIA/(2mA), and V is a
Coulomb interaction between electrons and nuclei. In order
to derive a formula for the shielding constant, including
the finite nuclear mass corrections, we perform two unitary
transformations ϕ,

H̃ = e−iϕHeiϕ + ∂tϕ. (5)
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The first transformation places the gauge origin at the moving
nucleus A. We assume that the molecule is neutral and that
the magnetic field is homogeneous and there is no electric
field, so

ϕ1 =
∑
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i + 1
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j
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)
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)
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where �A = �A(�rA), and �xa = �ra − �rA. The transformed mo-
menta are

e−iϕ1πj
a eiϕ1 = pj

a + ea

2
(�xa × �B)j , (7)
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j
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j
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2
( �D × �B)j , (9)

where �D = ∑
a e�xa + eB �xB is the electric dipole moment

operator. We can now assume that the total momentum
vanishes, thus �pA = − �pB − ∑

a �pa and the independent po-
sition variables are �xa and �xB . Consider now the electronic

Schrödinger equation(∑
a

�p 2
a

2m
+ V − E

)
φ = 0, (10)

and the next transformation ϕ2 of the form

ϕ2 = − m

mA

∑
a

�xa �pB, (11)

which simplifies the nuclear kinetic energy [see Eq. (18)
below]. The electron momenta are changed to

p′i
a = e−iϕ2pi

ae
iϕ2 = pi

a − m
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pi
B, (12)

and the potential

V ′ − E = e−iϕ2 (V − E)eiϕ2

≈ V − E + m
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∑
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�∇B(V − E), (13)

where we omitted higher-order terms in the electron nucleus
mass ratio. The new Hamiltonian H̃ after both transformations
with �pel = ∑

a �pa and �xel = ∑
a �xa becomes
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From this Hamiltonian one derives the shielding defined by

Heff = − eA

2mA

gA
�IA(1 − σ̂ ( �R)) �B. (15)

Let us consider first the nonrelativistic Hamiltonian Hnrel = H + Hn, where
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∑
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and where
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with mn = mAmB/(mA + mB) being the nuclear reduced mass. We assume the Born-Oppenheimer approximation and include
Hn perturbatively using the nonadiabatic perturbation theory (NAPT) [11]. In the zeroth order, the shielding is given by Eq. (2).
The leading nonadiabatic correction to the shielding σ̂ (1) is linear in the electron-nuclear mass ratio, and we split it into four
parts [10]: σ (1) = σn + σd + σs + σl. The explicit formulas for the isotropic shielding in H2 and isotopomers, eA = eB = −e,
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with �R = �rAB = �rA − �rB = −�xB are
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where �P = −i �∇R , and 〈φ| ↔

R |ψ〉 = −〈 �∇Rφ| �∇Rψ〉. The

result in Ref. [10] contains a mistake in σd, which we correct
here.

In the numerical evaluation of Eqs. (19)–(22), the ground-
state wave function is represented with the explicitly correlated
Gaussian functions of the form

φ�+ = e−a1Ar2
1A−a1Br2

1B−a2Ar2
2A−a2Br2

2B−a12r
2
12 . (23)

The resolvent 1/(E − H ) includes the sum of �− and  states,
which are represented as

φ�− = �R · (�r1A × �r2A)φ�+ , (24)

�φ = �R × �r1Aφ�+ . (25)

All of the above matrix elements are in electronic variables, so
the derivatives with respect to the internuclear distance have
to be obtained in advance. For this purpose we use the fact that
the total angular momentum vanishes on φ, so

�R × �∇R|φ〉 = −
(∑

b

�xb × �∇b

)
|φ〉, (26)

and from the R derivative of the Schrödinger equation in the
BO approximation we get

�∇R|φ〉 = 1

(E − H )′
�∇R(V )|φ〉 . (27)

Since we calculate only the shielding difference, all of the
terms with the reduced mass, including the most difficult 
R ,
are omitted. Calculations are performed using 128 and 256

TABLE I. Shielding as a function of the internuclear distance R.
Results to be multiplied by 10−6. The numerical uncertainty of σ (0)

is (20), while that of δσ is (2) on the last digits.

R (a.u.) σ (0) δσ (HD) δσ (HT)

0.00 59.936 77 ∞ ∞
0.10 58.308 74 0.053 997 0.069 030
0.20 54.933 43 0.030 630 0.038 311
0.40 47.435 08 0.020 577 0.025 604
0.60 41.035 38 0.018 685 0.023 329
0.80 36.014 57 0.018 680 0.023 243
1.00 32.118 10 0.019 197 0.023 663
1.10 30.504 37 0.019 486 0.023 874
1.20 29.074 46 0.019 759 0.024 044
1.30 27.804 09 0.019 991 0.024 153
1.40 26.672 56 0.020 181 0.024 201
1.50 25.662 62 0.020 324 0.024 186
1.60 24.759 25 0.020 416 0.024 107
1.70 23.949 94 0.020 464 0.023 973
1.80 23.224 07 0.020 469 0.023 792
1.90 22.572 23 0.020 436 0.023 569
2.00 21.986 84 0.020 367 0.023 308
2.10 21.461 05 0.020 261 0.023 015
2.20 20.988 70 0.020 131 0.022 700
2.30 20.565 01 0.019 973 0.022 362
2.40 20.185 30 0.019 792 0.022 010
2.50 19.845 67 0.019 587 0.021 643
2.60 19.542 83 0.019 361 0.021 265
2.70 19.273 36 0.019 117 0.020 880
2.80 19.034 52 0.018 855 0.020 488
2.90 18.823 95 0.018 570 0.020 085
3.00 18.638 83 0.018 280 0.019 688
3.20 18.337 14 0.017 652 0.018 886
3.40 18.113 34 0.016 989 0.018 092
3.60 17.952 68 0.016 308 0.017 322
3.80 17.842 09 0.015 640 0.016 598
4.00 17.769 75 0.015 002 0.015 930
4.20 17.725 68 0.014 405 0.015 320
4.40 17.701 48 0.013 866 0.014 780
4.60 17.690 67 0.013 394 0.014 311
4.80 17.688 47 0.012 976 0.013 899
5.00 17.691 28 0.012 632 0.013 557
5.20 17.696 74 0.012 344 0.013 270
5.40 17.703 34 0.012 099 0.013 023
5.60 17.710 10 0.011 889 0.012 810
5.80 17.716 48 0.011 724 0.012 638
6.00 17.722 24 0.011 584 0.012 489
∞ 17.750 45 0.010 753 0.011 326
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FIG. 1. The difference δσ (HD,R) in ppm of the shielding
constant between the deuteron and the proton in HD as a function of
the internuclear distance R. The horizontal line is a separated atom
limit, while the dotted line is the 1/R asymptotics that comes from
the direct interaction between nuclei.

basis functions for each symmetry with global optimization of
all nonlinear parameters. The numerical results in the range
R ∈ 〈0,6〉 a.u. are presented in Table I. Although the results
for R > 3 are not in principle needed, we use them for testing
against the known separated atom limit, which is

lim
R→∞

σ (1)(R) = −α2

3

m

M

(
1 + gA − 1

gA

)
. (28)

On the other hand, at small R we observe 1/R behavior, which
is not an artifact but a result of the shielding of the nucleus A

by the nucleus B (see Fig. 1). Our results at R = 1.4 a.u. in
comparison to the known previous calculations are presented
in Table II.

The total isotropic magnetic shielding σ is obtained by
averaging with the nuclear wave function χ , σ = 〈χ |σ (0)(R) +
σ (1)(R)|χ〉, where χ is a solution of the nuclear radial equation
with the BO potential augmented by adiabatic correction.
Since the measurement [3] was performed at T = 300 K,
we include contributions from the excited rotational states
up to J = 9, according to the Boltzmann distribution. The
averaged result for the (Ramsey) shielding factor of the H2 and
isotopomers is σ (0) = 26.335 17(20) × 10−6. However, σ (0)

does not include relativistic corrections that are of the relative
order of α2 ∼ 10−4. The related estimate from Ref. [8] is much

TABLE II. Extrapolation to a complete basis and comparison with
the previous calculations of the isotropic nonrelativistic BO shielding
in HD (HT) at R = 1.4 a.u. Results to be multiplied by 10−6.

Size/Ref. σ
(0)
el δσ (HD) δσ (HT)

128 26.673 193 0.020 188 2 0.024 214 5
256 26.672 556 0.020 181 2 0.024 201 0
512 26.672 422 0.020 179 9 0.024 199 6
∞ 26.672 387(35) 0.020 179 6(3) 0.024 199 4(2)
[12] (1995) 26.813 9
[13] (1996) 26.680
[8] (2011) 26.677 111

TABLE III. Determination of the deuteron and the triton magnetic
moments. μp(HD) denotes the shielded magnetic moment of the
proton in HD molecules. The relative uncertainty 10−3 of δσ comes
from the neglected higher-order m/mn corrections and relativistic
effects are expected to be ten times smaller.

Value Ref.

μp 2.792 847 350(9) μN [2]
δσ (HD,T = 300 K) 0.020 20(2) × 10−6 This work
μp(HD)/μd (HD) 3.257 199 514(21) [3]

3.257 199 531(29) [5]
3.257 199 520(17) Averaged

μd = μd (HD)/μp(HD) 0.857 438 234 6(53)μN This work
×(1 + δσ )μp 0.857 438 230 8(72)μN [14]

δσ (HT,T = 300 K) 0.024 14(2) × 10−6 This work
μt (HT)/μp(HT) 1.066 639 893 3(7) [6]
μt = μt (HT)/μp(HT) 2.978 962 471(10)μN This work

×(1 + δσ ) 2.978 962 448(38)μN [14]

smaller than the relativistic correction to the shielding of the
individual hydrogen atoms, so it is possibly incorrect. The
shielding differences in HD and HT are presented in Table III.
Their uncertainties come from the unknown higher-order
nonadiabatic corrections. From these differences and from
Eq. (1) we obtain the magnetic moments of deuteron and triton
(see Table III). The ratio of shielded magnetic moments for HD
is the average of two independent and consistent measurements
[3–5]. The obtained result for μd is more accurate and in
good agreement with the presently accepted value, which was
obtained from an unpublished experimental result by Philips
et al. (1984) (see Ref. [14] for details). Regarding μt , the
Committee on Data for Science and Technology (CODATA)
[14] value is based on the earlier, less accurate work [5], while
we use a more recent one [6] and correct the value for δσ ,
which leads to an even smaller uncertainty of μt . We should
note, however, that the result of Ref. [6] needs confirmation
as the pressure dependence has not been studied there, and
because of the lack of information on the temperature, which
we assumed to be T = 300 K.

In summary, we have determined improved values for the
deuteron and triton magnetic moments. This demonstrates that
NMR spectroscopy, combined with precise calculations of the
shielding factor, may lead to a very accurate determination
of nuclear magnetic moments. Moreover, one may consider
improving the determination of magnetic moments of other
light nuclei, such as 3He, since the shielding factor for
molecular hydrogen can be calculated including nonadiabatic
and relativistic effects, as has been already done for the 3He
atom [15].

We would like to thank Piotr Garbacz for bringing to our
attention his excellent experimental results, and we gratefully
acknowledge interesting discussions with Michał Jaszuński
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