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We investigate the range of validity of the recently developed steady-state ab initio laser theory (SALT). While
very efficient in describing various microlasers, SALT is conventionally believed not to be applicable to lasers
featuring fully or nearly degenerate pairs of resonator modes above the lasing threshold. Here we demonstrate
how SALT can indeed be extended to describe such cases as well, with the effect that we significantly broaden the
theory’s scope. In particular, we show how to use SALT in conjunction with a linear stability analysis to obtain
stable single-mode lasing solutions that involve a degenerate mode pair. Our flexible and efficient approach is
tested on one-dimensional ring lasers as well as on two-dimensional microdisk lasers with broken symmetry.
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I. INTRODUCTION

Microcavity lasers are essential elements in modern photon-
ics and have been realized with cavities of very different shape
and with various lasing mechanisms [1–12]. The nonlinear
lasing behavior of these systems can, in principle, be mod-
eled using the semiclassical Maxwell-Bloch (MB) equations
[13–16]. Due to their time-dependent nature these equations
are, however, usually difficult to solve for all but the most
simple cases. In recent years, a much more efficient ap-
proach named steady-state ab initio lasing theory (SALT) has
emerged, which can be used to describe the steady-state lasing
of lasers [17–23]. Among other advances, this framework
has shed light on weakly scattering random lasers [24],
on pump-induced exceptional points [11,12,25,26], and on
coherent perfect absorption [27,28] and has opened up ways
of controlling the emission patterns of random as well as
of microcavity lasers [29,30]. One of the major drawbacks
of SALT is that its conventional formulation fails for the
simulation of microlasers with nearly degenerate modes as
occurring, e.g., in whispering gallery mode resonators with an
inherent symmetry [2,6,8,10,12,31].

Here, we present an approach to generalize SALT to such
cases. This extension allows us to observe, among other
phenomena, that nearly degenerate modes may merge into
a single mode. These steady-state solutions are, however,
not necessarily stable with respect to small time-dependent
spatial perturbations. In particular, it has already been shown
that in highly symmetric systems such as ring lasers not
every steady-state solution of the MB equations is necessarily
stable [32,33]. Hence, the stability of the solutions obtained
from our extended SALT approach has to be verified. Up
to now such additional stability checks were always done
using direct time-dependent simulations of the MB equations
[18,25,34,35]. One of the reasons for using SALT, however, is
exactly to avoid this kind of computationally very demanding
numerics.

In this work, we thus introduce a much more efficient way
to determine the stability of the SALT solutions based on
a rigorous linear stability analysis for single-mode steady-
state solutions. Furthermore, our work extends the scope of
SALT to previously inaccessible parameter regimes, where
even bifurcating solutions (stable or unstable) of the nonlinear
equations can now be appropriately dealt with.

II. SHORT REVIEW OF SALT

In semiclassical laser theory, the dynamics of a laser
is governed by the interaction of classical fields with an
ensemble of two-level atoms as described by the so-called
Maxwell-Bloch (MB) equations. Restricting the fields to one
dimension or to the transverse magnetic (TM) polarization
in two dimensions, the electric field and polarization become
scalar [36]. Using the rotating wave approximation, the MB
equations can be derived as follows [16]:

εË+ = ∇2E+ − P̈ +,

Ṗ + = −(iωa + γ⊥)P + − iγ⊥E+D,

Ḋ

γ‖
= D0 − D + i

2
[E+(P +)∗ − c.c.].

(1)

In these nonlinear partial differential equations, E+(x,t) and
P +(x,t) denote the positive frequency components of the
electrical field and the polarization of the medium, respec-
tively. The quantity D(x,t) is the population inversion of the
two-level atoms and D0(x) stands for the externally imposed
pump strength. The constants in the MB equations describe the
properties of the cavity and of the gain material: the dielectric
function ε(x), the transition frequency of the two-level atoms
ωa , as well as the decay rates of the polarization γ⊥ and of
the population inversion γ‖. The boundary conditions for the
equations above are typically outgoing boundary conditions,
which numerically can, e.g., be implemented using a perfectly
matched layer [22,37].

The natural units in Eqs. (1) and all example systems in
this work can be converted back to SI units by choosing
an appropriate length scale L̃, multiplying all lengths in the
example systems by this quantity L̃, multiplying the quantities
( ∂
∂t

,γ‖,γ⊥,ωa) by c/L̃, where c is the speed of light, dividing
∂
∂x

by L̃, and finally by transforming E, P , and D as

follows: E+
SI = E+ 2g

�
√

γ‖γ⊥
≡ E+eSI, P +

SI = P + 2g

�ε0
√

γ‖γ⊥
, and

DSI = D
g2

�γ⊥ε0
. The variable g is the transition dipole moment

of the two-level atoms.
For microlaser systems lasing in steady state, only a finite

number of modes in the system are active. This is the case
described by SALT, in which the MB equations are simplified
to a set of time-independent, non-Hermitian, nonlinear, and
coupled Helmholtz equations. The solutions of these SALT
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equations are much more efficiently calculated than those of
the MB equations [18,25,34,35].

The cornerstone of the SALT equations is a multiperiodic
ansatz for the electromagnetic field as well as for the
polarization

E+(x,t) =
N∑

μ=1

Eμ(x) e−iωμt ,

P +(x,t) =
N∑

μ=1

Pμ(x) e−iωμt ,

(2)

where each triplet (Eμ,Pμ,ωμ) represents a mode Eμ of the
system lasing at the real frequency ωμ. Inserting the ansatz (2)
into the last equation of (1) results in

Ḋ = γ‖(D0 − D) + iγ‖
2

∑
μ,ν

(EμP ∗
ν ei(ων−ωμ)t − c.c.) (3)

with terms of the form PνE
∗
μei(ων−ωμ)t , which explicitly depend

on time. For multiple lasing modes, D will thus never be
completely static. However, if the time scale 1/(ων − ωμ) on
which these terms oscillate is much shorter than the time scale
on which D varies (1/γ‖), their contribution can be neglected.
In other words, for systems where �ω = |ων − ωμ| � γ‖
holds for all pairs μ,ν of active modes [38] the inversion
can be approximated to be stationary [17,22].

This stationary inversion approximation (SIA) is, however,
not well satisfied in macroscopic lasers with a large density
of modes as well as in microcavity lasers with an inherent
symmetry. We will focus here on the latter case and shall
consider ring or microdisk lasers with degenerate modes
or slightly perturbed versions of these systems with nearly
degenerate modes. The frequency splitting of these nearly
degenerate modes will typically violate the condition �ω �
γ‖ for realistic values of γ‖. Since not only the lasing
frequencies of these modes are very close to each other but
also their thresholds are at comparable pump strengths D0, the
traditional SALT algorithm will not be applicable when both
modes of such a pair move across the lasing threshold. For the
completely degenerate case this problem is even more acute.

In the following, we will provide an extension of the SALT
algorithm, which is able to overcome this significant drawback.
Our extension takes into account that degenerate modes with
a fixed relative phase can be expressed as a single active
lasing mode within the SALT formalism. For nearly degenerate
modes, we find that such a mode pair can become dynamically
stable in the form of a single lasing mode, allowing us to treat
the solution again with the above SALT ansatz. In order to
present our approach as clearly as possible, we will focus here
on the case of single-mode lasing only, keeping in mind that our
algorithm can be generalized to multiple pairs of degenerate
modes or multiple modes in general [39].

For a single lasing mode the ansatz (2) satisfies the MB
Eqs. (1) exactly, leading to the following single-mode SALT
equation for the electric field E1 and for the real lasing
frequency ω1:[

∇2 +
(

ε(x) + 	1
D0(x)

1 + |	1E1(x)|2
)

ω2
1

]
E1(x) = 0, (4)

where

	1 = γ⊥
ω1 − ωa + iγ⊥

, (5)

and the boundary conditions are the same as for the MB
equations. Note that Eq. (4) depends nonlinearly both on the
frequency ω1 as well as on the shape of the mode E1(x) through
a self-saturation spatial hole burning interaction. It can be
straightforwardly solved using a Newton-Raphson solver as
described in detail in [22]. The solver requires an initial guess
which can be obtained by tracking the modes in the system
from an initial value at zero pump strength up to the pump
strength of interest. This procedure has the advantage that for
small pump values (below the lasing threshold) one can use
the following eigenvalue problem that is linear with respect to
the mode profiles:(∇2 + [ε(x) + 	̄i D0(x)]ω̄2

i

)
Ēi(x) = 0, (6)

where 	̄i = γ⊥/(ω̄i − ωa + iγ⊥). (Note that we label all
quantities below the lasing threshold by overbars.) For pump
strength D0 = 0 the complex eigenvalues ω̄i have a negative
imaginary part. When increasing the pump strength, the
eigenfrequencies will typically move towards the real axis
(interesting exceptions to this rule are discussed in [11,12,25]).
Once the first eigenvalue ω̄1 crosses the real axis (we assume
its index i is 1) it can be used as a guess for solving Eq. (4)
for the first lasing mode E1 with real frequency ω1. This
solution can then be tracked to even higher pump strengths
beyond the lasing threshold by repeatedly solving Eq. (4) for
increasing D0 while using the solution from the previous step
as an initial guess. Alternative methods to solve Eq. (4) based
on an expansion of laser modes in a biorthogonal basis of
“constant-flux states” [17] work in a similar way but will not
be considered here.

In the traditional SALT algorithm the validity of a single-
mode solution {E1,ω1} of Eq. (4) is only indirectly assessed
by keeping track of the remaining passive modes of the
system. While only one mode {E1,ω1} is lasing all these other
modes (with i 	= 1) have to solve the following nonlinear,
non-Hermitian eigenvalue problem:[

∇2 +
(

ε(x) + 	̄i

D0(x)

1 + |	1E1(x)|2
)

ω̄2
i

]
Ēi(x) = 0. (7)

The single-mode solution is only valid as long as all other
eigenmodes Ēi have an eigenvalue ω̄i with imaginary part less
than or equal to 0, i.e.,

∀i 	= 1 : Im(ω̄i) � 0. (8)

If, however, any other of these eigenvalues crosses the
real axis, the corresponding eigenmode is assumed to be
active and incorporated as an additional lasing mode into
the active SALT equations [22]. As long as the presence
of this second lasing mode does not violate the SIA, the
corresponding two-mode lasing solution is considered stable
[as was previously verified using finite-difference time-domain
(FDTD) simulations [18,34,35]].

As we will demonstrate through a comparison to time-
dependent solutions of the MB equations, this simple criterion
cannot be applied for nearly degenerate modes. In particular,
we show that stable single-mode solutions may exist even
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though one of the other eigenmodes in the system features an
eigenvalue ω̄i with positive imaginary part. In order to be able
to correctly determine the stability of a mode when using the
SALT Eq. (4), we introduce below a rigorous stability criterion
based on a linear stability analysis.

One of the consequences of this strategy is that eigenmodes
have to be continuously tracked even when their eigenvalues
cross the real axis without, however, including them as an
active lasing solution. Doing this, we find that these modes
exhibit complicated frequency shifts and bifurcations when
varying the pump strength D0. Examples of this kind will be
discussed in the subsequent sections.

III. EXAMPLE 1: SYMMETRIC ONE-DIMENSIONAL
RING LASER

To convey an understanding of how a lasing system with
degenerate modes can be described in the SALT framework,
let us first consider the well-known example of a rotationally
symmetric ring laser whose solution can become unstable
in certain parameter regimes [32,33,40–49]. We model the
system as a one-dimensional (1D), homogeneous medium with
periodic boundary conditions [see Fig. 1(a) for an illustration].
To incorporate losses through absorption and outcoupling, we
set the index of refraction to a complex value.

Solving Eq. (6) for the unpumped system produces a set
of eigenstates {ω̄i ,Ēi}, where a two-dimensional eigenspace
is associated with every eigenvalue ω̄i due to the rotational
symmetry of the system. This eigenspace contains standing
waves of the form eiω̄ix ± c.c. as well as traveling waves
of the form e±iω̄i x . While these two pairs of states as well
as their superpositions solve Eq. (6) below threshold, the
nonlinear spatial hole-burning term in the SALT Eq. (4)
prevents arbitrary superpositions from being valid solutions
above the threshold. The only two possible steady-state lasing
solutions of the ring laser that are left at ωi are the well-
known clockwise and counterclockwise traveling-wave states.
However, from the literature it is known that ring lasers show
complex behavior, including the fact that these traveling-wave
solutions are not always stable [32,33,40–44,46–50].

Our goal here will be to find the single-mode solutions with
SALT and to identify the corresponding regions of stability.
To approach this problem first in the most general way (i.e.,
independently of the employed SALT approach), we set up a
finite-difference time-domain (FDTD) method based on a Yee
lattice [51,52]. This tool allows us to solve the MB equations
Eq. (1) directly, including the full temporal evolution starting
from an initial distribution of the electric field [53]. Using this
approach we first confirmed that in the single-mode regime
indeed only the traveling modes are stable in certain parameter
regimes. To assess the latter, the system was initialized in
the traveling-wave solution obtained from the SALT Eq. (4)
[54] and then left to evolve for a certain amount of time.
We analyzed whether at later times the system remained in
the same steady-state solution as at the beginning of the
simulation. If the system stayed in the same state (and did
not show any signatures of deviating from this state), we
considered the solution to be stable.

The stability diagram resulting from these FDTD simu-
lations is shown in Fig. 1(c). We find that the stability of

FIG. 1. (Color online) Results for a one-dimensional ring laser
system with circumference L = 1, γ⊥ = 1, and ωa = 61. The
openness of the system is modeled by a lossy dielectric function√

ε(x) = 1 + 0.0002i. (a) Sketch of the ring laser system, which can
accommodate clockwise (CW) or counterclockwise (CCW) traveling
modes. (b) Lasing mode intensity vs applied pump strength for the
traveling-wave solution. Note that the gain parameters have been
chosen such that only a single pair of degenerate modes reaches the
lasing threshold. The traveling-wave solution in which the system
lases has a frequency of ω ≈ 62.65 which stays constant while the
pump strength is increased. (c) Stability analysis of the SALT results.
Shown are the stability of this traveling-wave solution under variation
of the pump strength D0 and the relaxation rate of the inversion γ‖. The
results of the FDTD simulation are color coded with green (light gray)
marking parameter combinations where the SALT solution is stable,
whereas the red (dark gray) region represents unstable behavior and
the solid black lines mark the border between those two regimes.
Blue dashed lines show the independent results of the linear stability
analysis, which provides an excellent estimate for the border between
stable and unstable regions.

the single-mode SALT solutions not only depends on the
external pump strength D0, but also on the inversion decay
rate γ‖. This finding concurs with previous results [32,45]
and shows that while the single-mode SALT solution is an
exact solution of the MB equations, it is not necessarily a
stable one. For systems with degenerate passive modes (as
well as with closely spaced modes �ω < γ‖ discussed below),
the stability of any solution obtained from SALT is therefore
not guaranteed and needs to be independently verified. Using
FDTD for such a verification, as we did above, is, however,
much too costly from a numerical point of view, in particular,
as this would nullify the computational advantages of SALT.
While the stability analysis presented in [32] for rotationally
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symmetric ring lasers shows an equivalent instability for low
values of both D0 and γ‖ and is computationally very cheap,
it does not predict the unstable behavior observed for higher
values of D0 and γ‖ parameters, as shown in Fig. 1(c) [55]. The
analytic method of [32] is furthermore rather limited in scope,
as it relies on the availability of exact analytic solutions for the
passive modes. We will thus develop below a more general and
rigorous framework to analyze the stability of SALT solutions
that should be generally applicable.

IV. LINEAR STABILITY ANALYSIS

This section contains an overview of a linear stability
analysis for solutions of SALT Eq. (4) (a full derivation can
be found in Appendix). Our starting point is to linearize the
original MB equations (1) around the SALT solution and to
assess whether it is stable against small perturbations. In what
follows we concentrate on the single-mode solutions only and
thus insert the following expressions into the MB equations (1):

E(x,t) = [E1(x) + δE(x,t)]e−iω1t ,

P (x,t) = [P1(x) + δP (x,t)]e−iω1t ,

D(x,t) = [D(x) + δD(x,t)].

(9)

In this ansatz, E1, P1, D denote, respectively, the electric field,
the polarization, and the inversion of the single-mode SALT
solution of Eq. (4) and δE, δP , δD are the corresponding
small perturbations around it, represented by fields of the same
dimension as those of the MB equations. This ansatz thus
allows general perturbations on all spatial scales of all the
variables present in the MB equations. Utilizing the fact that
the SALT solution also exactly solves the MB equations and
neglecting the higher-order contributions of the perturbations,
we derive a set of linear PDEs (A3) with respect to δE, δP , δD.

As a next step we convert the resulting system of equations
into a standard eigenvalue problem. A split of the complex
variables into their imaginary and real parts gives rise to
a set of linear equations for five independent fields, which
for convenience can be represented as a single vector field,
�F (x) = (Re(δE),Im(δE),Re(δP ),Im(δP ),δD). We look

for solutions of the form �F (x,t) = �F (x)eσ t , where σ is
the growth rate, and derive a set of linear equations (A6)
containing the spatial dependence only. Using an appropriate
discretization scheme and taking into account the periodic
boundary conditions, we finally end up with a quadratic
eigenvalue problem of the following form:

A �F + σB �F + σ 2C �F = 0, (10)

where A, B, and C are the corresponding matrices whose
dimensions depend on the chosen spatial discretization.

This eigenvalue problem can be solved numerically, result-
ing in a set of eigenvalues and eigenvectors, {σ j ,F j (x)}. Note
that eigenvalues with Re(σ j ) > 0 stand for the perturbations,
which grow exponentially in time implying that our SALT
solution is unstable. Conversely, if all eigenvalues σ j have a
real part smaller than zero, the SALT solution is stable against
small perturbations. Therefore, finding the eigenvalue with the
largest real part is sufficient to classify the stability of the SALT
solution. The imaginary part of σ stands for the frequency

10−5 10−4 10−3 10−2 10−1 100 101

Im(σ)

−0.15
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σ
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FIG. 2. (Color online) Stability eigenvalues σ j of the ring laser
for D0 = 0.06 and γ‖ = 10−3 (blue circles), γ‖ ≈ 7 × 10−3 (green
crosses), and γ‖ = 10−1 (red Ys). All other parameters are chosen
as in Fig. 1. One can see that the single-mode lasing solution
is only stable for the intermediary value of γ‖ (green crosses),
since for both other cases, a σ j with a real part larger than zero
exists. The stability eigenvalues with Im(σ i) ≈ 10−2 are related to
the competition between the nearly degenerate modes. The other
visible clusters of stability eigenvalues at Re(σ i) ≈ −γ‖ are related
to damped relaxation oscillations observed when initially turning
on the laser. The eigenvalues with Im(σ j ) > 10 are related to other
resonances of the system that could potentially also turn into active
lasing modes.

relative to ω1, with which the perturbation oscillates. In Fig. 2,
we show a typical example of the eigenvalue spectra {σ j } with
different values of γ‖ for the case of the symmetric ring laser
described in the previous section. Note that due to the fact that
the MB equations for the single-mode regime are invariant
under a global phase rotation, the value σ = 0 always shows
up. It does, however, not affect the behavior of the system and
therefore is always excluded from the consideration.

To assess the stability diagram of a SALT solution we start
at a certain value of the pump strength and then gradually
vary the value of γ‖. The dashed lines in the stability diagram
depicted in Fig. 1(c) correspond to the stability thresholds at
which the eigenvalue with the largest real part, maxj [Re(σ j )],
crosses the imaginary axis [Re(σ ) = 0]. We emphasize that
the boundaries between stable and unstable regions, which
we find in this way, are in excellent agreement with the
time-dependent simulations, as seen in Fig. 1(c). It should be
noted that previous studies on such a linear stability analysis
involved more restrictive approximations and a limited class
of perturbations by keeping track of low order Fourier terms
only [32,45], whereas our approach is exact in the framework
of the MB equations.

Note that for the above procedure to work it is not necessary
to compute the whole eigenvalue spectrum {σ j }, but it is
sufficient to only consider eigenvalues in the complex region
close to the real axis and for imaginary parts in the range of
0 to ω1. In systems where the rotating wave approximation is
justified, only perturbations within this frequency range can
realistically influence the system. In systems with a complex
refractive index, spurious solutions that need to be excluded
from the analysis can occur in the region |Im(σ )| > ω1. This
restriction on the eigenvalues we are looking for can be used
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together with an iterative eigenvalue solver to check relatively
quickly if a solution is stable or not [56].

It is worth noting that for the above stability analysis of the
MB equations no additional assumptions have been made and
the results are therefore valid for arbitrary single-mode SALT
solutions. In the next section we consider the ring laser with
an embedded scatterer where modes are only near degenerate
to see how our results change for the case of such a slight lift
of the degeneracy.

V. EXAMPLE 2: 1D RING LASER WITH
BROKEN SYMMETRY

In any real-world implementation of a ring laser or mi-
crodisk laser, the rotational symmetry will be slightly broken
due to inhomogeneities in the material or by imperfections
of the manufacturing process [30,57]. While intuitively one
would expect that a slight modification of the system should not
change the structure of the lasing solutions, there is evidence
that this symmetry breaking can have a strong effect on the
lasing modes [57,58]. In order to better understand the impact
of such a slight symmetry breaking on the stability of the SALT
solutions, we analyze here a ring laser where the rotational
symmetry is broken by a scatterer as depicted in Fig. 3(a).
Similarly to the symmetric ring laser, such systems were
previously investigated using simplified models and exhibited
unstable or even chaotic behavior [45].

Since the inhomogeneity in this system breaks the rotational
symmetry, solving Eq. (6) for the inactive system will not
produce any traveling-wave solutions. Instead, standing-wave
solutions similar to those found in the completely symmetric
system are found. But while the standing-wave solutions of the
symmetric system always occurred in degenerate pairs, break-
ing the symmetry lifts the degeneracy such that the new modes
slightly differ in their complex frequencies ω̄i . Therefore, they
will neither possess exactly the same lasing frequency, nor will
they reach the lasing threshold at exactly the same same pump
strength D0. Since the frequency splitting does not fulfill the
stationary inversion approximation for realistic values of γ‖, a
possible two-mode solution cannot be described by SALT (at
least not without an explicit stability analysis).

In our analysis we consider gain parameters that only
support the lasing action of a single pair of such modes (here
located at ω̄i ≈ 62) such that only the single-mode solutions
of SALT seem viable candidates for steady-state lasing. These
single-mode SALT solutions are shown in Fig. 3(b) in the
form of their frequency dependence on the pump strength
D0. In particular, the two single-mode solutions of SALT
corresponding to the pair of nearly degenerate resonator modes
are shown as mode A and B. When tracking mode A from
its threshold while increasing the pump strength, it shows
the following behavior: At D0 ≈ 0.0015 the standing-wave
single-mode solution A becomes active and the system starts
lasing [see Fig. 3(b)]. At this pump value the mode is stable,
both according to the traditional SALT criterion for stability
as well as in the linear stability calculations. However, a very
small increase of the pump strength brings the eigenvalue
ω̄i of the second mode B of this near-degenerate pair to
the real axis and thus renders the single-mode solution unstable
(again, according to both criteria). Whether a stable two-mode

FIG. 3. (Color online) Results for a ring laser system as in
Fig. 1 with γ‖ = 0.01, but with an additional scatterer added
with l = 0.05 and

√
ε = 1.05 + 0.0002i. (a) Sketch of the system.

(b) Frequencies of single-mode SALT solutions. It can be seen that the
two degenerate modes of the symmetric system from Fig. 1 have split
into modes A and B. Additionally, at D0 ≈ 0.003, two predominantly
traveling-wave solutions C1 and C2 branch off from solution A. These
two solutions are mirror-symmetric images of each other. Dotted
lines mark unstable, solid lines mark stable solutions. (c) Intensity
distribution of modes A and C1 with the scatterer marked in gray. To
better show the differences in the shape of the modes, both modes are
normalized to a maximal intensity of 1. Mode A is shown directly at
threshold (D0 ≈ 0.0015), mode C1 at D0 = 0.1. It can be seen that
while A is a standing wave with minimal intensity 0 at the nodes, the
predominantly traveling-wave C1 features a non-vanishing intensity
everywhere in the cavity. The stability of mode C1,2 is studied in
Fig. 4.

solution in this near-degenerate regime exists is a question
that presently falls outside the scope of SALT (due to the
nonstationary inversion) [39]. However, with the techniques
presented above we can investigate the stability of a single-
mode solution in the regime beyond the point where the second
mode passes the instability threshold. For this purpose, we
track each of the two modes A and B towards higher pump
strength using the SALT equation Eq. (4) for each mode
as if the other mode was not active. Using, in addition, the
stability criterion from the previous section reveals that both
solutions on their own remain unstable for higher values of the
pump strength. We find, however, that a bifurcation occurs at
D0 ≈ 0.003, at which two further single-mode SALT solutions
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C1,2 of Eq. (4) branch off from solution A. These new modes
share the same frequency, which lies approximately in between
the frequencies of the unstable modes A and B. To find these
two modes one can, e.g., use a linear superposition of mode A

and B at higher pump strengths as an initial guess for solving
Eq. (4), similarly to the way the traveling-wave solutions of the
symmetric ring laser can be expressed as linear superpositions
of the standing-wave solutions.

By looking at the mode profiles of solutions C1,2 [C1 is
shown in Fig. 3(c)], we observe that these modes are related
to the traveling-wave solutions observed in the system with
unbroken rotational symmetry. There, the two stable solutions
were purely clockwise or counterclockwise traveling waves.
Here, each of the modes C1,2 still features a dominant
contribution in one direction and is identical to the other
mode when being reflected at the symmetry axis containing
the scatterer (x = 0.5). The major difference to the solutions
observed in the unbroken ring laser is that the solutions C1,2

do not exist below a critical pump strength Dcrit ≈ 0.003,
since the nonlinear term in Eq. (4) needs to be strong enough
to compensate for the frequency splitting between the two
modes. The fact that the nonlinear term is responsible for
compensating the frequency difference between the two nearly
degenerate modes was further investigated. We used a linear
approximation to estimate the frequency shift experienced
by the passive mode of the system that corresponds to the
single-mode solution B as a consequence of the spatial hole
burning from the active mode A. For this purpose, we modeled
the change in the population inversion �D(x) as well as the
resulting change in frequency �ω̄B of the passive mode as a
linear function of the pump strength D0. The estimate predicted
the two modes to share their frequency at a value of D0 ≈ 0.30,
which is very close to the point D0 ≈ 0.33, where the solutions
C1,2 really emerge. The remaining small discrepancy can be
attributed to the inaccuracy of the employed approximations.

Next, we check the stability of the mode pair C1,2. First of
all we recall that using the traditional SALT criterion Eq. (8)
(which is not applicable here), one would find that the solutions
C1,2 are never stable. However, both the results of the FDTD
calculations as well as the linear stability calculations do show
that these modes are stable in well-defined limits. These limits
are indicated in Fig. 4, where the stability of the single-mode
solutions are depicted as obtained from both methods under
variation of the pump strength D0 as well as of the relaxation
rate of the inversion γ‖. As discussed in the above paragraph,
there is a small region of stability for very low values of pump
strength D0 where mode A is stable. Of more interest, however,
is the large region of stable lasing for modes C1,2 which opens
up at the critical pump strength Dcrit ≈ 0.003 (green region in
Fig. 4) and which is similar to the one observed for the fully
symmetric ring laser (Fig. 1).

Altogether, the results of the linear stability analysis are in
excellent agreement with the findings of the time-dependent
simulations of the MB equations, as can be seen both in
Figs. 1(b) and 4. The linear stability analysis thus proves to be a
reliable tool to classify the stability of SALT solutions and can
therefore be used even for systems where verifying the results
through time-dependent simulations is not feasible. This is,
in particular, the case for higher dimensional systems, such
as the microdisk system analyzed in the next section, where
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FIG. 4. (Color online) Stability of the SALT solution for the
broken-symmetry ring laser shown in Fig. 3. The analyzed solution
is the one marked as branch C1,2 in Fig. 3(b). While the shape of
the stability region is very similar to the one observed in Fig. 1,
the broken-symmetry system requires a minimal pump strength D0

to compensate for the frequency splitting of the nearly degenerate
modes before a stable predominantly traveling-wave solution can
emerge.

time-dependent simulations for a large range of parameters is
computationally very demanding.

VI. EXAMPLE 3: 2D MICRODISK LASER WITH WEDGE

Next, we will extend our results to a two-dimensional
system, where full time-dependent simulations become im-
practical for the required range of parameters, but the linear
stability analysis can still be easily performed to justify the
stability of the SALT solutions. The system we will consider
is a perturbed 2D microdisk laser where the cavity is slightly
deformed by cutting a small wedge into the disk [see arrow and
white outline in Fig. 5(a)]. In analogy to the scatterer for the
1D ring laser, the wedge has the effect that the two originally
degenerate threshold modes of the microdisk split (here the
frequency splitting �ω ≈ 1.4 × 10−3). Hence, the multimode
condition γ‖ 
 �ω cannot be satisfied for reasonable values
of γ‖ such that a two-mode solution does not fulfill the SIA
and the traditional SALT algorithm cannot be applied.

The strategy to find the single-mode SALT solutions is a
bit more sophisticated as compared to the 1D system. We
start with the threshold modes A and B corresponding to the
nearly degenerate resonances of the unpumped system and
track them while gradually increasing the pump strength D0

[see Fig. 5(b)]. Mode B has a lower threshold and is stable in
a tiny pump region starting from its threshold at D0 ≈ 0.0771
up to about 0.0777. The corresponding stable parameter region
for mode B, shown in the stability diagram in Fig. 5(c) by the
green region on the very left of the figure, depends on both
the pump strength D0 and on γ‖. After mode B has become
unstable the mode is tracked further (neglecting the presence
of mode A whose resonance eigenvalue has meanwhile also
crossed the real axis). At D0 ≈ 0.124 a pair of solutions C1,2

branches off from mode B. Whereas mode B and mode A

feature a perfect even and odd symmetry with respect to the x

axis (i.e., the symmetry axis of the system), the solutions C1,2

do not possess this symmetry, but rather are mirror images
of each other [compare mode profiles of modes B and C1 in
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FIG. 5. (Color online) Single-mode lasing states for a 2D cavity
with a wedge. The disk has a radius of 1, a refractive index of n = 2 +
0.01i, and the wedge on the right side of the disk has a depth of 0.05
and a width of 0.05. The gain parameters are ωa = 4.83 and γ⊥ = 0.1.
(a) The cavity is outlined in white with arrows marking the position
of the wedge. The spatial intensity pattern of two stable single-mode
solutions are shown. Left: Standing-wave mode B at pump strength
D0 = 0.0773 with regularly spaced nodes with intensity zero. Right:
dominantly traveling-wave solution C1 at pump strength D0 = 0.15.
(b) Laser frequencies of single-mode solutions to the SALT Eq. (4).
Curves A (orange) and B (red) correspond to two standing-wave
solutions, which have even and odd symmetry with respect to the x

axis. The two modes represented by curve C1,2 (blue) feature a broken
symmetry, but are mirror-symmetric to each other. Solid (dotted) lines
denote a stable (unstable) solution for γ‖ = 0.01. Note that the pump
axis is separated into three regions of different linear scaling for the
sake of clarity. (c) Stability diagram of the single-mode solutions
shown in (b) with respect to the pump strength D0 and the relaxation
rate of the inversion, γ‖. The color coding is as in Fig. 1(c) except that
the stability is here solely determined by the linear stability analysis.

Fig. 5(a)]. In fact, the symmetry of the system is spontaneously
broken when either of these modes are lasing, a phenomenon
that has been previously observed in simulations as well as in
experiments [5].

In contrast to mode B, mode A is never a stable laser
mode since it has a higher lasing threshold. At D0 ≈ 0.8 both

(unstable) modes A and B feature two further branches. These
can be understood as follows: Since the wedge of the two-
dimensional cavity only represents a small perturbation to the
system, the symmetry with respect to the y axis is only slightly
broken, and, hence, modes A and B are nearly symmetric
with respect to this axis [see left panel of Fig. 5(a) for the
intensity pattern of mode B]. At D0 ≈ 0.8, this near symmetry
is no longer realized. However, since the modes have never
been fully symmetric, there is not a single point at which the
symmetry breaks, but rather a smooth transition (as compared,
e.g., to the symmetry-breaking transition with respect to the
x axis at D0 ≈ 0.124). For mode B, this smooth transition is
clearly visible in Fig. 5(b). For mode A this transition occurs
in a much smaller pump interval, since mode A has a node
directly located at the wedge of the 2D cavity and its symmetry
is therefore only very slightly distorted.

To obtain modes C1,2, we need to track them backwards in
pump strength starting at the branching point at D0 ≈ 0.124
[see Fig. 5(b)]. Reducing the pump strength further, we observe
that a sharp bend occurs in the frequency dependence of
these two modes at D0 ≈ 0.86, where each of the modes
C1,2 has evolved into a dominantly traveling-wave mode [see
right panel of Fig. 5(a)], similar to the nearly degenerate
1D ring laser. Note that the small contribution traveling in
the clockwise direction can be observed as a modulation in
the intensity pattern. Beyond this turning point, modes C1,2

become stable in a large region of parameters D0 and γ‖ as
depicted by the central green area in the stability diagram in
Fig. 5(c). The easiest way to find the branch C1,2 numerically
is to sum the fields of modes A and B with an additional
relative phase of π/2 at a pump strength D0 > 0.86 and use
this as a guess for the nonlinear solver to converge towards
one of the dominantly traveling-wave modes. The solution
can then be tracked to uncover the whole branch of modes
C1,2. Using similar superpositions of already known modes as
starting point for the nonlinear solver, we found several more
branches of nonlinearly induced single-mode SALT solutions
within the plotted frequency range, albeit none of them are
stable [these branches are not shown in Fig. 5(c)].

The traveling-wave solutions C1,2 only remain stable until
a pump strength of D0 ≈ 1.3. Here, the single-mode SALT
solution becomes unstable due to the fact that an additional
mode would start to lase. We also find that for values of γ‖ <

2 × 10−5 the modes C1,2 are never stable, which highlights
again how important it is to take into account the value of γ‖ for
assessing the stability of a SALT mode. Traditionally in SALT
single-mode lasing solutions were implicitly considered as
stable (without considering γ‖) [17,22], but these single-mode
solutions were always only identified for the case where only
a single one of the eigenvalues ω̄i of Eq. (7) has a non-negative
imaginary part. Our results show that single-mode SALT
solutions can also exist for the case of multiple eigenvalues ω̄i

featuring a non-negative imaginary part. In this new situation,
a stability analysis is, however, indispensable for correctly
interpreting the solutions of the SALT equation. When the
results of the stability analysis are taken into account, the
SALT equation allows us to accurately describe the steady
state of these systems without requiring any time-dependent
simulations.
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VII. CONCLUSION

In this work we demonstrate that SALT can be used to
describe the single-mode lasing regime of resonators with
degenerate or near-degenerate mode pairs. Our approach
builds on a careful tracking of SALT modes in the nonlinear
lasing regime together with a linear stability analysis to judge
the validity of the resulting solutions. The accuracy of the
stability analysis itself was tested by a comparison with
full time-dependent simulations based on the Maxwell-Bloch
equations, which shows excellent agreement in all cases.

Our approach is ideally suited to treat microdisk
whispering-gallery-mode lasers, which were previously diffi-
cult to simulate with SALT and often only accessible through
time-dependent simulations or through strongly simplified
models. Generally speaking, our work paves the way to
study interesting nonlinear phenomena, such as bifurcating
solutions, etc., within the efficient framework of SALT.

One obvious direction for further study is the generalization
of our stability analysis to systems in the multimode lasing
regime, which will be the aim of a subsequent paper [39].
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APPENDIX: DERIVATION OF THE LINEAR
STABILITY ANALYSIS

We start from a solution {E1(x),ω1} of the SALT Eq. (4)
at a given pump strength D0. From this, one can construct the

polarization P1 and inversion D that show up in the MB
Eqs. (4) via

D(x) = D0

1 + |	1E1(x)|2 , (A1)

P1(x) = 	1D(x)E1(x). (A2)

Using these quantities, we insert the ansatz (9) into the MB
Eqs. (1). Using the fact that (E1e

−iω1t ,P1e
−iω1t ,D) is a solution

of the MB equations, we linearize the equations with respect
to the perturbations. This results in the following partial
differential equations for the perturbations of the electric field,
the polarization, and the inversion:

ε δË = ∇2δE − δP̈ + ω2
1(δP + ε δE) + 2iω1(δṖ + ε δĖ),

(A3)

δṖ = (i(ω1 − ωa) − γ⊥)δP − iγ⊥(E δD + δE D), (A4)

δḊ = −γ‖ δD + iγ‖
2

(δE P ∗
1 + E1 δP ∗ − δE∗P1 − E∗

1 δP ).

(A5)
While this system of equations is linear in the perturbation, it
includes the terms δP ∗ and δE∗, which cannot be expressed
as a linear combination of δP,δE,δD. In order to produce a
completely linear system of equations, we therefore split the
two complex fields and corresponding perturbations, as well
as a possibly complex dielectric function ε into their respective
real and imaginary parts and consequently split Eqs. (A3) and
(A4) into four real equations. This yields a linear system of
five equations with purely real terms. These correspond to the
five independent fields Re(δE), Im(δE), Re(δP ), Im(δP ), δD,
which for convenience we can summarize as a single vector
field �F .

In order to analyze if a solution E1 of the SALT equation
(4) is stable we need to check if a perturbation exists which
does not relax back to the stable solution. Hence, we make an
ansatz of the form �F (x,t) = �F (x)eσ t which yields

(δPr − εiδEi + εrδEr )σ 2 + 2(δPi + εiδEr + εrδEi)ω1 σ − (δPr − εiδEi + εrδEr ) ω2
1 − ∇2δEr = 0,

(δPi + εiδEr + εrδEi)σ
2 − 2(δPr − εiδEi + εrδEr )ω1σ − (δPi + εiδEr + εrδEi)ω

2
1 − ∇2δEi = 0,

δPrσ + γ⊥
(
δPr − DδEi − δDE1

i

) + (ω1 − ωa)δPi = 0,

δPiσ + γ⊥
(
δPi + DδEr + δDE1

r

) − (ω1 − ωa)δPr = 0,

δDσ + γ‖
(
δD + P 1

r δEi + δPrE
1
i − δErP

1
i − E1

r δPi

) = 0, (A6)

where we have abbreviated Re(·) and Im(·) through the
subindices r and i, respectively. In addition we need to
impose boundary conditions for the perturbation δE. For
the periodic 1D ring laser we can simply assume periodic
boundary conditions, i.e., δE(xleft) = δE(xright) and for the 2D

system �∇δE
r→∞= i(ω1 − iσ )δE êr . In a next step Eqs. (A6)

are discretized using a suitable discretization scheme [22]

which leads to a quadratic eigenvalue problem that can
easily be linearized. In our calculations we have chosen the
finite element framework FEniCS [59] for discretizing Eqs.
(A6) and used a perfectly matched layer for imposing the
outgoing boundary conditions in the 2D case. For solving
the linearized quadratic eigenvalue problem we have used
SLEPc [60].
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J. Phys. B 41, 095402 (2008).

[48] S. Sunada, T. Harayama, K. Arai, K. Yoshimura, K. Tsuzuki, A.
Uchida, and P. Davis, Opt. Express 19, 7439 (2011).

[49] S. T. Kingni, G. V. der Sande, L. Gelens, T. Erneux, and J.
Danckaert, J. Opt. Soc. Am. B 29, 1983 (2012).

[50] M. V. Danileiko, A. L. Kravchuk, V. N. Nechiporenko, A. M.
Tselinko, and L. P. Yatsenko, Sov. J. Quantum Electron. 16,
1420 (1986).

[51] K. Yee, IEEE Trans. Antennas Propag. 14, 302 (1966).
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