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We study the resonant properties of photonic crystal slabs theoretically. An ω − kx Fano line shape that
approximates the transmission (reflection) spectrum is obtained. This approximation, being a function of light’s
frequency and in-plane wave vector, generalizes the conventional Fano line shape. Two particular approximations,
parabolic and hyperbolic, are obtained and investigated in detail, taking into account the symmetry of the structure,
the reciprocity, and the energy conservation. The parabolic approximation considers a single resonance at normal
incidence, while the hyperbolic one takes into account two modes, the symmetric and the antisymmetric. Using
rigorous simulations based on the Fourier modal method we show that the hyperbolic line shape provides a better
approximation of the transmission spectrum. By deriving the causality conditions for both approximations, we
show that only the hyperbolic one provides causality in a relativistic sense.
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I. INTRODUCTION

Fano resonances have attracted much attention in the past
few decades. While originally developed to describe the
atomic absorption spectrum [1,2] and the electron energy-
loss spectrum [3], they later found numerous applications in
different areas of physics including solid-state physics and
optics [4–6].

Fano resonance occurs when two scattering processes take
place simultaneously: the resonant scattering and nonresonant
one. The interaction between these two processes results
in a distinctive asymmetric line shape of the scattering
amplitude, which is called the Fano line shape. This model for
resonant scattering allows one to write the following simple
approximation for the scattering amplitude as a function of
frequency:

T (ω) ≈ t + s

ω − ωp

= t
ω − ωz

ω − ωp

. (1)

Here, t is the nonresonant scattering coefficient, and ωp and ωz

are the pole and the zero of the function T (ω). Equation (1) is
widely used to explain resonant phenomena in the transmission
and reflection spectra of optical resonators [4,7,8], diffraction
gratings, and photonic crystal slabs (PCS) [5,6,9–14]. By
replacing the frequency ω in Eq. (1) with the in-plane
wave-vector component kx , one can investigate the angular
spectrum of resonant diffractive structures [15–17]. Moreover,
the resonant approximations of the scattering amplitude as a
function of both ω and kx were proposed [18–20].

Of particular interest is studying the Fano resonances in
symmetric structures made of lossless reciprocal materials.
For these structures, a special form of the Fano line shape
(1) can be obtained, revealing a number of intriguing optical
effects such as the total transmission and total reflection of the
incident light [4,12,15,21].

In this paper, we study the resonances of one-dimensional
(1D) photonic crystal slabs [Fig. 1(a)]. Photonic crystal slabs
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or diffraction gratings are planar optical structures that are
periodic in one or two transverse directions. Such structures
exhibit resonant features in the transmission and reflection
spectra, which were studied for the first time by Wood in 1902
[22]. These features correspond to the Fano resonances and
are explained in terms of the excitation of the quasiguided
modes (either of plasmonic nature or not) [23]. Due to the
pronounced resonant features, the PCS are widely used as
optical filters [6,24], polarizers [25], lasers, and sensors [6].
Other applications include beam and pulse shaping [13,17,26],
enhancing nonlinear and magneto-optical effects [6,16,27,28],
and controlling optical properties mechanically [6].

A typical ω − kx transmission spectrum of the PCS rig-
orously calculated using the Fourier modal method [29,30]
is presented in Fig. 1(c). Similar spectra were observed
both theoretically and experimentally in a number of papers
[27,31,32]. The computed spectrum in Fig. 1(c) demonstrates
resonant minima governed by the excitation of quasiguided
modes. According to Fig. 1(b) the resonances have pronounced
asymmetric Fano line shape. The points of minimal transmis-
sion form two branches separated by a band gap in the center
of the first Brillouin zone. Let us note that the known ω − kx

approximations proposed in Refs. [18,19] have a limited
applicability and allow one to describe only one branch of
the transmission coefficient. The model proposed in Ref. [20]
takes account of two branches, but it describes only perforated
metal films with extraordinary optical transmission.

In this paper, we derive ω − kx approximations for the
complex transmission (reflection) spectrum [Fig. 1(c)] of the
PCS in the vicinity of resonances. The proposed approxima-
tions generalize the conventional Fano line shape (1) of one
argument. The ω − kx Fano line shapes are obtained taking
into account the structure symmetry and reciprocity, the energy
conservation law, and the causality condition. We believe that
the results of the current paper are important for design of a
wide range of photonic devices, such as guided-mode resonant
filters, resonant structures for spatiotemporal pulse shaping,
sensors, lasers, and magneto-optical and nonlinear devices. In
particular, the ω − kx Fano line shape can be used to describe
a general class of spatiotemporal transformations of optical
beams implemented by resonant diffraction structures.
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FIG. 1. (Color online) (a) Geometry of 1D PCS (parameters:
period d = 1000 nm; height h = 700 nm; fill factor 4/5; surrounding
medium refractive index ns = 1; structure material permittivity εgr =
2). The structure is invariant in the y direction. (b) Transmission
coefficient |T |2 vs the incident light’s angular frequency ω at
fixed wave-vector in-plane component kx = 3 × 10−4 nm−1 for the
TM-polarized incident wave. (c) Transmission coefficient |T |2 vs the
incident light’s angular frequency ω and the wave-vector in-plane
component kx = (ω/c)ns sin θ for the TM-polarized incident wave.

The paper is organized in five sections. Following the
Introduction, Sec. II presents the rigorous derivation of the
ω − kx Fano line shape. Two types of approximation, parabolic
and hyperbolic, are obtained. In the following sections we
give physical interpretation of the approximations’ parameters
and determine the relations between them. In particular, the
consequences of the structure symmetry are studied in Sec. III
while the causality condition is discussed in Sec. IV.

II. THE ω − kx FANO LINE SHAPE

Consider a 1D periodic structure (PCS or diffraction
grating) with period d [Fig. 1(a)]. In this section, we derive
the approximations for the transmission (reflection) coefficient
that generalize the well-known Fano line shape (1). We assume
that the structure is subwavelength and supports only zeroth
propagating diffraction orders. For the sake of simplicity, in
this section we assume that the structure has two symmetry
planes: xOy and yOz (other symmetries will be discussed in
Sec. III).

Consider two monochromatic plane waves incident on the
structure at the angle θ from the superstrate and substrate
regions [Fig. 1(a)]. In this case, the reflection and transmission
can be described by the scattering matrix S which relates the

amplitudes of the incident waves and of the scattered waves
(zeroth diffraction orders):[

R

T

]
= S

[
I1

I2

]
, (2)

where T and R are the complex amplitudes of the scattered
waves, and I1 and I2 are the complex amplitudes of the
incident waves. For specified PCS and fixed polarization the
scattering matrix is a function of the incident light angular
frequency ω and of the in-plane wave-vector component
kx = k0ns sin θ , where ns is the surrounding medium refractive
index, and k0 = ω/c is the wave number.

The modes of the structure are the field distributions that
exist in the structure in the absence of the incident light (at
I1 = I2 = 0). According to Eq. (2), the modes of the PCS
are defined by the following homogeneous system of linear
equations:

S−1

[
R

T

]
= 0. (3)

Nontrivial solutions of this system are given by the equation
det S−1(kx,ω) = 0. By denoting l(kx,ω) = det S−1(kx,ω), we
can write the dispersion equation of the modes of the structure
in the following form:

l(kx,ω) = 0. (4)

In this paper, we are interested in the (quasiguided) modes
that can be excited by the incident plane wave. Due to the
reciprocity condition, these modes will scatter away from the
structure. This means that the mode amplitudes will decay in
time. Hence, the mode frequencies are the complex numbers
with a negative imaginary part (for e−iωt time convention).
Indeed, the dispersion equation (4) is usually solved for
complex angular frequency ω at real kx [10,14,21]. In this
case, ω satisfying Eq. (4) is the complex pole of the scattering
matrix S [14] and, consequently, of the functions T and R.
On the other hand, one can define real ω and solve Eq.
(4) for the complex kx [16]. Note that in order to work
with complex frequencies and/or complex wave numbers
one should formally replace det S−1(kx,ω) with its analytical
continuation [10]; in what follows we suppose that the function
l(kx,ω) depends analytically on ω and kx .

Following the approach used in Ref. [18], let us apply the
Weierstrass preparation theorem [33] to the function l(kx,ω).
To do this we suppose that the resonance of the PCS at kx = 0
corresponds to the mode with the complex frequency ωp [i.e.,
l(0,ωp) = 0]. Moreover, since we consider the structure with
the vertical symmetry plane, T (kx,ω) = T (−kx,ω). Therefore,
we obtain ∂T /∂kx |kx=0 = 0 and, consequently, ∂l/∂kx |kx=0 =
0. In this case, the Weierstrass preparation theorem [33] gives
the following representation of l(kx,ω):

l(kx,ω) = [
k2
x + A(ω)

]
�(kx,ω), (5)

where A(ωp) = 0 and �(kx,ω) is an analytic function which
is nonzero in a vicinity of (0,ωp). Let us note that, as distinct
from Ref. [18], we used the Weierstrass preparation theorem
for the kx variable (rather than ω). This will further allow us to
obtain an approximation of the PCS transmission coefficient
taking account of two branches in Fig. 1(c).
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Let us now consider a plane wave of unit amplitude
that is incident on the structure from the superstrate region
(I1 = 1,I2 = 0). In this case, R and T will correspond to the
complex reflection and transmission coefficients. The latter
can be obtained by solving Eq. (2) using Cramer’s rule:

T = det Q

det S−1
, (6)

where Q is the matrix formed by replacing the second column
of S−1 by the column vector [1 0]T. By substituting Eq. (5)
into the last equation, we obtain

T (kx,ω) = det Q(kx,ω)/�(kx,ω)

k2
x + A(ω)

. (7)

By replacing the numerator and the denominator in Eq. (7)
with their Taylor polynomials of different degrees, we can
obtain different resonant approximations for the transmission
coefficient.

A. Parabolic approximation

Let us expand the function A(ω) in Eq. (7) in a Taylor series
at ω = ωp up to the linear term:

T (kx,ω) = det Q(kx,ω)/�(kx,ω)

k2
x − β(ω − ωp)

. (8)

According to the Weierstrass preparation theorem, the function
1/�(kx,ω) is analytic in a vicinity of (0,ωp) and hence we can
expand the numerator in Eq. (8) in a Taylor series around this
point:

T (kx,ω) = t
k2
x − α(ω − ωp) + α2

k2
x − β(ω − ωp)

= t
k2
x − α(ω − ωz)

k2
x − β(ω − ωp)

.

(9)
Here ωz and ωp are the pole and the zero of the transmission
coefficient at normal incidence of light (at kx = 0). Let us note
that we expanded the numerator up to the terms of the same
order as the denominator. In this case, the T (kx,ω) is a bounded
function for large values of arguments. According to Eq. (1),
we will refer to t as the nonresonant transmission coefficient.
The following form of Eq. (9) will be useful for the subsequent

analysis:

T (kx,ω) = t
k2
x + z0 + z1ω

k2
x + p0 + p1ω

. (10)

If we equate to zero the numerator of the last expression,
we obtain the equation of a parabola. By equating to zero
the denominator of Eq. (10) we obtain the mode dispersion
equation that defines a parabola as well. This is the reason
that we refer to the representations (9) and (10) as parabolic
approximations.

Note that at fixed kx Eq. (10) will coincide with the known
Fano line shape (1). At the same time, at fixed ω Eq. (10)
describes the Fano line shape as a function of k2

x . This means
that Eqs. (9) and (10) are the generalizations of Eq. (1). In
what follows, we will refer to them as the ω − kx Fano line
shape.

We used Eq. (9) to approximate the transmission coefficient
of the PCS (Fig. 1). To do this, we calculated the pole
ωp = 1.5361 × 1015 − 3.195 × 1012i s−1 using the scatter-
ing matrix approach [10,14]. The transmission zero ωz =
1.5352 × 1015 s−1 was obtained by finding a minimum of the
rigorously calculated transmission coefficient T (ω) at kx = 0.
To calculate T (ω), we used the Fourier modal method [29,30].
The remaining parameters (α = −5.4726 × 1020 s/nm2, β =
−5.4809 × 1020 + 3.0813 × 1018i s/nm2, and t = 0.0186 −
0.9314i) were determined by the least-squares fitting of the
rigorously calculated transmission coefficient in Fig. 1(c). The
result of the approximation is shown in Fig. 2(a). One can see
that Eq. (9) approximates only one branch of the transmission
coefficient in a vicinity of the point (kx = 0,ω = Re ωp).
Moreover, the parabola does not describe the mode dispersion
at the large values of kx . In order to overcome these issues let
us construct a higher-order approximation.

B. Hyperbolic approximation

Let us expand the function A(ω) in Eq. (7) in a Taylor series
at ω = ωp up to the second-order term. Then we replace the
numerator with its Taylor polynomial of the same degree as the
denominator. As a result, we obtain the following hyperbolic

FIG. 2. (Color online) Approximated transmission coefficient: (a) parabolic approximation and (b) hyperbolic approximation. The insets
represent the squared modulus of the approximation error. The latter inside the indicated rectangular areas does not exceed 0.1.
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approximation of the transmission coefficient:

T (kx,ω) = t
k2
x + z0 + z1ω + z2ω

2

k2
x + p0 + p1ω + p2ω2

. (11)

By factoring the ω polynomials we rewrite Eq. (11) in the
following form:

T (kx,ω) = t
v2

gk
2
x − γ (ω − ωz1)(ω − ωz2)

v2
gk

2
x − (ω − ωp1)(ω − ωp2)

, (12)

where v2
g = −1/p2 and γ = z2/p2. Note that ωz1 and ωz2 are

the zeros of the transmission coefficient at normal incidence
(at kx = 0), while ωp1 and ωp2 are the poles of the transmission
coefficient at normal incidence.

Figure 2(b) shows the transmission coefficient approxi-
mation calculated using Eq. (12). In order to obtain this
approximation we calculated the second pole-zero pair (ωp2 =
ωz2 = 1.6222 × 1015 s−1). Let us note that the calculated
second pole and zero are equal to each other; we discuss
this fact later in Sec. III B. The remaining parameters (vg =
2.1834 × 1017 nm/s, γ = 1.0014 − 0.00518i, t = 0.1571 −
0.9520i) were estimated by means of optimization. According
to Fig. 2(b), Eq. (12) approximates the transmission coefficient
much better in comparison with Eq. (9). The reason is that the
hyperbolic approximation takes account of two poles at normal
incidence. Besides, the mode dispersion law is better described
with a hyperbola rather than with a parabola.

The approximations (9)–(12) are obtained for the transmis-
sion coefficient. However, similar equations can also be used
for the reflection coefficient. Moreover, according to Eqs. (3)
and (6), the denominators for reflection and transmission
approximations coincide, while the numerators are generally
different.

Following the parabolic and hyperbolic approximations we
can obtain even higher-order approximations by expanding
the function in Eq. (7) up to the terms of higher order. These
approximations can be used to approximate the transmission
spectrum in a broader ω range.

In this section, we assumed that the transmission (reflection)
coefficient is an even function of kx . This is true for the
symmetric structure shown in Fig. 1(a). The validity of
this assumption for the structures of different symmetries is
discussed in the following section.

III. SYMMETRY, RECIPROCITY, AND ENERGY
CONSERVATION

The symmetry of 1D PCS can be described by one of
seven frieze symmetry groups [34]. Photonic crystal slabs of
different symmetries are shown in Fig. 3. In this section, we
will discuss the most important of these symmetries and their
consequences. In particular, we will consider special forms
of approximations (10) and (11) that take into account the
symmetries of the structure.

A. Symmetry and reciprocity

Equations (5) and (9)–(12) were derived assuming that the
scattering amplitude (transmission or reflection coefficient)
is an even function of kx . For reflection, this is true due
to the reciprocity [12,15]. For transmission, however, some

p1

p1m1

p11m

p11g

p2

p2mg

p2mm

FIG. 3. Photonic crystal slabs with different symmetries: seven
frieze symmetry groups.

assumptions on the symmetry of the structure should be made
in order to provide T (kx,ω) = T (−kx,ω).

To study the symmetry of the structure let us consider
the elements of the scattering matrix as functions of kx . The
reciprocity and symmetry conditions impose restrictions on
the scattering matrix form [12,15]. In Table I we present the
general form of the scattering matrix for each of seven frieze
symmetry groups. In this table the even functions have k2

x as
the argument.

According to Table I, the reflection coefficient is always an
even function of kx . Hence, the approximations (9)–(12) can
be used to describe the reflection coefficient of the structure
with an arbitrary symmetry. As for the transmission, only the
symmetries p11m,p11g,p2mg,p2mm,and p1m1 provide the
assumptions used to derive approximations (9)–(12).

The structures described by the symmetry groups p1 and
p2 require the use of more general approximations. While the
denominator for the transmission approximation will be of the
same form as for the reflection [see Eq. (6)], the numerators in
Eqs. (9)–(12) might have additional terms in kx and kxω.

Now let us consider two important symmetries, which allow
us to simplify the general representations (11) and (10).

TABLE I. General form of the scattering matrix for the structures
of different symmetry.

Symmetry group Scattering matrix S

p1

[
R1(k2

x) T (kx)

T (−kx) R2(k2
x)

]

p2

[
R(k2

x) T (kx)

T (−kx) R(k2
x)

]

p1m1

[
R1(k2

x) T (k2
x)

T (k2
x) R2(k2

x)

]

p11m,p11g,p2mg,p2mm

[
R(k2

x) T (k2
x)

T (k2
x) R(k2

x)

]
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B. Vertical plane of symmetry

In this subsection, we will focus on hyperbolic approx-
imation (11) for the structures with the yOz symmetry
plane (symmetry groups p2mm,p1m1,and p2mg). Usually,
the effects caused by the structure symmetry emerge when
the incident wave has the same symmetry as the structure.
Therefore, in this subsection we analyze the case of a normally
incident plane wave (kx = 0).

Let us study the symmetry of the field distribution of the
modes with respect to the symmetry plane. Approximation
(11) assumes that at kx = 0 the structure supports two modes
with the corresponding complex frequencies ωp1 and ωp2. One
can show that the modes of a symmetric structure are either
symmetric or antisymmetric [27]. Moreover, exactly one of
two modes is symmetric, while the other one is antisymmetric.
Without loss of generality, we assume that the mode with
frequency ωp2 is the antisymmetric one.

The antisymmetric modes cannot be excited in a symmetric
structure by the normally incident plane wave [12,27]. This
means that the corresponding pole ωp2 should not affect the
transmission spectrum T (0,ω). It is possible if and only if one
of the zeros compensates the pole (e.g., if ωz2 = ωp2). Taking
this fact into account, we rewrite Eq. (12) in the following
form:

T (kx,ω) = t
v2

gk
2
x − γ (ω − ωz1)(ω − ωp2)

v2
gk

2
x − (ω − ωp1)(ω − ωp2)

. (13)

There are two channels of the mode decay in PCS:
the scattering into one of the diffraction orders and the
ohmic losses. Due to the symmetry, the antisymmetric mode
cannot scatter into the zeroth diffraction order. Hence, the
antisymmetric mode of the lossless structure does not decay
in time and its frequency is always real.

C. Horizontal plane of symmetry

In this subsection, we consider the structures with the
xOy symmetry plane (symmetry groups p2mm and p11m).
Besides, the results of the subsection are valid as well for the
structures with symmetry groups p11g and p2mg. We start our
analysis from recalling the symmetry and energy-conservation
consequences for the conventional Fano line shape (1). Then
we use these consequences to study the ω − kx Fano line
shapes (10) and (11).

Let us consider the single-resonance structure with the
transmission spectrum defined by the Fano line shape (1).
In the case of the lossless structure, the transmission and
refection coefficients satisfy the energy conservation law
that can be represented as |T (ω)|2 + |R(ω)|2 = 1. The more
general formulation of the energy conservation law requires
the unitarity of the scattering matrix [12]

S =
[
R T

T R

]
. (14)

Note that this form of the scattering matrix takes account of
the symmetry of the considered structure (see Table I).

It can be shown that if both R and T have the form of Eq. (1)
the unitarity of the scattering matrix (14) implies the following

relation [26]:

ωz = Re ωp ± i
r

t
Im ωp, (15)

where r is the nonresonant reflection coefficient. The plus
(minus) sign corresponds to the antisymmetric (symmetric)
mode with respect to the xOy symmetry plane. Equation (15)
defines the zero of the transmission coefficient T [see Eq. (1)].
The zero of the reflection coefficient R is also represented by
Eq. (15) with the r and t interchanged [26].

By formally replacing ω in Eq. (1) with kx , we obtain a
kx Fano line shape [15–17]. In this case, Eq. (15) is also true
[15]. If we replace ω in Eq. (1) with k2

x we obtain the Fano
line shape that takes account of two symmetric poles in the
vicinity of kx = 0. In this case, Eq. (15) remains valid as well.

Let us use Eq. (15) to analyze the ω − kx Fano line shapes.
Equations (10) and (11) can be written in the following general
form:

T (kx,ω) = t
k2
x − Z(ω)

k2
x − P (ω)

, (16)

where Z(ω) and P (ω) are the polynomials of order 2 or 3.
Let us fix the value of angular frequency ω and consider

the transmission coefficient T (ω,kx) as a function of k2
x . In

this case, Eq. (16) will take the form of the conventional Fano
line shape (1). Hence, Eq. (15) can be written in the following
form:

Z(ω) = Re P (ω) ± i
r

t
Im P (ω). (17)

By replacing P (ω) and Z(ω) with their Taylor expansions, we
obtain the following equation:

zk = Re pk ± i
r

t
Im pk. (18)

Thus, in the case of a lossless symmetric structure the
coefficients in the numerator of representations (10) and (11)
are determined by the coefficients in the denominator.

Let us note that for the structure with a horizontal plane
of symmetry the value of ir/t in Eq. (18) is always real [21],
hence zk are real as well. Therefore, ωz1 and ωz2 in Eqs. (12)
and (9) are either real or complex conjugate. This results in
the total transmission and reflection at certain frequencies of
the incident light, which is a well-known phenomenon for the
Fano resonances in lossless structures [12,15,21].

IV. CAUSALITY

In this section, we will study the causality property of the
transmission (reflection) coefficients. According to the general
principle of causality, the caused effect cannot occur before the
cause. In our case it means that the light can appear in the region
under the structure only after the moment of time at which the
light impinges the structure. Obviously, the transmission and
reflection coefficients rigorously calculated from Maxwell’s
equations are always causal. It is well known that the Fano
line shape (1) is causal if and only if Im ωp < 0 [10,35]. In
what follows we will investigate the causality conditions for
the approximations (9) and (12). We will study the causality
in terms of the impulse response of the structure.
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Let us represent the incident light beam through its
spectrum:

Ainc(x,z,t) = 1

(2π )2

∫∫
G(kx,ω)ei(kxx−kzz−ωt) dkx dω,

(19)
where k2

x + k2
z = n2

s , and ns is the surrounding medium
refractive index. Since Eq. (19) is a plane-wave expansion,
we can define the transmitted field as follows:

Atr(x,z,t) = 1

(2π )2

∫∫
T (kx,ω)G(kx,ω)

× ei(kxx−kz(z+h)−ωt) dkx dω, (20)

where T (kx,ω) is the transmission coefficient of the structure,
and h is the thickness of the structure.

Now let us investigate the transmitted field at the structure’s
lower interface Atr(x,−h,t) for the case of the incident pulse
corresponding to the Dirac delta function on the structure’s
upper interface [Ainc(x,0,t) = δ(x)δ(t)]. In this case, the
incident pulse spectrum is equal to unity [G(kx,ω) = 1], and
the transmitted field distribution

h(x,t) = Atr(x,−h,t)

= 1

4π2

∫∫
T (kx,ω)ei(kxx−ωt) dkx dω (21)

can be considered as the impulse response of the structure.
Let us study the impulse responses for the ω − kx Fano

representations (9) and (12). Note that the numerators of
Eqs. (9) and (12) may be considered causal since the
corresponding impulse responses can be expressed in terms
of the delta function and its derivatives. In what follows we

will study the impulse response that takes account of only the
denominators of Eqs. (9) and (12).

For parabolic approximation (9) the impulse response can
be easily calculated. Assuming Im(ωp + k2

x/β) < 0, or

Im ωp < 0, Im β � 0, (22)

we obtain the following impulse response:

h(x,t) = 1

4π2

∫∫
ei(kxx−ωt)

k2
x − β(ω − ωp)

dkx dω

=
{

1
2

√
i

πβt
e−iωpt e

ix2β

4t , t > 0;

0, t < 0.
(23)

According to Eq. (23), h(x,t) is zero at t < 0. This
means that causality takes place in the nonrelativistic sense,
i.e., the light appears under the structure only after the
moment in which the incident beam impinges it. However,
Eq. (23) assumes that the superluminal light propagation in
the transverse direction can occur. In order to demonstrate
this fact, let us consider the dispersion equation for parabolic
approximation [i.e., equate the denominator of Eq. (9) to zero]:

k2
x = β(ω − ωp). (24)

From this equation we can deduce the complex group velocity
of the mode, vg = dω/dkx = 2kx/β. Its real part defining the
propagation velocity of the mode [36] can be arbitrarily large.
In particular, it can overcome the speed of light at the large
values of kx . Hence, the parabolic approximation violates the
relativistic causality condition. The latter can be formulated as
follows [35]: h(x,t) = 0 if |x| > ct , where c is the speed of
light.

Let us investigate impulse response for the hyperbolic ap-
proximation (12). By substituting the denominator of Eq. (12)
into Eq. (21) we obtain the following:

h(x,t) = 1

4π2

∫∫
ei(kxx−ωt)

v2
gk

2
x − (ω − ωp1)(ω − ωp2)

dkx dω=
{

1
2vg

exp
(−i

ωp1+ωp2

2 t
)
J0

(ωp1−ωp2

2

√
t2 − x2

v2
g

)
, |x| < vgt ;

0, |x| > vgt,
(25)

where J0(x) is the Bessel function of the first kind of order
zero. The detailed derivation of Eq. (25) is presented in the
Appendix. In the derivation, we supposed that

Im ωp1 < 0, Im ωp2 < 0, vg ∈ R. (26)

According to Eq. (25), if we further assume that vg � c, the
relativistic causality condition will take place.

Let us note that the dispersion relation for hyperbolic
approximation,

v2
gk

2
x = (ω − ωp1)(ω − ωp2), (27)

defines the hyperbola with asymptotes ω = ±vgkx . This means
that ±vg is the group velocity of the mode at |kx | � 1. In other
words, vg is the group velocity of the mode in the empty lattice
approximation.

Thus, we have shown that the conditions (22) and (26) pro-
vide causality of the parabolic and hyperbolic approximations,
respectively. Moreover, the hyperbolic approximation is causal

in a relativistic sense. We can call the expressions (22) and (26)
the causality conditions, since their violation leads to the non-
causality of the corresponding approximations (9) and (12).

Let us use the causality condition (26), assuming that
both xOy and yOz are the symmetry planes of the structure
(symmetry groups p2mm and p2mg). In this case, Eqs. (13)
and (18) lead to the following elegant form of the ω − kx Fano
line shape for a symmetric lossless structure:

T (kx,ω) = t
v2

gk
2
x − (ω − ωzr )(ω − ωp2)

v2
gk

2
x − (ω − ωp1)(ω − ωp2)

,

(28)

R(kx,ω) = r
v2

gk
2
x − (ω − ωzt )(ω − ωp2)

v2
gk

2
x − (ω − ωp1)(ω − ωp2)

,

where ωp1,t,r ∈ C; vg,ωp2,ωzt ,ωzr ,i
r
t

∈ R; |r|2 + |t |2 = 1;
ωzt = Re ωp1 ± i r

t
Im ωp1; and ωzr = Re ωp1 ± i t

r
Im ωp1.
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V. CONCLUSION

We have presented an ω − kx generalization of the Fano
line shape for photonic crystal slabs. The conventional Fano
line shape is an approximation of the transmission (reflection)
spectrum as a function of either frequency or in-plane
wave vector that takes account of a single resonance. The
proposed generalization describes the scattering amplitude
as a function of both frequency and in-plane wave vector
of the incident light. Two particular line shapes, parabolic
and hyperbolic, have been obtained. These line shapes can be
used to approximate the transmission and reflection spectrum
of subwavelength photonic crystal slabs. The hyperbolic ap-
proximation can be used to describe guided-mode resonances
where two poles (resonances) at every kx are present. The
parabolic approximation can be used to approximate the
transmission coefficient in a small vicinity of a single pole.
This approximation is particularly useful for describing cavity
or Fabry-Pérot resonances. We have studied the consequences
of reciprocity, symmetry, and causality to obtain the most
simple form of these approximations.
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APPENDIX: IMPULSE RESPONSE FOR HYPERBOLIC
APPROXIMATION

Consider the following transfer function:

T (kx,ω) = 1

v2
gk

2
x − (ω − ωp1)(ω − ωp2)

= −1

(ω − a)2 − (
b2 + v2

gk
2
x

) , (A1)

where a = (ωp1 + ωp2)/2, and b = (ωp1 − ωp2)/2. In this
section, we will calculate the corresponding impulse response
function [Eq. (21)]. We will start with taking the integral with
respect to the angular frequency ω. To do this, let us consider

the following integral:

1

2π

∫ +∞

−∞

e−iωt

(ω − a)2 − b2
dω = − sin(bt)

b
e−iat θ (t), (A2)

where Im(a ± b) < 0 and θ (t) is the Heaviside step function.
According to Eq. (A2), the Fourier transform of T (kx,ω) with
respect to ω can be calculated as

− 1

2π

∫ +∞

−∞

e−iωt

(ω − a)2 − (
b2 + v2

gk
2
x

) dω

= e−iat θ (t)
sin

(
t
√

b2 + v2
gk

2
x

)
√

b2 + v2
gk

2
x

. (A3)

This derivation requires Im (a ±
√

b2 + v2
gk

2
x) < 0. The latter

inequality holds true for all real kx when Im ωp1,2 < 0 and vg

is real.
Now let us calculate the second Fourier transform with

respect to kx . To do this, let us use the following integral
identity [37]:

1

2π

∫ +∞

−∞

sin(y
√

k2 + q2)√
k2 + q2

e−ikx dk

=
{

1
2J0(q

√
y2 − x2), |x| < y;

0, |x| > y.
(A4)

Using this equation we find the impulse response as the Fourier
transform of Eq. (A3) in the following form:

h(x,t) = e−iat θ (t)

2π

∫ +∞

−∞

sin
(
t
√

b2 + v2
gk

2
x

)
√

b2 + v2
gk

2
x

eikxx dkx

= e−iat θ (t)

{
1

2vg
J0

(
b
vg

√
v2

gt
2 − x2

)
, |x| < vgt ;

0, |x| > vgt.

(A5)

From the last equation it is easy to obtain Eq. (25).
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