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Theory of nanoparticle-induced frequency shifts of whispering-gallery-mode
resonances in spheroidal optical resonators

L. Deych* and V. Shuvayev
Physics Department, Queens College of CUNY, Flushing, New York 11367, USA

(Received 13 April 2015; published 23 July 2015)

Nanoparticle-induced modifications of the spectrum of whispering-gallery modes (WGMs) of optical
spheroidal resonators are studied theoretically. Combining an ab initio solution of a single-resonator problem with
a dipole approximation for the particle, we derive simple analytical expressions for frequencies and widths of the
particle-modified resonances, which are valid for resonators with moderate deviations from the spherical shape.
The derived expressions are used to analyze spectral properties of the resonator-particle system as functions of
the particle’s position, the size of the resonators, and the characteristics of WGMs. The obtained results are shown
to agree well with available experimental data. It is also demonstrated that the particle-induced spectral effects
can be significantly enhanced by careful selection of the resonator’s size, refractive index, and other experimental
parameters. The results presented in the paper can be useful for applications of WGM resonators in biosensing,
cavity QED, optomechanics, and other areas.
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I. INTRODUCTION

Modes of optical whispering-gallery-mode (WGM) res-
onators are characterized by large quality (Q) factors and small
mode volume, which makes them an attractive candidate for a
variety of applications [1,2]. One of the important properties
of WGMs is their sensitivity to changes in the surrounding
medium—even a small subwavelength object placed in the
proximity of the resonator’s surface can significantly affect
their spectrum [3–7] and spatial profile of the modes [5,6,8].
The modification of the spectrum of WGMs due to interaction
with nanoparticles has attracted a great deal of attention in
connection with the quest for optical methods of single-particle
detection and analysis [9–25], which recently resulted in a
label-free single protein detection [12,13], and was used for
tracking individual atoms in cavity QED experiments [26].
Particle-induced broadening of the WGM resonances has been
used for particle and virus detection in Ref. [27].

The typical spectral modification due to a nanoparticle
consists in “splitting” of a single WGM resonance into
a doublet of resonances. While doublets of “split” WGM
resonances have been observed a while ago and were ascribed
to backscattering due to surface rougness of the resonator
[28–31], demonstration of this effect due to a single nano-
sized scatterer was achieved only in Ref. [4], where a tip
of an optical near-field microscope served as a nano-sized
perturbation. Ability to control the position of the scatterer
allowed the authors of Ref. [4] to demonstrate that, contrary
to previous views, the splitting observed in this and earlier
experiments was not symmetric, with two scattering-induced
resonances appearing on both sides of the initial resonance.
It was shown instead that the observed doublet consisted of
an initial resonance, not affected by the particle, and a new
redshifted particle-induced resonance. Later these results were
reproduced and used for detection and sizing of real particles
in a number of subsequent papers [14–19].
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Sometimes, in the case of resonators with lower Q factors
interacting with smaller particles, the split resonances cannot
be resolved and the overlapping peaks appear as a single
resonance redshifted from its position in the absence of
the particle [9–13,21]. This regime is particulalry important
for biosensing applications whose main goal is to achieve
label-free single protein detection [3,10–13,32,33].

The theoretical description of the spectral characteristics
of the particle-WGM resonator systems lags far behind the
experimental achievements. It relies primarily on heuristic
“reactive sensing principle” (RSP) [3] believed to describe well
the regime of overlapping resonances, the phenomenological
model of Ref. [4], which treats a WGM resonator as a
system of two degenerate modes coupled by the particle
to a common bath of propogating free space modes, and
ab initio calculations of Refs. [5–7,23] dealing with perfectly
spherical [5–7] and two-dimensional disk resonators [23].
Since in this paper we are mostly interested in the regime
of resolved resonances, we shall leave a discussion of the
RSP for the next publication while focusing here on the
clockwise-counterclockwise mode coupling model of Ref. [4]
and ab initio calculations of Refs. [5–7].

The main difference between the model presented in
Ref. [4] and earlier attempts to describe splitting of WGMs
[30] is the idea that the particle does not couple degenerate
WGMs directly, but instead couples them to a common bath
of propagating modes. This feature of the model allowed
the authors of Ref. [4] to explain experimentally observed
perseverance of the initial WGM resonance even in the
presence of the particle and to derive a simple expression
for the particle-induced splitting of the initial resonance. At
the same time, the phenomenological nature of this model,
based on a number of rather arbitrary assumptions, does not
allow for verification of the limits of its applicability and leaves
open the question about completeness of its description of the
phenomenon under consideration.

The ab initio results presented in Refs. [5–7], while
providing a complete and rigorous description of the problem,
are directly applicable only to the idealized situation of the
spherical resonators, and it is not clear a priori to what extent
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the obtained results can be used for real resonators, which
always deviate from spherical shape. Actually, comparison
of the predictions of Refs. [5–7] with experimental data
shows that the theoretical results significantly exceed the
experimentally observed frequency splitting, indicating that
the spherical approximation does not describe real nominally
spherical resonators very well [34].

Significant progress in understanding the WGM-
nanoparticle interaction could be achieved by extending the
ab initio approach to nonspherical, in particular, spheroidal
resonators. Resonators of this shape are of particular interest
since their properties are expected to be closest to those of
spherical resonators, but mainly because the spheroidal shape
is a good approximation for nominally spherical resonators
used in many experimental studies. This problem, however,
is rather difficult and has not yet been addressed either
analytically or numerically. The reason for this is the lack of
appropriate symmetries, which would allow reducing the di-
mensionality of the problem and simplify both computational
and analytical calculations. The only previous attempt, known
to us, to study such a system involved numerical modeling
of a toroidal resonator interacting with a nanoparticle based
on the finite element method [35]. To make this problem
numerically tractable the authors of that work invoked an
additional assumption that the particle affects the field of
the resonator only in its immediate vicinity. While such an
approach can give a perturbative correction to the field of
the resonator due to the particle, it is not able to predict
modification of the frequencies of WGM resonances, which is
the main interest for many applications.

Recently we developed an approach allowing to get around
the above-mentioned difficulties and to devise a theoretical
framework yielding rigorous quantitative description of optical
resonances in the spheroidal resonator interacting with a
subwavelength polarizable object. A detailed description of
this approach, which is based on combining the T -matrix
formalism used to describe the field of a single resonator [36]
with the dipole approximation for the field of the nanoparticle,
will be presented in a separate publication. In this paper we
focus on an approximate version of this framework, which
allows us to derive simple analytical results for the particle-
induced frequencies and widths of the respective resonances.
The results obtained are compared with available experimental
data and predictions of phenomenological theories. The
analysis of the derived expressions discovers the features of the
resonator-particle interaction missed by the phenomenological
approaches and establishes the limits of their applicability.
The developed theory also explains how a deviation from the
spherical shape affects the spectral properties of the resonators.

Whispering-gallery modes are usually excited by a tapered
fiber [37–39] or a prism [40], which, strictly speaking, perturbs
the modes of the resonator. This perturbation is mostly
manifested in broadening of the resonances and might become
important in the situation of overlapping resonances [3,10–
13,32,33]. There are, however, no experimental indications
that positions of the resolved particle-induced resonances are
affected by the presence of the fiber (or the prism), and,
therefore, in this paper we treat the exciting field as an external
source neglecting interaction between the resonator and the
fiber.

FIG. 1. Resonator-particle system with all geometric and material
parameters. Also shown are the resonator’s and particle’s coordinate
systems centered at the resonator and the particle. The magnified
image of the particle in the upper right corner shows its size and
refractive index.

II. RESONANT APPROXIMATION: DERIVATION

We consider a spheroidal resonator, characterized by an
equatorial radius Rr , small radius Rsm, and refractive index
nr , interacting with a subwavelength particle of radius Rp and
refractive index np positioned in its vicinity (see Fig. 1). It is
assumed that the entire system is surrounded by a dielectric
medium with refractive index n1. We describe the interaction
between the resonator and the particle by combining the
T -matrix formalism, used to describe the field of a single
resonator [36,41], with the dipole approximation for the field
of the nanoparticle. The T -matrix approach is based on
presenting the fields incident on the resonator and scattered
by it as linear combinations of vector spherical harmonics
(VSH) [36] of transverse electric (TE), M(1,3)

m,l (k1rr ,θr ,ϕr ), and

transverse magnetic (TM), N(1,3)
m,l (rr ,θr ,ϕr ), polarizations:

E(r)
inc =

∑
l,|m|�l

[
am,lM

(1)
m,l(k1rr ,θr ,ϕr ) + bm,lN

(1)
m,l(k1rr ,θr ,ϕr )

]
,

E(r)
sc =

∑
l,|m|�l

[
cm,lM

(3)
m,l(k1rr ,θr ,ϕr ) + gm,lN

(3)
m,l(k1rr ,θr ,ϕr )

]
,

(1)

where rr ,θr ,ϕr are radial, polar, and azimuthal coordinates
defined in a particular spherical coordinate system, and
subscript r points out that the origin of this system is at the res-
onator’s center. The electric field described by the VSH of TE
polarization is characterized by a vanishing radial component,
and in the case of VSH of TM polarization it is the respective
magnetic field which lacks its radial component. Superscripts
(1) and (3) in M(1,3)

m,l , N(1,3)
m,l indicate that the radial dependence

of these VSHs is given by spherical Bessel functions jl(k1r)
or outgoing spherical Hankel functions h

(1)
l (k1r) of the first

kind, respectively. Parameter k1 is defined as k1 = n1k, where
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k is the vacuum wave number of electromagnetic field with
frequency ω. While the field scattered by the resonator includes
a combination of VSHs of both polarizations with all possible
values of modal indices m and l, l > 1, − l � m � l, we
describe the field scattered by the subwavelength particle only
as a combination of TM VSHs with l = 1:

E(p)
sc =

∑
|m|�1

pmN(3)
m,1(k1rp,θp,ϕp), (2)

where subscript p indicates that the origin of the respective
spherical coordinate system is now at the center of the particle.
Equation (2) constitutes the dipole approximation for the
particle’s field, which is valid as long as the contribution of
higher multipoles and TE polarized field remains small. In
the case of nanoparticles with a very high refractive index,
such as studied in Refs. [42,43], the TE response can become
comparable or even stronger than the TM scattering and should
be included in the expression for the scattered field. However,
interaction between WGMs and such particles, while being
very interesting, lies outside of the scope of this paper.

The modal indices l,m in Eqs. (1) and (2) characterize
spherical harmonics defined with respect to a particular
spherical coordinate system. While in atomic physics the
modal index m is usually called the magnetic number, in the
optical context we will call it, following Ref. [44], a polar
number, while index l will be referred to as an orbital number.
Our formalism is based on utilization of the coordinate systems
with different directions of their polar axis Z. One, which
we shall call the resonator’s system, has its polar axis Zr

directed along the axis of symmetry of the resonator, while
the other, which will be referred to as the particle’s system, is
characterized by the polar axis Zp connecting the centers of
the resonator and the particle (see Fig. 1). Representation of
the same field in terms of VSHs defined in different coordinate
systems is obviously different. Transformation between these
two systems can be performed via rotation by Euler angles,

α = π/2; β = −ϑp; γ = 0, (3)

where we adopt notations for the Euler angles from Ref. [36],
and ϑp is the polar coordinate of the center of the particle
in the resonator’s coordinate system. Both coordinate systems
can be centered either at the center of the resonator (resonator
centered) or the center of the particle (particle centered). Tran-
sition between the resonator-centered and particle-centered
systems with parallel polar axis is given by translations by
vectors ±dpr , where dpr is a position vector of the particle
with respect to the center of the resonator.

In addition to angular modal numbers l,m, WGMs are
also characterized by a radial index, s, determining the radial
behavior of the field of a WGM at the resonance frequency.
The radial index enumerates the various poles of the scattering
amplitudes with the same values of the orbital and polar
numbers, and does not appear, therefore, in the multipole
expansion of the field in Eq. (1).

All the information about the field scattered by the system,
including the positions and the widths of the resonances,
is contained in the coefficients cm,l, gm,l and pm. In the
T -matrix formalism the expansion coefficients of the scattered
field cm,l, gm,l are related to the respective coefficients of

the incident field by a T matrix T
(σ,σ ′)
m,l;μ,ν [36], where the

upper indices correspond to two different polarizations of
the VSH with σ = 1 chosen to represent TE polarization,
while σ = 2 represents the TM polarized VSHs. In the
resonator’s coordinate system the T matrix of a spheroidal
resonator is diagonal with respect to polar indices m,μ:
T̃

(σ,σ ′)
m,l;μ,ν = T̃

(σ,σ ′)
m,l;m,νδm,μ [36], where we used a tilde to indicate

that the T matrix is defined in the resonator’s coordinates. The
remaining off-diagonal components of the T matrix describe
cross-polarization and cross-modal scattering. For weakly
nonspherical objects these components are relatively small and
can be neglected, while the diagonal components T̃

(σ,σ )
m,l;m,l in a

vicinity of an isolated WGM resonance can be approximated
as

T̃
(σ,σ )
l,m;l,m ≈ − iγ

(σ )
l,m,s

ω − ω
(σ )
l,m,s + iγ

(σ )
l,m,s

, (4)

where ω
(σ )
l,m,s and γ

(σ )
l,m,s are frequency and linewidth of the

respective resonance characterized by orbital, polar, and radial
indices l,m,s, respectively, and polarization σ . Equation (4)
has the same form as the single-resonance approximation
for the Mie-Lorentz coefficients describing WGM resonances
in ideal spheres. The only difference between the two is
dependence of ω

(σ )
l,m,s and γ

(σ )
l,m,s in Eq. (4) upon the polar

number m. This dependence reflects lifting of the 2l + 1-fold
degeneracy of WGMs when complete spherical symmetry
of spherical resonators is lowered to an axial symmetry of
spheroids.

Presentation of the T -matrix elements in the form of Eq. (4)
implies the Lorentzian shape of the respective scattering
resonance. In recent papers [42,45] it was shown that scattering
resonances might have a strongly asymmetric Fano-like shape.
This might occur when resonances are broad and so their
contribution to the scattering cross section is comparable with
the background nonresonant scattering. The WGM resonances
considered here are characterized by very high Q factors and
are well isolated. For this reason they retain their Lorentzian
shape and are well described by Eq. (4) as confirmed by
numerical results presented in Fig. 2 obtained by direct
numerical computations of the diagonal elements of the T

matrix using codes publicly available at [46]. In addition to
these resonances being symmetrical, one can also see that in
both spherical and spheroidal cases the real part of the diagonal
elements of the T matrix remains equal to −1 at the resonance,
justifying Eq. (4). At the same time, a single resonance in a
spherical resonator is replaced by several resonances differing
by their polar numbers m in the spheroid and they are now
significantly shifted with respect to each other. One can notice
that the peak corresponding to m = l (fundamental mode)
only slightly deviates from the respective peak in the spherical
resonator.

The scattering coefficients cm,l, gm,l , and pm depend on
the incident field used to excite the resonances. We consider
excitations of two types assuming that the incident field is
such that in a spherical resonator it would have excited a field
described in the resonator’s coordinate system by a single VSH
of either TE or TM polarization with given modal numbers
l = L, m = M , and radial number s = S. We distinguish
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FIG. 2. Frequency dependence of the element of the T matrix in
the vicinity of the second-order radial resonance (s = 2) expressed
in terms of the size parameter x = kRr . The black curve shows this
dependence for a spherical resonator (e = 0), for which peaks with
the same l, but different m, coincide. The gray curves show the same
graphs for a spheroidal resonator with nr = 1.59 ellipticity parameter
e = 1 − Rsm/Rr = 0.048 for different values of m.

between the types of excitation by introducing superscript σ in
the notations for the coefficients of the incident and scattered
fields in Eqs. (1) and (2): a

(σ )
m,l, c

(σ )
m,l, g

(σ )
m,l, p(σ )

m . The value of
σ = 1 corresponds again to the TE type of excitation, and
σ = 2 corresponds to the excitation of the TM type. In the
resonator’s coordinate system the excitation of TE and TM
types is introduced by choosing the coefficients of the incident
field in the form

ã
(1)
m,l = a0δm,Mδl,L; b̃

(1)
m,l = 0,

(5)
ã

(2)
m,l = 0; b̃

(2)
m,l = b0δm,Mδl,L,

and assuming that the frequency ω of the exciting field is in the
vicinity of the respective WGM resonance ω

(σ )
L,M,S . Parameters

a0, b0 in Eq. (5) characterize the intensity of the exciting
radiation and can be determined from the experimental value
of the power entering the resonator, while δm,M and δl,L

are regular Kronecker’s delta symbols, indicating that the
excited field is composed of VSH with l = L, m = M of
the respective polarizations. These assumptions approximate
the realistic excitation of WGMs with the field of a tapered
fiber [37,38], in which one neglects excitations of nonresonant
parasitic modes and the influence of the fiber on the frequencies
and Q factors of the excited resonances.

In the presence of a particle interacting with the resonator
we have to deal with the two-body problem, which we treat

by generalizing the multisphere Mie theory [47,48] to the case
of nonspherical scatterers. In the spirit of this approach the
field scattered by the resonator plays the role of the incident
field for the particle, which is assumed to have a spherical
shape. The field scattered by the particle, in its turn, combines
with the external illuminating field and, therefore, contributes
to the expansion coefficients of the incident field. Using the
T -matrix approach to relate the expansion coefficients in
Eq. (1) to those of the modified incident field as well as the
vector addition theorem [49] for transforming VSHs defined
in the resonator-centered to the particle-centered coordinate
system and vice versa, we derive the system of equations for
coefficients p(σ )

m , m = −1,0,1 in Eq. (2). The vector addition
theorem describes transformation of VSHs upon translation of
the origin of the coordinate system used for their definition.
VSHs defined in the resonator-centered coordinate system can
be presented in terms of VSHs defined in the particle-centered
system as

N(3)
m,l(k1rr ,θr ,ϕr )

=
∞∑

ν=1

ν∑
μ=−ν

[
A

(+)
μ,ν;m,l(k1, − dpr )N(1)

μ,ν(k1rp,θp,ϕp)

+B
(+)
μ,ν;m,l(k1, − dpr )M(1)

μ,ν(k1rp,θp,ϕp)
]
,

M(3)
m,l(k1rr ,θr ,ϕr ) (6)

=
∞∑

ν=1

ν∑
μ=−ν

[
A

(+)
μ,ν;m,l(k1, − dpr )M(1)

μ,ν(k1rp,θp,ϕp)

+B
(+)
μ,ν;m,l(k1, − dpr )N(1)

μ,ν(k1rp,θp,ϕp)
]
,

where A
(+)
m,ν;μ,l(k1,dpr ) and B

(+)
m,ν;μ,l(k1,dpr ) are the translation

coefficients, which can be found, for instance, in Ref. [36].
These coefficients have important symmetry properties with
respect to inversion of the translation vector dpr and inter-
change of the modal indices [50],

A
(+)
m,1;μ,ν(k1, − dpr ) = [A(−)

μ,ν;m,1(k1,dpr )]
∗
,

B
(+)
m,1;μ,ν(k1,dpr ) = [B(−)

μ,ν;m,1(k1,dpr )]
∗
. (7)

The superscripts (+) or (−) in the translation coefficients
indicate that their radial dependence is given by the spherical
Hankel function of the first or second kind, respectively. In the
particle’s coordinate system the translation coefficients are
diagonal in polar indices m,μ making this system the most
convenient for the purpose of this work. Thus, the rest of the
calculations are made using the particle’s coordinate system,
in which equations for coefficients p(σ )

m can be presented as

1∑
μ=−1

[δm,μ − αp(Um,μ + Vm,μ)]p(σ )
μ = αp(k1Rp)

∑
l

[
c

(σ,0)
l,m B

(+)
m,1;m,l(k1, − dpr ) + g

(σ,0)
l,m A

(+)
m,1;m,l(k1, − dpr )

]
. (8)

Parameter αp(k1Rp) in Eq. (8) is the Lorentz-Mie coefficient [36] describing relations between the dipole (l = 1) components
of the incident and the scattered TM fields for a spherical particle of radius Rp,

αp(x) = − n2
1j1(n1x)[npx j1(npx)]′ − n2

pj1(npx)[n1x j1(n1x)]′

n2
1h1(n1x)[npx j1(npx)]′ − n2

pj1(npx)[n1x h1(n1x)]′

∣∣∣∣
x=kRp

, (9)
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where [zf (z)]′ means differentiation over the entire argument
of the respective function; c

(σ,0)
l,m and g

(σ,0)
l,m are the expansion

coefficients of the resonator’s field in Eq. (1) in the absence of
the particle.

Matrices Um,μ and Vm,μ in Eq. (8) describe coupling
between the nanoparticle and the resonator and depend on the
elements of the T matrix defined in the particle’s coordinate
system. In the small vicinity of a WGM with frequency ω

(σ )
L,m,S ,

the main contribution comes from the diagonal components of
T matrix T

(σ ′,σ ′)
m,l;μ,l with l = L and σ ′ = σ . Neglecting all other

components we can present Um,μ and Vm,μ in the following
form:

Um,μ = T
(2,2)
m,L;μ,LA

(+)
μ,L;μ,1(k1,dpr )A(+)

m,1;m,L(k1, − dpr ),

Vm,μ = T
(1,1)
m,L;μ,LB

(+)
μ,L;μ,1(k1,dpr )B(+)

m,1;m,L(k1, − dpr ). (10)

The required components of the T matrix in the particle’s
coordinate system can be found from the T matrix defined
in the resonator’s system considered known. For rotations
described by Euler angles given by Eq. (3), the transformation
between the resonator’s and the particle’s coordinate systems
is given by [36]

T
(σ,σ )
m,L;μ,L =

m1=L∑
m1=−L

(−1)μ−m1d (L)
m,m1

(ϑp)T̃ (σ,σ )
m1,L;m1,L

d (L)
m1,μ

(ϑp),

(11)
where d

(L)
m,M (ϑp) is the d-(small) Wigner matrix, an explicit

expression for which can be found, for example, in Ref. [36]. In
most cases of practical interest the particle-induced frequency
shift is much smaller than the spectral distance between
frequencies ω

(σ )
L,m,S with different values of polar number

m, split by the deviation of the resonator’s shape from
spherical. In such a case one can leave in Eq. (11) only two
terms with m1 = ±M , which correspond to two WGMs of a
single resonator often called clockwise and counterclockwise
propagating WGMs [4], which remain degenerate even in
spheroidal resonators. The polar number M here is fixed by
the frequency of the exciting field. In this approximation
the T matrix in the particle’s coordinates can be written
down as

T
(σ,σ )
m,L;μ,L = [1 + (−1)μ+m]d (L)

m,M (θp)d (L)
μ,M (θp)T̃ (σ,σ )

M,L;M,L. (12)

Thanks to the dipole approximation, only translation coef-
ficients with one of the orbital index l = 1 appear in Eq. (8).
In this case general formulas for the translation coefficients
significantly simplify, yielding

A
(+)
μ,ν;μ,1(k1,dpr ) =

√
3

2

[√
(ν + 1)(ν + |μ|)
(2ν + 1)(1 + |μ|)h

(1)
ν−1(k1dpr )

+ (−1)μ
√

ν(ν + 1 − |μ|)
(2ν + 1)(1 + |μ|)h

(1)
ν+1(k1dpr )

]
,

B
(+)
μ,ν;μ,1(k1,dpr ) = i

√
3

2
μ

√
2ν + 1h(1)

ν (k1dpr ). (13)

Finally, parameters c
(σ,0)
l,m and g

(σ,0)
l,m in Eq. (8) can be found

in the particle’s coordinate system by applying transformation

properties of the VSHs [36] to Eq. (5). Neglecting, again, ele-
ments of the T matrix, which are nondiagonal in polarization
indexes, they can be presented as

c
(1,0)
l,m = (−i)Md

(l)
m,M (ϑp)T̃ (1,1)

M,l;M,La0; c
(2,0)
l,m = 0,

g
(2,0)
l,m = (−i)Md

(l)
m,M (ϑp)T̃ (2,2)

M,l;M,Lb0; g
(1,0)
l,m = 0. (14)

Once the particle’s coefficients p(σ )
m are found from Eq. (8),

the nonvanishing expansion coefficients c
(1)
m,l, g

(2)
m,l of the

resonator’s field can be easily determined from

c
(1)
m,l = c

(1,0)
l,m +

1∑
μ=−1

T
(1,1)
m,l;μ,lB

(+)
μ,l;μ,1(k1,dpr )p(1)

μ ,

g
(2)
m,l = g

(2,0)
l,m +

1∑
μ=−1

T
(2,2)
m,l;μ,lA

(+)
μ,l;μ,1(k1,dpr )p(2)

μ . (15)

Equations (8)–(15) constitute the resonant approximation
for the problem under consideration. It is similar to the
resonant approximation introduced in Refs. [5,6] for spherical
resonators, and is valid if the ellipticity of the resonator is
small enough to validate assumptions expressed by Eq. (10)
and large enough to validate Eq. (12). Numerical simulations
and experimental data indicate that these conditions are
fulfilled for most situations of practical interest. Detailed
comparison of the resonant approximation with rigorous
numerical simulations, which include nonresonant terms in
Eq. (11) and cross-modal and cross-polarization terms in
definition of matrices Um,μ, Vm,μ neglected in Eq. (10), will be
presented in a separate publication. Preliminary results show
that, for instance, for WGMs with L = 39 corrections due
to nonresonant and cross-modal terms are less than 5% for
ellipticities in the range between 0.001 < e < 0.05 depending
on the position of the particle.

In the rest of this paper we discuss properties of the
resonator-particle system as described by this approximation
and compare them with the results of previous theories [4] and
available experimental data [19].

III. RESONANT APPROXIMATION: RESULTS

A. TE polarization

Since in the resonant approximation we neglect the cross-
polarization scattering, resonances of the resonator-particle
system can be characterized as being of TE or TM types excited
by the external field of the respective polarization. In this
subsection we present the results for the TE case, described
by Eq. (8) with index σ set to 1. Taking into account Eq.
(10), we see that in the vicinity of a TE resonance we can
neglect contribution to Eq. (8) from matrix Um,μ, so that in the
resonant approximation the particle’s field coefficients p(1)

m

are determined by matrix Vm,μ, whose elements with m = 0
or μ = 0 vanish [see Eq. (13)]. As a result, only coefficients
p

(1)
±1 are different from zero in this case, and one can derive

for the resonator’s field coefficients for an arbitrary value of
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particle’s angular coordinate θp,

c
(1)
m±,L(θp) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(−i)Ma0
[
d

(L)
m,M (θp) ± d

(L)
−m,M (θp)

]
[
T̃

(1)
M,L;M,L

]−1 + αp

[
d

(L)
1,M (θp) − d

(L)
−1,M (θp)

]2[
B

(+)
1,L;1,1(k1,dpr )

]2

(−i)Ma0
[
d

(L)
m,M (θp) ± d

(L)
−m,M (θp)

]
[
T̃

(1)
M,L;M,L

]−1 + αp

[
d

(L)
1,M (θp) + d

(L)
−1,M (θp)

]2
[B(+)

1,L;1,1(k1,dpr )]
2

, (16)

where

c
(1)
m±,L = c

(1)
m,L ± c

(1)
−m,L. (17)

For coefficients with even values of m, c(1)
m+,L is given by the

first line of Eq. (16) with “+” sign chosen, and c
(1)
m−,L is given

by the second line with “−” sign chosen. This designation
is reversed for the coefficients with odd values of the polar
number: c

(1)
m−,L is now given by the first line of Eq. (16) with

− sign chosen, while c
(1)
m+,L is found from the second line with

+ sign chosen. According to Eq. (16), the response of the
resonator-particle system is characterized by two resonance
frequencies defined by the poles of the respective expressions.
Using Eq. (4), the frequencies and the respective widths of the
resonances can be presented as

δω
(1,±)
L,M,S = −(

d
(L)
1,M ± d

(L)
−1,M

)2
γ

(1)
L,M,S

× Im{αp[B(+)
1,L;1,1(n1kL,M,S,dpr )]

2},
δγ

(1,±)
L,M,S = −(

d
(L)
1,M ± d

(L)
−1,M

)2
γ

(1)
L,M,S

× Re{αp[B(+)
1,L;1,1(n1kL,M,S,dpr )]

2}, (18)

where δω
(1,±)
L,M,S describe shifts of particle-induced resonant fre-

quencies from the initial single-resonator resonance, δγ
(1,±)
L,M,S

is the particle-induced broadening of the resonance, and kL,M,S

is computed at the respective unperturbed frequency ωL,M,S .
Thus, in the generic case, both members of the particle-induced
doublet are shifted from the initial resonance, contrary to
the result of Ref. [4]. Therefore, it is no longer appropriate
to describe this situation in terms of “frequency splitting”
defined as a spectral distance between the two members of
the doublet. Instead, we will discuss it in terms of the shifts of
each individual particle-induced resonance.

For equatorial position of the particle, θp = π/2, Wigner’s
d matrices acquire additional symmetry d

(L)
−m,M (π/2) =

(−1)L−Md
(L)
m,M (π/2). As a result, one of the frequency shifts

(δω(1,−)
L,M,S for even L − M and δω

(1,+)
L,M,S for odd L − M) and

the respective width modifications vanish, meaning that the
position and the width of one of the resonances in the presence
of the particle coincides with those of the initial WGM. Also,
for the particle at the equatorial position, either c

(1)
m+,L or c

(1)
m−,L

[depending upon the sign of (−1)L−M ] turns zero, and one

obtains for the c
(1)
m,L,

c
(1)
m,L=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2(−i)Ma0d
(L)
m,M (π/2)T̃ (1)

M,L;M,L

2(−i)Ma0d
(L)
m,M (π/2)[

T̃
(1)
M,L;M,L

]−1+4αp

[
d

(L)
1,M (π/2)

]2
[B(+)

1,L;1,1(k1,dpr )]
2 ,

(19)
where polar number m takes even values in the first line and
odd values in the second line for even values of L − M , and
the parity of m in different lines of Eq. (19) is reversed for
odd L − M. Apparently, the coefficients in the first line of
Eq. (19) resonate on the frequency of the initial WGM. It
also follows from this result that for θp = π/2 the resonator’s
field coefficients with opposite signs of the polar number m

are related according to c
(1)
m,L = (−1)L−Mc

(1)
−m,L. Combining

this with the known properties of the VSH, Xl,m(θ,ϕ) =
(−1)m[Xl,−m(θ,ϕ)]∗, where symbol X stands for the angular
part of a VSH of any polarization, we can conclude that the
modes corresponding to the resonances described by Eq. (19)
have definite parity with respect to azimuthal angle ϕ (defined
in the particle’s coordinate system): For even values of L − M

the field of the nonshifted resonance is even in the angle ϕ,
while the field of the particle-induced resonance is odd in it; for
odd values of L − M the situation is reversed. This separation
of the modes of the resonator-particle system into odd and
even functions of ϕ is a consequence of the symmetry of the
system with respect to reflection in the equatorial plane of the
resonator, which is preserved when the particle is positioned
in this plane.

This symmetry also helps to understand why the initial
single-resonator frequency survives in the presence of the
particle for the TE polarized modes. Indeed, consider the
electric field at the location of the particle. In the case of
TE polarization, this field, which does not have a radial
component, is normal to the polar axis of the particle’s
coordinate system. Operation of reflection in the plane XrYr

acts on the field in two ways: It changes the sign of its nonzero
components as well as the sign of the azimuthal angle in the
VSHs representing the field. As a result, the field composed of
the even with respect to ϕ functions changes its sign, and must,
therefore, vanish at the location of the particle due to symmetry
of the system with respect to this reflection. Accordingly, the
resonance associated with these components of the field does
not “notice” the presence of the particle. On the other hand,
the field composed of the odd functions remains invariant with
respect to the reflection. Respectively, the symmetry does not
require it to vanish and these components resonate on a new
particle-induced frequency.
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Comparison of Eq. (18) with respective results of Refs. [5–
7] for spherical resonators shows that in the resonant approx-
imation the main effect of the deviation of the resonator from
sphere is factor (d (L)

−1,M ± d
(L)
1,M )2, which is mainly responsible

for dependence of the resonant frequencies on the particle’s
angular coordinate θp (additional dependence on θp comes
from the variation of the resonator-particle distance dpr with
the angle in spheroidal resonators, but this dependence is
very weak for the ellipticity parameters of interest and can
be neglected). In the case of spherical resonators this factor
is absent and splitting depends, therefore, only upon radial
coordinate of the particle dpr . The Wigner d-function d

(L)
1,M

decreases very fast with increasing orbital number L and
is, therefore, responsible for reduction of the splitting in
spheroidal resonators as compared to the spherical case.

In order to illustrate the obtained results we compute the
dependence of frequency shifts δω

(1,±)
L,M,S on the particle’s

angular coordinate θp and orbital number L for several
special situations. For the purpose of these calculations we
assumed that the positions ω

(1)
L,M,S and widths γ

(1)
L,M,S of the

single-resonator WGMs appearing in Eq. (18) can be found ne-
glecting the deviation of the resonator’s shape from spherical.
This assumption was verified by comparison with numerical
calculations using the T matrix and was found to work well for
modes with polar numbers such that L − M � L. This allows
us to compute ω

(1)
L,M,S and γ

(1)
L,M,S from the poles of the spherical

Lorentz-Mie coefficients rather than from diagonal elements
of the T matrix. This assumption is not of principle nature
and was used only to reduce the amount of numerical effort.
Should more accurate computations be necessary, we can
always determine these parameters directly from the T matrix.

1. Particle-induced frequencies for WGM with
large orbital numbers

We begin by considering a resonator-particle system with
parameters close to those which were studied experimentally in
Ref. [19]: Rr = 43.5 μm, nr = 1.44; Rp = 50 nm, and np =
1.59. We also take into account that in Ref. [19] the resonator
and the particles were placed in an aqueous environment so that
we choose the refractive index of the surrounding medium to be
n1 = 1.33. The frequency of the laser used in the experiments
of Ref. [19] belonged to the 600 nm band, which roughly
corresponds to a TE WGM with orbital number L = 642 and
radial number S = 1, or to orbital number L = 630 and radial
number S = 2. We focus our attention on the particle-induced
frequency shifts, while using the expression for the modified
linewidth to verify that the shifted resonances remain well
separated in all situations under consideration.

In Fig. 3 we present the results of the calculations of the
frequency shifts assuming equatorial position of the particle for
WGMs with orbital number extending from L = 160 to L =
650, radial numbers S = 1, S = 2, and polar numbers M =
L, M = L − 2 (the mode with M = L − 1 has zero splitting
for the equatorial position of the particle). The most remarkable
feature of this plot is a crossover between the first and second
radial modes: For smaller values of the orbital number the first
radial mode demonstrates the larger splitting, while for larger
values of L the splitting in the second radial mode prevails.
This feature is common to both the fundamental and M =

FIG. 3. Dependence of the frequency shifts δω
(1,+)
L,M,S(π/2) versus

orbital number L for the equatorial position of the particle. The two
upper graphs correspond to M = L mode and radial numbers S = 1
and S = 2, while the two lower curves represent M = L − 2 mode
with the same two radial numbers. The second shift δω

(1,−)
L,M,S(π/2)

vanishes for the equatorial position of the particle.

L − 2 modes, while the splitting of the latter is significantly
smaller. Such behavior is the result of competition of two
opposite tendencies. On one hand, the magnitude of the field
at the position of the particle is smaller for the second radial
mode compared to the first one, but on the other hand, the
radiative rate γ

(1)
L,M,S , which appears in Eq. (18), is larger for

the second mode whose Q factor is smaller. Apparently, for
large enough L, the second of these tendencies prevails over
the first one, resulting in the observed crossover.

In Fig. 4 we present the dependence of δω
(1,+)
L,L,S and

δω
(1,−)
L,L−1,S for L = 630, M = L,L − 1 (single- and double-

peak lines, respectively), and S = 1,2 upon the particle’s
angular coordinate θp. As expected, the largest frequency
shift in the fundamental mode occurs at θp = π/2 (equatorial
position), and it decreases very fast with deviation of the
particle from the equatorial plane: the change of θp by only 5%

FIG. 4. Dependence of δω
(1,+)
L,L,S and δω

(1,−)
L,L−1,S on the particle’s

angular coordinate for L = 630, M = L, L − 1, and S = 1,2.
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results in the order of magnitude decrease of the splitting. The
M = L − 1 mode shows the opposite behavior: The splitting
vanishes at the equatorial position and reaches the maximum
value at θ (max)

p = tan−1
√

L − 2. While the two other frequency

shifts, δω
(1,−)
L,L,S and δω

(1,+)
L,L−1,S , are not technically zeros, they

are very small and are not shown. For such large values of L

they can be safely neglected so that the results in this case can
again be discussed in terms of the frequency splitting used in
most of the literature on this topic.

The graphs presented in Figs. 3 and 4 allow for comparison
of our theoretical results with data presented in Ref. [19].
This comparison, however, is complicated by the lack of
information about the angular coordinate of the particle θp

interacting with the WGM. This difficulty is evident from the
fact that the results of two different measurements, presented
even in the same paper with nominally identical resonators and
particles, do not agree with each other. Figure 3(a) of Ref. [19]
shows splitting 19.4 MHz for Rr = 43.5 μm and Rp = 50 nm,
while Fig. 3(b) of the same paper for the same sizes of the
resonator and particle shows splitting less than 10 MHz. The
dissimilarity most likely is due to different placements of the
particle in these two experiments.

In order to use Eq. (18) to compute the amount of the
frequency splitting for the TE mode for parameters given in
Ref. [19] one has to make assumptions about position of the
particle, and the polar and radial orders of the excited WGM.
We make these computations assuming the equatorial position
of the particle and the fundamental (M = L) polar nature of
the mode. Then, if the radial order is chosen to be S = 1, we
find that the splitting is equal to 18 MHz. Presuming that the
excited mode is of the second radial order we find the splitting
to be equal to 20 MHz. The experimental result presented in
Fig. 3(a) of Ref. [19] lies between these two values. This fact
by itself validates the assumption that it is the M = L mode,
which is being excited in that experiment, because, as one
can see from Fig. 4, the splitting in the M = L − 1 mode is
much smaller than the observed values for any position of
the particle. Further, since the observed value of the splitting
is larger than the one predicted for the first radial mode, we
can conclude that the WGM really excited in this particular
experiment was of the second radial order, and that the particle
was positioned slightly off the equatorial plane. In principle,
comparing the experimental splitting with our Fig. 4 one could
surmise the angular position of the particle. The data presented
in Fig. 3(b) of Ref. [19] show much smaller splitting, and,
therefore, do not allow for unambiguous interpretation.

An interesting approach to measuring the angular posi-
tion of the particle in sensing experiments was suggested
recently in Ref. [44]. It was proposed that by comparing
the modifications of the WGM resonances with M = L and
M = L − 1 observed in a single experiment one can deduce
the angular coordinate of the particle. Indeed, if one neglects
the dependence of the radiative width γ

(1)
L,M,S on M , and

assumes that both excited modes are of the same radial order,
it can be derived from Eq. (18),

δω
(1,−)
L,L−1,S

δω
(1,+)
L,L,S

=
(
d

(L)
1,L−1 − d

(L)
−1,L−1

)2

(
d

(L)
1,L + d

(L)
−1,L

)2 = 2(L−1)2

L
tan2(θp−π/2).

(20)

Equation (20) is a generalization of Eq. (5) of Ref. [44] valid
for arbitrary orbital modal number and the particle’s angular
coordinate θp. While this proposal was verified experimentally
in Ref. [44], these experiments were conducted in the regime of
overlapping resonances. In this regime, in order to determine
the spectral position of the resulting single resonance, one
needs to take into account the entire frequency dependence of
coefficients c

(1)
m,L defined in Eq. (16), and direct comparison of

Eq. (18) with the experimental data of Ref. [44] is not possible.
This situation deserves a separate study, which is under way
and will be presented in a subsequent publication.

Most of the sensing experiments with WGMs, such as in
Refs. [9–18,44], use WGMs with large values of the orbital
number L ≈ 300 − 600. For such orbital numbers one can
consider asymptotic behavior of Eq. (18) for L � 1 and
present it in a simplified form containing only immediately
available material parameters. To this end, we first present
Eq. (18) for a dielectric particle characterized by real refractive
index np in the form

δω
(1,±)
L,M,S = − χ

2π

(
d

(L)
1,M ± d

(L)
−1,M

)2
γ

(1)
L,M,S

(
n1ω

(1)
L,M,S

c

)3

× (2L + 1)[yL(n1kL,M,Sdpr )]2, (21)

where we expanded the particle’s Mie-Lorentz coefficient αp

in terms of small parameter k1Rp � 1, neglected the small
real part of the spherical Hankel function replacing it by
the spherical Bessel function of the second kind, yL(z), used
Eq. (13) for the translation coefficient B

(+)
1,L;1,1(k1,dpr ), and

introduced the particle’s polarization,

χ = 4πR3
pn2

1

n2
p − n2

1

n2
p + 2n2

1

. (22)

Next, we replace the radiative linewidth of WGMs, γ
(1)
L,M,S ,

with its asymptotic expression derived in Ref. [51] for spherical
resonators,

γ
(1)
L,M,S = c3(

n2
r − n2

1

)
n1

[
ω

(1)
L,M,S

]2
R3

r [yL(n1kL,M,SRr )]2
. (23)

In the case of the fundamental mode, Eq. (21) can now be
presented as

δω
(1,+)
L,L,1(θp)

ω
(1)
L,L,1

= − L

(L + 1)sin2θp

{
2χ

∣∣YL
L (θp,ϕ)

∣∣2 1(
n2

r−n2
1

)
R3

r

×
[
yL(n1kL,L,1dpr )

yL(n1kL,L,1Rr )

]2}
,

δω
(1,−)
L,L,1(θp)

ω
(1)
L,L,1

= − Lcos2θp

(L + 1)sin2θp

{
2χ

∣∣YL
L (θp,ϕ)

∣∣2 1(
n2

r−n2
1

)
R3

r

×
[
yL(n1kL,L,1dpr )

yL(n1kL,L,1Rr )

]2}
, (24)

where YL
L (θp,ϕ) is the standard scalar spherical harmon-

ics. For the equatorial position of the particle, δω
(1,−)
L,L,1(θp)

vanishes, as expected. In the case of modes with large
orbital numbers all frequency shifts are only appreciable
for very small deviations of the particle’s position from the
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equatorial plane: |θp − π/2| � 1/
√

L. For such angles the
factor L/[(L + 1)sin2θp] in the expression for δω

(1,+)
L,L,1(θp)

is almost equal to 1. It can be shown that the remaining
expression inside the curly braces {· · · } reproduces the result
of the phenomenological theory of Ref. [4] when it is applied
to a spherical resonator. While the second shift, δω

(1,−)
L,L,1(θp),

which vanishes in the phenomenological theory [4] for any
particle’s position, is not exact zero in our consideration, it
remains very small due to an extra factor (θp − π/2)2 � 1/L.
Similar agreement between phenomenological results and our
calculations is found for the modes with other polar numbers
as well. For instance, for the mode with M = L − 1, the main
frequency shift δω(1,−)

L,L−1,1(θp) obtained from Eq. (21) coincides
with the frequency splitting of the phenomenological approach
with accuracy up to the same factor of the order of unity, while
the minor frequency shift given by δω

(1,+)
L,L−1,1(θp) can be shown

to be small as δω
(1,+)
L,L,1(π/2)/L.

If one neglects the size of the particle, the two spherical
Bessel functions in Eq. (24) cancel. The resulting equations
coincide with the result obtained using degenerate perturbation
theory for a pointlike perturbation in Ref. [52]. The finite size
of the particle in that perturbation approach was only taken
into account numerically, and no analytical expression similar
to Eq. (24) of this paper has been derived.

2. Particle-induced WGM resonances with
moderate orbital numbers

Thus, we can see that for WGM with large values of the
orbital number L the predictions of the phenomenological
theory of Ref. [4] agree with the results of our ab initio calcula-
tions within experimentally available accuracy. This situation
changes, however, in the case of smaller resonators supporting
WGMs with orbital numbers L ≈ 30 − 70. We consider
as an example resonators with radius Rr = 2.5 μm in air
(n1 = 1) studied experimentally in Ref. [53]. Figure 5 shows
angular dependence of both frequency shifts δω

(1,+)
L,L,1(θp) and

FIG. 5. Dependence of the major, δω(1,+)
40,40,1 (left vertical axis), and

minor, δω
(1,−)
40,40,1 (right vertical axis), frequency shifts on the angular

coordinate of the particle for a fundamental L = 40 mode of the first
radial order.

δω
(1,−)
L,L,1(θp) for the fundamental L = 40 mode of the first radial

order. The main feature of the presented graphs that should be
noted is that the frequency shifts generated by the particle
in such a small resonator are an order of magnitude larger
than in the case of larger resonators presented in Figs. 3 and
4 despite the fact that the Q factors in the former case are
smaller. The main reason for this enhancement is that the
particle on the surface of a smaller resonator feels a much
stronger field due to its smaller distance from the center of
the resonator. Such a strong enhancement, however, is only
possible for a resonator in air, because placing it in an aqueous
medium will degrade the Q factors of the respective modes,
rendering them unusable. Still, one can raise a question about
finding the smallest resonator usable for sensing in aqueous
environments and about determining the optimal experimental
conditions resulting in the maximum detection sensitivity.
Such conditions would include the working wavelength,
size, and the refractive index of the resonator. Preliminary
calculations showed that one can increase the amount of the
shift produced by a particle in water by a factor of 2 or 3
by reducing the size of the resonator to 10–20 μm, but more
detailed study of this issue lies outside of the scope of this
paper.

The second important feature of the graphs in Fig. 5 is that
while δω

(1,−)
L,L,1(θp) remains much smaller than δω

(1,+)
L,L,1(θp), it is

still larger than the splitting observed, for instance, in Ref. [19],
and is, therefore, observable. Observation of this shift would
provide an additional reference point allowing to determine
both position and the size of the particle from the observation
of a single fundamental mode. Indeed, it follows from Eq. (18)
that

δω
(1,−)
L,L,1

δω
(1,+)
L,L,1

=
[
d

(L)
1,L(θp) − d

(L)
−1,L(θp)

]2

[
d

(L)
1,L(θp) + d

(L)
−1,L(θp)

]2 , (25)

without any additional approximations concerning the prop-
erties of the radiative decay rates γ

(1)
L,M,S. This approach

should be contrasted with the method proposed in Ref. [44],
which requires observation of two different WGMs and whose
validity depends on the assumption that γ

(1)
L,M,S ≈ γ

(1)
L,M−1,S

and that the two excited modes are of the same radial order.

B. TM polarization

Coefficients p(2)
μ in Eq. (8) for the field scattered by the

particle in the case of excitation of a TM polarized WGM are
determined by matrix Um,μ, which depends on the translation
coefficients A

(+)
m,ν;m,1(k1,dpr ). Unlike B

(+)
m,ν;m,1(k1,dpr ), these

translation coefficients do not vanish at m = 0 and, as a
result, all three coefficients p0, p−1, p1 contribute to the field
scattered by the resonator. One of the immediate consequences
of this fact is that both resonances in the particle-induced
doublet are redshifted from the initial WGM even at the
equatorial position of the particle. Frequencies and widths of
these resonances are determined by the poles of the coefficients
g

(2)
m,L in the multipole expansion of the TM field scattered by
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the resonator, Eq. (1), which are found to be

g
(2)
m±,L = b0(−i)M

(
d

(L)
m,M ± d

(L)
−m,M

)
(
T̃

(2)
M,L;M,L

)−1 − αp

{(
d

(L)
1,M − d

(L)
−1,M

)2[
A

(+)
1,L;1,1(k1,dpr )

]2 + 2
[
d

(L)
0,M

]2[
A

(+)
0,L;0,1(k1,dpr )

]2}
,

(26)

g
(2)
m∓,L = (−i)Mb0

(
d

(L)
m,M ∓ d

(L)
−m,M

)
(
T̃

(2)
M,L;M,L

)−1 − αp

(
d

(L)
1,M + d

(L)
−1,M

)2
[A(+)

1,L;1,1(k1,dpr )]
2 , (27)

where g
(2)
m±,L = g

(2)
m,L ± g

(2)
−m,L. Subscript and respective signs

+ (–) should be used with even (odd) values of polar number
m in Eq. (26) and odd (even) values of m in Eq. (27). We can
see that, similar to the case of TE polarization, all coefficients
resonate at one of two different frequencies, which we again
present in the form of their deviations δω

(2,−)
M,L,S and δω

(2,+)
M,L,S

from the initial WGM resonance:

δω
(2,−)
L,M,S = (

d
(L)
1,M − d

(L)
−1,M

)2
γ

(2)
L,M,S

× Im{αp[A(+)
1,L;1,1(n1kL,M,S,dpr )]

2}
+ 2

[
d

(L)
0,M

]2
γ

(2)
L,M,SIm{αp[A(+)

0,L;0,1(n1kL,M,S,dpr )]
2},

(28)

δω
(2,+)
L,M,S = (

d
(L)
1,M + d

(L)
−1,M

)2
γ

(2)
L,M,S

× Im{αp[A(+)
1,L;1,1(n1kL,M,S,dpr )]

2}
. (29)

Expressions for respective linewidths can be obtained from
Eqs. (28) and (29) by taking the real part of the respective
expressions instead of the imaginary part.

At the equatorial position of the particle d
(L)
1,M (π/2) =

(−1)L+Md
(L)
−1,M (π/2) and one of the coefficients g

(2)
m±,L van-

ishes. As a result, similar to the case of TE polarization, coef-
ficients g

(2)
m,L acquire definite parity g

(2)
m,L = ±g

(2)
−m,L, which is

different for even and odd polar numbers. Unlike the TE case,
however, none of the frequency shifts given by Eqs. (28) and
(29) vanish at θp = π/2 for fundamental (M = L) mode. In
this case (and all other cases, when L − M is even), the first
term in Eq. (28) vanishes resulting in equatorial frequency
shifts given by

δω
(2,−)
L,M,S(π/2) = 2

[
d

(L)
0,M (π/2)

]2
γ

(2)
L,M,S

× Im{αp[A(+)
0,L;0,1(n1kL,M,S,dpr )]

2},
δω

(2,+)
L,M,S(π/2) = 4

[
d

(L)
1,M (π/2)

]2
γ

(2)
L,M,S

× Im{αp[A(+)
1,L;1,1(n1kL,M,S,dpr )]

2}. (30)

Comparing the translation coefficients
A

(+)
1,L;1,1(n1kL,M,S,dpr ),A(+)

0,L;0,1(n1kL,M,S,dpr ) and

B
(+)
1,L;1,1(n1kL,M,S,dpr ) one can see [Eq. (13)] that the frequency

shifts of the TM modes are related to the shifts of the TE
modes as δω

(2,+)
L,M,S(π/2) < δω

(1,+)
L,M,S(π/2) < δω

(2,−)
L,M,S(π/2).

The situation is different for modes characterized by odd
values of L − M . In this case d

(L)
1,M (π/2) + d

(L)
−1,M (π/2) = 0

and the frequency shift δω
(2,+)
L,M,S vanishes at θp = π/2, and

since d
(L)
0,M (π/2) = 0 for odd L − M , δω

(2,−)
L,M,S acquires at

θp = π/2 a minimum value given by the same expression as
the second line in Eq. (30).

The separation of the coefficients g
(2)
m,L according to the

parities of the polar number for the equatorial position
of the particle can again be traced to the reflection symmetry
of the system. This symmetry also helps to understand the
difference between TE and TM modes. Indeed, unlike the
TE situation, the field of TM polarization at the location
of the particle has a component along the polar axis of the
particle’s system, which does not change sign upon reflection
in the equatorial plane. It, therefore, remains different from
zero if the field is described by even in ϕ functions and
vanishes for the odd in ϕ field. In the latter case, however,
the same arguments as in the TE case demonstrate that
the component of the field perpendicular to the polar axis
remains nonzero. Thus, the TM electric field has nonzero
value at the location of the nanoparticle regardless of the
parity of the polar numbers of the multipole contributions
to it. As a result, the frequencies of resonances originating
from coefficients g

(2)
m,L with either odd or even m are shifted

from the single-resonator value. The magnitude of the shift
is, however, different for odd and even m, reflecting the

FIG. 6. Angular dependence of the two particle-induced fre-
quency shifts δω

(2,−)
40,M,1 (dashed lines) and δω

(2,+)
40,M,1 (solid lines) for

the L = 40 TM modes of the first radial order. The black single-
maximum lines present this dependence for the fundamental mode.
The gray lines with two maxima present M = 39 polar mode.
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FIG. 7. The particle-induced frequency shifts δω
(2,−)
630,M,1 (dashed

lines) and δω
(2,+)
630,M,1 (solid lines) versus the particle’s angular

coordinate for the TM L = 630 fundamental (black) and M = L − 1
(gray) modes of the first radial order.

fact that different Cartesian components of the field partic-
ipate in the interaction with the particle in each of these
cases.

We illustrate the properties of the particle-induced fre-
quency shifts for WGMs of TM polarization by plotting
δω

(2,−)
L,M,S and δω

(2,+)
L,M,S as functions of the particle angular

coordinate for two values of the orbital index L. Figure 6
presents the results of computations for L = 40 and two values
of polar number M = L (black lines) and M = L − 1 (gray
lines). The resonator and the particle are assumed to be in the
air (n1 = 1). As expected, δω

(2,+)
40,40,1 < δω

(1,+)
40,40,1 < δω

(2,−)
40,40,1,

while the behavior of δω
(2,+)
40,39,1 is, to a large extent, similar to

the behavior of the minor shift δω
(1,−)
40,40,1 of the TE fundamental

mode. It is interesting that in this case even the minimum of
δω

(2,+)
40,39,1 at θp = π/2 remains experimentally observable.
The situation does not change qualitatively for larger

values of L, but the quantitative difference is again rather
striking. Figure 7 presents the same plots for L = 630 and
n1 = 1.33 (aqueous environment). The magnitudes of the
particle-induced frequency modifications have significantly
decreased, but, unlike the case of TE polarization, both fre-
quency shifts δω

(2,−)
630,M,1, δω

(2,+)
630,M,1 for M = L and M = L − 1

remain experimentally observable for a particle positioned in
the proximity of the equatorial plane.

IV. CONCLUSION

In this work we present results of the theoretical study of
spectral modifications of WGMs of a spheroidal resonator
induced by a small (subwavelength) particle adsorbed on
the resonator’s surface. We use the T -matrix approach [36]
to characterize the field scattered by the resonator and the
dipole approximation for the field of the particle. We show
that this system can be treated analytically in the so-called
“resonant approximation” if one neglects elements of the
T matrix, which are nondiagonal in the polarization and
orbital momentum indices (these elements are responsible

for coupling between WGMs of different polarizations and
different angular momentums due to deviation of the res-
onator’s shape from spherical). In addition, we assume that
the particle couples only degenerate clockwise and counter-
clockwise WGMs, characterized by polar numbers differing in
their sign only. This approximation describes well spheroidal
resonators with moderate ellipticity: It is small enough to
allow neglecting the nondiagonal elements of the T matrix,
but large enough so that the frequency splitting between
WGMs with the same orbital number and different polar
numbers is much larger than the particle-induced spectral
modifications.

This approximation allowed us to derive relatively simple
analytical formulas describing particle-induced modifications
of WGM resonances of both TE and TM polarizations (since
we neglect the cross-polarization scattering we can assign a
definite polarization to the modes of the spheroidal resonator).
Using these formulas we carried out a comprehensive analysis
of the particle-induced effects in the spectrum of WGMs,
which included comparison of the theoretical results with
available experimental data and predictions of the earlier
phenomenological treatments of this problem.

First of all, we found that even moderate deviation of
the resonator’s shape from spherical results in a significant
decrease of the particle-induced spectral effects from values
expected for ideally spherical resonators. This decrease is
caused by lifting of the 2L + 1-fold degeneracy of WGM
in spherical resonators, and as long as the spectral distance
between resonances with the same L, but different polar
numbers M , exceeds the particle-induced frequency shifts, the
latter do not depend explicitly on the ellipticity of the resonator.
This result explains a discrepancy between predictions of the
ab initio calculations of Refs. [5,6] and experimental data. It
also indicates that by reducing the ellipticity of the resonator
below certain critical values one can hope to significantly
increase the magnitude of the particle-induced frequency
shifts. This issue will be discussed in more detail in a separate
publication.

Our calculations demonstrated that the spectrum of the
resonator-particle system of both TE and TM polarizations is
characterized by doublets of closely positioned resonances,
both of which are redshifted from the frequency of the
respective initial single-resonator WGM. Both TM resonances
originating from the fundamental mode (or any other mode
with polar number M such that L − M is even) demonstrate
a maximum particle-induced shift when the particle is in
the equatorial plane of the resonator. The behavior of TE
resonances is different: only one member of the TE doublet
behaves similarly to its TM counterpart, while the second
TE resonance moves toward the frequency of the initial
WGM when the particle approaches the equatorial plane
and merges with it at θp = π/2. These findings demonstrate
that the preservation of the resonance at the single-resonator
frequency, which is one of the main results of Ref. [4], is
not a universal feature of the WGM resonators. We traced
it to the reflection symmetry of the resonator-particle system
with respect to the equatorial plane of the resonator, which
is destroyed, e.g., when the particle is shifted from the
equatorial position. The results obtained in this paper also
demonstrated that the third resonance for TM polarized modes
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predicted for spherical resonators in Refs. [5,6] is an artifact
of the spherical approximation and disappears in moderately
spheroidal resonators.

The derived expressions for the modified resonance fre-
quencies agree very well with available experimental data re-
ported, for instance, in Ref. [19] for WGMs of TE polarization
characterized by relatively large orbital numbers (L ≈ 630).
We also showed that in the limit L � 1, which is appropriate
for these experiments, the predictions of the phenomenological
theory of Ref. [4] agree asymptotically with our results for
the modes of TE polarization. However, we also found that
one can increase the particle-induced frequency shifts by two
orders of magnitude by transitioning to smaller resonators
with diameters of the order of 4 μm supporting WGMs with
smaller orbital numbers of the order L ≈ 20–50. In this case
one can resolve both members of the TE particle-induced
doublet and measure their deviations from the position of the
initial WGM resonance. Such measurements can be used to
measure both position and the polarizability of the particle
from observation of the spectral modifications of a single
WGM. This situation should be contrasted with the approach
proposed in Ref. [44], where determination of the particle

position depended on observation of frequency shifts in two
M = L and M = L–1 modes. It should be noted, of course,
that low L resonances possess sufficiently large Q factors
only if there exists an adequate contrast of refractive indexes
between the resonator and its surroundings. For typically
used silica resonators it means that the measurements must
take place in air. In aqueous environment, usually used for
biosensing applications, WGMs with L ≈ 20–50 in such
resonators become too broad to be useful. Nevertheless, one
can expect to gain significant increase in the frequency shifts
even in the aqueous environment by choosing the parameters
of the resonator and experimental conditions allowing for use
of smaller resonators supporting WGMs with orbital numbers
of the order of L � 100.
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