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We show that the role of the Lyapunov exponents can be extended beyond the customary local instability, such
as limit cycle behavior, to include its use as an evolutionary predictor of the dynamics of a laser with injected
signal (LIS). Numerical studies of LIS reveal that as a function of the input-signal strength the evolution of two
nonzero Lyapunov exponents (generally equal) distinctively predicts the evolutionary trend of the fundamental
frequency of the laser output signal (an important dynamic characteristic of the LIS) even with the presence of
some noise. This globally predictive behavior of the Lyapunov exponents includes also the dynamic behavior
of the individual coexisting attractors. Different coexisting attractors of LIS and configurations of Lyapunov
exponents for both individual attractors and the global system are reported. Two LIS case studies are considered:
(I) a high-gain system with a rich history of nonlinear behavior but not experimentally accessible, and (II) a
low-gain system that has complex dynamics and is experimentally accessible for Class B lasers. Universality
arguments support the thesis that these different configurations and the extended role of the Lyapunov exponents
as an evolutionary predictor of the dynamics will be observed in other nonlinear, dynamic dissipative systems as
well.
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I. INTRODUCTION

A unified description of cooperative behavior of multicom-
ponent, nonlinear dynamical systems in chemistry, physics,
biology, and engineering has universal appeal because of the
widespread similarity of phenomena observed in these seem-
ingly unrelated disciplines. Each structure or behavior has been
cataloged and carefully compared for broad stability changes
[1]. In the late 1960s nonlinear optical effects in passive driven
systems emerged as one of the more interesting examples of
cooperative behavior driven far from thermal equilibrium. It
became known generally as optical bistability (OB) because
it characterizes both the system and the phenomena. Seidel
[2] first proposed an optical bistable scheme as a natural
extension of his work in the microwave region. His patent
reflects the excitement of the time and the potentially rich
engineering possibilities, ranging from all-optical computers
to optical communications. His work was followed by McCall
[3] and Gibbs et al. [4] who created a host of experimental
and theoretical studies, yet it was Bonifacio and Lugiato [5,6]
in 1976 who provided the elegant first-principle treatment
of optical bistability illustrating the existence of cooperative
behavior and revealing profound analogies to first-order phase
transitions. Seminal experimental studies in optical bistability
were reported by Orozco, Rosenberger, and Kimble and
co-workers [7–9] between 1983 and 1989.

The laser with injected signal is the active counterpart to
optical bistability. It is as dynamically rich as OB and offers
its own distinguishable and interesting output oscillations
as a function of the driving field [10]. Just like OB, the
instabilities are self-induced within the system without the
assistance of a pump or parameter modulation. For a variety
of conditions that are not experimentally accessible, yet
interesting from nonlinear effects, a laser with injected signal
(LIS) shows complicated self-pulsing regimes, such as limit
cycles, torus behavior, period-doubling episodes, and chaos
[11]. Multiple coexisting attractors are present for significant

domains of the input signal [12]. Coexisting attractors are
uniquely categorized by their phase-space, power spectra,
temporal-field dynamics, and their Poincaré sections [13].

Studies of LIS continue today because of the abundance
of open questions related to this complex system [14,15].
Even in steady state, LIS systems are studied with newer and
more sophisticated theories. A recent publication that uses a
generalized steady-state ab initio laser theory with injected
signal, known as I-SALT, is explored by Cerjan and Stone
[16]. It relates to Class A and B lasers primarily in the regime
of microlasers.

In this paper we examine Lyapunov exponents (EL’s) not
just as a useful tool for determining stability or the true nature
of certain limit cycle bifurcations, [17] but rather as a predictor
of the global dynamic behavior of nonlinear systems. LIS is
the nonlinear system of choice in this investigation, but we
believe other nonlinear systems will bear out similar results.
Numerical analyses show that as a function of the injected
signal, the trend of two nonzero EL’s (usually equal) is a
predictor of the evolution of the fundamental (governing)
frequency of the governing dynamics. We show that the
nonzero EL’s are in fact unique for individual attractors. In the
process of our investigation different coexisting attractors and
structural behaviors of the Lyapunov exponents for individual
attractors on the global scale are revealed as well.

We focus on two LIS systems. Both exhibit interesting
self-pulsing, period-doubling episodes, chaos, and coexisting
attractors. Case I is considered to be the canonical case study
because of the extensive reporting on this system [17]. It
is a high-gain system that is dynamically interesting, but
not experimentally accessible. Case II is a low-gain system
consistent with experimentally accessible Class B lasers. It is
explored less extensively than Case I; nevertheless interesting
dynamical behavior is indicated even for early stages of
investigation [13]. We apply the same generic theoretical tools
to investigate the second system as the first.
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II. MODEL DESCRIPTION AND GENERAL FEATURES
OF THE DYNAMICS

The laser with injected signal is a model based on
homogeneously broadened two-level atoms. The atoms and
the cavity are tuned to one another at the atomic frequency
so that when there is no external signal, the laser operates
stably with a carrier frequency ωa . When the external cw
beam with frequency ω0 �= ωa is injected into the ring cavity,
competition is immediately established between the driving
field and the laser oscillator. At low input-signal levels beat
patterns with frequencies close to |ωa − ω0| appear because
of a simple mixing of the two fields where the laser acts as the
local oscillator. At very high external signal levels the laser
is predicted to lock stably to the injected field and produce a
constant output intensity, known as injection locking. Between
these two limits complicated and strange nonlinear phenomena
can appear. Depending on the system parameters there are still
many unexplained dynamical events. For example, the output
signal can display as many as three different incommensurate
frequencies for exactly the same driving field just by initiating
different initial conditions.

The model is described by the traditional single-mode
Maxwell-Bloch equations:

∂X

∂τ
= −κ̃

[(
1 − i

�

κ̃

)
X − Y + 2CP

]
, (1a)

∂P

∂τ
= −(1 + i�̃)P + XD, (1b)

∂D

∂τ
= −γ̃

[
1

2
(XP ∗ + X∗) + D + 1

]
, (1c)

where Y and X are proportional to the incident and emitted
field amplitudes (Y is real and positive for definiteness, X

is complex) and P and D are the normalized complex po-
larization and population difference, respectively. The system
parameters are as follows: the small-signal atomic gain C, the
scaled cavity relaxation rate κ̃ = κ

γ⊥
, the scaled population

decay rate γ̃ = γ‖
γ⊥

, the scaled cavity mistuning parameter

� = (ω0−ωc)
γ⊥

, and the scaled atomic detuning from the injected-

signal carrier �̃ = (ωa−ω0)
γ⊥

. γ⊥ is the homogeneous linewidth.
We assume that ωa is close to the cavity mode frequency ωc

and that the injected signal oscillates with a carrier frequency
ω0 that is different from ωc. The time, τ = γ⊥t , is measured in
units of γ −1

⊥ . Our model is schematically represented in Fig. 1.
In steady state the input and output amplitudes are related

by the state equation

Y = |X|
[(

1 − 2C

1 + �̃2 + |X|2
)2

+
(

2C�̃

1 + �̃2 + |X|2 − �

κ̃

)]1/2

, (2)

which can be single or triple valued depending on the system
parameters. Obviously, in OB the S-shaped or triple-valued
curve provides immediate information about the potential for
bistable operation [18]. In LIS extensive stability searches thus
far have not revealed the existence of a full hysteresis loop
where coexisting, stable steady states exists. There is at least

FIG. 1. Schematic representation of ring laser cavity with two
partially transmitting mirrors and two perfectly reflecting mirrors.
The length of the ring cavity is 	, while the length of the active
medium is L. Y and |X| represent the scaled injected-field amplitude
and the modulus of the output field, respectively.

one study where a stable segment of the lower branch of the
hysteresis loop can coexist with a stable segment of the upper
branch [12].

A natural way to assess the various dynamical possibilities
without the regimen of tools used in standard analyses
is to assume a linear time dependence on the amplitude
of the injected field. Even though LIS equations are no
longer autonomous under this condition, imposing a slow
ramp of the type Y = Y0 + vτ on the injected signal gives
qualitative results in the form of a time-dependent “sweep” that
exposes the general dynamics of LIS. Empirical evidence from
numerical data of both forward and backward sweeps shows
that the output amplitude traces the stable segments of the state
equation accurately; in addition, the pulsation patterns that
are observed in the unstable domain (of the time-independent
driving field) are reproduced with recognizable accuracy if
the rate v of sweep is sufficiently small [12]. Evidence of
coexisting attractors can be seen also. However, one must be
careful because there is a lag effect in the dynamics. It occurs
because the system is constantly having to adjust to a new and
changing driving field; of course, the slower the sweep the less
significant the lag.

Figure 2 is a graph of two steady-state curves for Cases
I and II. Curve A corresponds to Case I and has control
parameters C = 20, �̃ = 1, �

κ̃
= −2, κ̃ = 0.5, and γ̃ = 0.05,

where the input field Y varies from 0 to about 25. Curve B

corresponds to Case II and has control parameters C = 3,

FIG. 2. Two state equations for a laser with injected signal
corresponding to Case I marked A: C = 20, �̃= 1, �

κ̃
= −2, κ̃ = 0.5,

and γ̃ = 0.05; to Case II marked B: C = 3, �̃= 0.5, �

κ̃
= −0.5,

κ̃ = 0.1, and γ̃ = 0.01.
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�̃ = 0.5, �
κ̃

= −0.5, κ̃ = 0.1, and γ̃ = 0.01, where Y varies
from 0 to ∼17. Both curves are triple valued and have a range
of instability beginning at 0 and ending at the injection locking
region labeled by their respective coordinates. The domain and
range of each system is unambiguously different but as we shall
show, the dynamics of these systems are similar.

One of the important tools that carried over from earlier
studies of coexisting attractors is the so-called adiabatic scan
[12]. The idea is, in essence, the same concept as defined
in thermodynamics: Place the system in a specific state and
change the control parameter ever so slightly so that the
dynamics is disturbed only marginally as they evolve to a
new state. For LIS we place the system inside the attractor
by using as initial conditions the final stable-state values
of a previous run and adjusting the Y value to be Y + δY .
We monitor the time evolution of the output amplitude to
verify that the dynamics holds the attractor. This process of
starting with known initial conditions for a specific attractor
and holding it there for each small change in input signal allows
the attractor to dynamically evolve and still hold its signature
characteristics. The form of the attractor may change slightly
but it remains distinguishable from other attractors that may
coexist in the same Y domain.

III. HIGH-GAIN LIS: CASE I

Figure 3 represents a global view of the main dynamic
features of the high-gain study. It is a schematic of the relative
position of the fundamental frequency �0 as a function of the
injected-field amplitude Y over the domain of 0 to ∼17. �0 is

FIG. 3. (Color online) Schematic of the global behavior of the
LIS system in which the relative portion of the fundamental frequency
�0 as a function of the injected-field amplitude over a domain
of 5 < Y < 15 is represented. The parameters are consistent with
Case I. 1P denotes a singly periodic signal while 2P , 3P , 6P ,
and 12P denote limit cycles with subharmonics of the funda-
mental �0/2, �0/3, �0/6, and �0/12, respectively; 2QP denotes
quasiperiodic motion with two incommensurate frequencies (two-
dimensional torus); 2P + denotes an inverse Feigenbaum cascade;
3P ∗ denotes an inverse period-doubling sequence of the type 3 × 2n;
I–VIII represents attractors of the system; V1 and V2 are the different
parts of attractor V; C1, C2, and C3 represent chaotic regions;
the numbers, for example, 5.88, 11.12, etc., represent approximate
threshold of transitions. Attractors VII and VIII in red are attractors
identified in this study.

FIG. 4. (Color online) 3D phase-space plots for Case I with
Y = 9.6 of (a) attractor I and (b) attractor II.

identified in the power spectrum as the dominant frequency.
Each spectrum characterizes a stable self-pulsing limit cycle
of the attractor governed by the driving field. The up and down
arrows indicate the approximate injected-signal transitions
between attractors and the roman numerals I–VIII indicate the
attractor number; 1P , 2P , etc., represent the type of periodicity
(QP is a type of torus) and C1, C2, and C3 represent the
chaotic regions interrupted by domains of stable attractors.
Details of the system’s dynamics are explained in Ref. [13].
To indicate the additional interesting attractors found in the
system, we label the positions of attractors VII and VIII (in
red online) along with their global characteristic.

Figures 4 and 5 are samples of the dynamics of coexisting
attractors I and II identified in the schematic of Fig. 3.
They are distinctively different even though their dynamics
are driven by the same value of the injected field. Figure 4
shows three-dimensional (3D) phase-space plots of the real and
imaginary values of the output field and the population differ-
ence (Re|X|, Im|X|, D). Figure 5 shows the time-dependent
dynamic behavior of the output amplitude |X| as a function of
time.

Another tool of analysis is the power spectrum generated by
the Fourier spectral analysis of the output signal. Depending on
the system parameters, the initial conditions of the dynamics,
and the value of the injected signal, the spectrum of a limit
cycle contains, at a minimum, a fundamental frequency and
usually some combination of harmonics, subharmonics, beat
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FIG. 5. (Color online) Case I output-field amplitude |X| as a
function of dimensionless time τ for Y = 9.6: (a) attractor I and
(b) attractor II.

frequencies, and maybe sideband frequencies. If the spectrum
is broadband with no real distinguishable frequencies, the
spectrum identifies a chaotic output signal.

Figure 6 is the composite graph of the fundamental
frequency �0 of the temporal dynamics for Case I as a
function of the input-field amplitude Y . It is created from power
spectra of adiabatic scans of individual attractors. The domain
of the fundamental frequencies of attractors VII and VIII
are included, in addition to the previously known attractors
(I –VI). [13]

FIG. 6. (Color online) Behavior of the fundamental frequency
�0 generated from the Fourier transform of a given time-dependent
trajectory as a function of the driving-field strength Y for parameters
of Case I. I–VIII are the known attractors that evolve under the
influence of distinct domains of attraction. Refer to Fig. 3 for
the specific characteristics of these attractors. Open space denotes
broadband behavior in the power spectrum where chaos is identified.

One might assume that �0 should increase as the injected
signal is increased; however, it is more complicated. In general,
for a particular attractor and as a function of the injected
signal we can demonstrate that where significant changes
occur in the dominant frequency there occurs also a change
in a specific dynamic event. We focus on attractors I, II,
and VI of Fig. 6 as examples. In attractor I �0 decreases
simultaneously as the number of harmonic components in
the power spectra increases. No other event occurs in the
domain where attractor I exists. The dynamics of the output
signal evolves remarkably uneventfully in phase space from
the signature circular structure to a roughly oval pattern with
a kink [Fig. 4(a)].

For attractor II and VI of Fig. 6, �0 can both increase
and decrease as a function of the injected signal, but not
necessarily in that order. In the domain of attractor II a
single event occurs in the dynamics that causes the increasing
output frequency to change to decreasing output frequency.
The single significant event is at Y ≈ 9 where bifurcation of
the output signal happens and the subharmonic appears in the
spectra. The dynamics evolves as a period-doubling episode as
expected. For attractor VI the dynamic signature is an inverse
Feigenbaum sequence. In this attractor the disappearance of
subharmonics and increasing appearance of harmonics and
beat frequencies cause a decrease in the dominant frequency.
At Y ≈ 14 the event of the attractor completes its sequencing
to a single oscillating limit cycle. At this point �0 begins
to increase in magnitude until injection locking where the
attractor collapses to a fixed point. It should be noted that, on
occasion, following the evolution of the dominant frequency
�0 can be risky especially when subharmonics appear in the
spectra. The dominance of individual frequencies in this case
can change and disguise the true dynamics. Getting the correct
number of representative points for a given period of the
motion is usually the culprit for this manifestation. Fourier
transform programs are not always adequate at discriminating
the dynamics as a whole and must be carefully monitored when
plotting fundamental frequencies.

The set of spectral analyses builds the comprehensive
frequency domain for self-pulsing LIS dynamics; however,
an even more refined tool is the calculation of Lyapunov
exponents. By definition Lyapunov exponents are quantities
that characterize the rate of separation of infinitesimally
close trajectories of dynamic systems. In general it is
recognized that Lyapunov exponents EL’s provide a sensitive
probe for the identification of bifurcation thresholds and
bifurcated trajectories.

We begin our study of Lyapunov exponents by distin-
guishing between the global Lyapunov exponents and specific
attractor Lyapunov exponents. In earlier work [17] the global
dynamics of LIS was assumed to be the relevant dynamics
for that particular injected-signal value under completely
arbitrary start-up conditions or as an adiabatic scan of the entire
domain of the injected signal without attractor consideration.
Even though the uniqueness of coexisting attractors was
known in 1985 their role in the global dynamics was not
understood. The presumption at the time was that the attractors
prevailed in the dynamics of LIS in some arbitrary way
and that the global calculations of EL’s were in harmony
with this behavior. Now it is clear that different coexisting
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attractors can dominate under different circumstances over the
same injected-field domain; the governance of the dominant
attribution of individual attractors remains unknown to date.
We use global characterization of Lyapunov exponents in light
of this earlier work and we identify the attractors’ Lyapunov
exponents as unique to the individual attractors. Distinguishing
the two is important in discussing the alternative global
predictor characteristic of Lyapunov exponents.

While reproducing some of the dynamics of Case I we
found different coexisting attractors, VII and VIII, for different
domains of the input field. As stability condition (2)-(ii) of
Ref. [17] suggests an attractor at Y = 7.3 might exist as a
two-dimensional torus. Here the first two EL’s emerge as close
to zero identifying the possible torus behavior. Unfortunately,
that level of detail was not explored in 1985. In fact, searching
for and finding a third coexisting attractor was not on the radar
that close to the low end of the injected-field strength. Now
we can report that is exactly the characteristic of attractor VII.

Attractor VII was discovered at Y ≈ 7.2634 by serendipity.
It coexists with attractors I and II and has a fundamental
frequency that is incommensurate with the other two
coexisting attractors. The magnitude of its fundamental
frequency is located between the frequencies of the other two.
Attractor VII is characterized as a 3P/3QP attractor because
its trajectory at the onset is shown to be a period three and at the
end a two-dimensional (2D) torus. Figures 7(a) and 7(b) show

FIG. 7. (Color online) Parameters for Case I attractor VII for
injected-field strength of Y = 7.27; (a) 3D phase-space plot; (b) 2D
Poincaré surface of section.

FIG. 8. (Color online) Power spectrum of torus dynamics for
Case I and injected-field strength of Y = 7.39.

the 3P event in the 3D phase space and in the Poincaré section,
respectively, at Y = 7.27; the Poincaré section is plotted with
both the entry and exit points visible on the cross-sectional
plane (in red online). At a slightly higher value of the injected
signal Y = 7.39 attractor VII evolves into a 2D torus. The
power spectrum in Fig. 8 not only shows the �0/3 subharmonic
component, but also shows the sideband characteristic for
torus behavior; the sideband frequency is ∼0.0258. The
fundamental frequency is 1.2107, and the subharmonic �0/3
is 0.4036. Figures 9(a) and 9(b) are the temporal dynamics
and the phase-space graph for Y = 7.397, respectively. Here

FIG. 9. (Color online) Case I parameters provide a temporal (a)
and phase-space plot; (b) 3D of the torus behavior of attractor VII at
an injected-signal strength of Y = 7.397.
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FIG. 10. (Color online) The evolution of the torus behavior of
attractor VII with Case I parameters using a 2D Poincaré surface of
section: red at Y = 7.397, green at Y = 7.390, and blue at Y = 7.380.

the expected “breathing” or sideband modulation is clearly
demonstrated. Figure 10 is a 2D Poincaré section [analogous to
Fig. 7(b)] showing the evolution of attractor VII for Y = 7.38,
7.39, and 7.397 (just before it collapses at Y ≈ 7.399 92),
shown in red, green, and blue, respectively, online.

Attractor VIII is a narrow domain attractor that coex-
ists with attractors I and II in the approximate region of
10.0981 < Y < 10.182. Its fundamental frequencies (�0’s)
are incommensurate with the frequencies of attractors I and
II and are the largest of the three attractors. It is a region
where complex dynamics might be expected because of its
proximity to chaos; however, attractor VIII appears to be only
an 8P/16P bifurcation structure. Our repeated attempts to
establish a Feigenbaum sequence were never realized. As a
result, we characterize this attractor as a limited 8P/16P

attractor.
Other attractors have been found tentatively, but they are not

revealed herein. For example, we believe there is an attractor
located in the region previously characterized as a window (W )
of periodicity 5PW [12]. In 1985 windows of periodicity were
thought to be an intermittent behavior or window within chaos.
Later studies argue that these windows are actually identifiable
attractors [17]. This particular 5P region has some peculiar
features that require further investigation before we make any
attribution.

The most important development in the high-gain system
is the strikingly similar behavior of the �0’s and the Lyapunov
exponents during the adiabatic evolution of LIS as a function of
injected signal. This similarity is especially vivid in the region
of the second attractor. In Figs. 2 and 3 of Ref. [17] it is seen
clearly that as a function of the injected signal the evolution of
the �0 corresponds qualitatively as the evolution of EL

4 = EL
5 .

We reproduced these figures in Figs. 6 and 11, respectively,
over the domain Y ≈ 4–15. The scales of the ordinances of
the EL’s and the �0 in Fig. 11(b) are not the same so there
are significant variations in the way they can be presented, but
even in the most critical of presentations, their trends remain
true as expected. The global EL’s of Eq. (1) are calculated
while monitoring the 2D Poincaré surface of sections making
sure the system is seated stably in its limit cycle for a given set
of initial conditions.

Figures 11(a) and 11(b) show the first three and last
two globally calculated EL’s of the dominant dynamics

FIG. 11. (Color online) The Lyapunov exponents are shown for
the global view in black and attractor I in colors. The fundamental
frequencies �0 of attractors I and II are shown overlaid on the
original members as a function of the injected-field strength Y for
Case I. Black circles with enclosed dots means that two equal EL’s
are represented for a given value of Y [17]. (a) First three EL’s of
attractor I are represented as solid lines in purple, orange, and green.
Letter A marks EL

2 and EL
3 . (b) The �0 of attractors I and II in blue

are shown overlaid on the smallest two ELs marked EL
4 and EL

5 in
brown for attractor I.

overlaid by the first three and last two EL’s of attractor I,
respectively. In Fig. 11 our calculations of EL’s for attractor
I are represented by solid lines and are distinguished from the
global calculation represented as circles, dots, and stars. Two
of the three nonzero EL’s of attractor I are marked with “As”
in Fig. 11(a) while in Fig. 11(b) the last two EL’s are shown
marked with EL

4 and EL
5 . Some EL’s are equal in value and

therefore overlay each other obscuring their individuality.
For example, in Fig. 11(a), within the region Y ≈ 5–8

attractor I EL’s are shown attached to the global EL’s plotted
as circles with enclosed dots. That is, EL

2 = EL
3 for attractor

I joins with the global EL
2 = EL

3 as solid lines exposing clear
differences in EL’s for coexisting attractors I and II. Attractor
I EL’s are color coded orange and green online.

When plotting EL’s on the level of individual attractors,
bubblelike structures can appear mirroring those observed on
the global scale as a function of the injected field. In Fig. 11(a)
it is EL

2 and EL
3 of attractor I that form the intermittent bubbles.

At a value of Y > 8 where initially EL
2 = EL

3 , these Lyapunov
exponents diverge simultaneously over a given domain of the
injected signal and then converge back to their respective equal
values; this cycle is repeated. The letter A marks the positions
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of the bubbles. Notably one bubble is larger than the other.
In the domains of these bubble structures, EL

1 , EL
4 , and EL

5
remain singular and unique.

The similarity in attractor I bubbles and in the distorted
global bubble structures is impressive. In Figs. 11(a) and 11(b)
we observe divergence and convergence in both EL

2 = EL
3

and EL
4 = EL

5 , respectively. To what end this bubble structure
indicates information about the system is not evident; it
may, however, be a form of self-similarity. We do have
clues, however. For example, on the global scale preliminary
evidence indicates that the region between the global bubbles
of the Lyapunov exponents, where two EL’s are equal, could
designate the existence of a dominant attractor as in the case
of attractor IV. Another unfamiliar occurrence appears in the
structure of the Lyapunov exponents for an individual attractor.
We observe that individual Lyapunov exponents align with or
concatenate to trajectories of other Lyapunov exponents as a
function of the injected field. For example, in attractor I in
Fig. 11(a) we observe that EL

3 (in green online) concatenates
to the end of EL

2 (in purple online) about midway between
Y = 9 and Y = 10. This juncture is indicated with the letter B
in Fig. 11(a).

Figure 11(b) shows the evolution of the fundamental
frequency of attractors I and II marked as �01 and �02,
respectively (in blue online). These frequencies are overlaid
in the graph of the global EL’s along with EL

4 and EL
5

of attractor I. EL’s of attractor I are solid lines (in orange
online) attached to open circles and dots. Beyond attractors
I and II the Lyapunov exponents are displayed globally as
a reference to the whole system dynamics. Figure 11(b)
shows two characteristics: (1) The dynamics, reflected in the
continuous evolution of the �0’s, are evolving qualitatively as
two equal EL’s of attractor I and II, respectively. Specifically
�01 trends as both EL

4 and EL
5 (EL

4 �= EL
5 ) of attractor I and

�02 trends as both EL
4 and EL

5 (EL
4 = EL

5 ) of attractor II.
(2) The Y position where change occurs in the dynamic event
of attractor II is exactly the same as the positional change
of the two smallest (and equal) EL’s. Attractor II dominants
attractor I at about Y ∼ 7.3 as evidenced in the forward sweep
[Fig. 2(a) of Ref. [12]) while attractor II holds well past
Y ∼ 7.3 for deceasing Y until it collapses at Y =∼ 5.88. The
latter condition is evident from the global EL’s behavior in
Fig. 11(b).

Figures 12(a) and 12(b) show the dominant frequencies for
attractors IV and VI marked as AIV and AVI, respectively,
overlaid on the first three globally calculated EL’s. We note
the scale is different for �0. In Fig. 12(a) we show that the
evolution of �0’s follow the trend of EL

2 = EL
3 for attractor

IV for the same domain of attraction. Similarly in Fig. 12(b),
the general shape of the trajectory of �0’s taken in the domain
of attractor VI is in good agreement with the general shape
of two different sets of trajectories of EL’s. That is, when
�0 declines in value the trend follows EL

2 = EL
3 as shown

in Fig. 12(b) but as �0 increases in value the trend follows
EL

4 = EL
5 [observable in Fig. 11(b)].

IV. LOW-GAIN LIS: CASE II

The second system under investigation is the low-gain LIS
system where the parameters are chosen for Class B lasers

FIG. 12. (Color online) Global view of EL’s and the fundamental
frequencies �0 (in blue online) are shown overlaid as a function of
the injected-field strength Y for Case I. (a) �0 of attractor IV overlay
the first three EL’s of the global view, marked AIV. (b) �0 of attractor
VI overlaid on the first three EL’s of the global view, marked with
AVI.

consistent with CO2 lasers. It should be noted that unlike OB,
where reducing the bistability parameter to experimentally
accessible values causes the disappearance of higher-order
bifurcations, it is opposite for LIS in experimental regimes.
In fact, sweep dynamics reported in Fig. 13 of Ref. [12]
indicate that different dynamics are possible under Case II
experimental conditions. The forward and backward sweeps
show that near the injection locking region there is a possibility
for two coexisting attractors. Further studies that are shown in
Fig. 5 of Ref. [12] confirm the distinctive temporal dynamics
between the coexisting attractors.

Figure 13 shows the global view of the EL’s as a function
of the injected field for Case II. Specifically, Fig. 13 shows the
forward (in blue online) and backward (in red online) adiabatic
scans of EL’s. The first three EL’s are shown in Fig. 13(a);
the last two EL’s are shown in Fig. 13(b). The five individual
EL’s are not color distinguished because we highlight three
global features: (1) The global EL’s retrace identical paths
whether in a forward or backward adiabatic scan with only a
few exceptions. This portends that one attractor appears to be
controlling most of the global dynamics. Bubblelike structures
and some independent unidentified phenomena associated
with the Lyapunov exponents are visible in Fig. 13(a). Bubbles
are not present in Fig. 13(b), but there are some independent
phenomena present. (2) There is at least one significant domain
of the injected field where the Lyapunov exponents are not
the same and the second attractor coexists. The coexisting
attractors, which are not labeled for now, share the common
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FIG. 13. (Color online) Global view for Case II of the Lyapunov
exponents for the forward and backward adiabatic scans as a function
of the injected-field strength Y . All five EL’s are in blue for the
forward scan and in red for the backward scan; (a) the first three EL’s
and (b) the last two EL’s.

domain of about 1.6 < Y < 1.81, a region distinguished by a
dashed rectangle. (3) There is a region of chaos where the first
Lyapunov exponent becomes positive, albeit with very small
values.

Using the theoretical tools mentioned in Sec. I, we can
report some characteristics of the coexisting attractors. For an
injected-signal strength Y = 1.801 located close to the end
of the domain of coexistence we show in Fig. 14 the time-
dependent trajectories of the modulus of the field as a function
of time. Clearly the output signals are different.

In Fig. 15 we show the different 3D phase-space plots of
the coexisting attractors for the same injected-field strength
as in Fig. 14. Figure 15(a) shows that one of the attractors
is almost sinusoidal in structure while Fig. 15(b) shows
the other is complicated and irregular. The Fourier analysis
indicates interesting fundamental frequencies associated with
these attractors.

Expanding on the global adiabatic scans of Fig. 13 we
show Fig. 16, which includes the overlaid �0’s of the power
spectra of both the global dynamics �0 and the coexisting
attractors �01 and �02, respectively (in blue online). The
five Lyapunov exponents for the attractors are enclosed in the
dashed rectangle and one attractor is color coded for online.

Figure 16(a) shows the global EL’s overlaid with the �0’s
as a function of the injected signal. The global �0 is graphed as
a solid line in the positive quadrant with its own ordinance. In

FIG. 14. (Color online) Output-field amplitude |X| as a function
of dimensionless time τ for parameters of Case II for Y = 1.801:
(a) attractor I and (b) attractor II.

general, the global evolution of the fundamental frequency
follows the trend of two EL’s and likewise, the evolution
of the attractor frequencies in the domain of coexistence
follows the trend of two EL’s. Specifically, in the domain
0 < Y < 1 the global �0 increases and follows the trend of
the trajectory of EL

2 = EL
3 .

There are three other nonchaotic domains of the injected
signal, (1) 1.0 < Y < 1.11, (2) 1.275 < Y < 1.59, and (3)
1.605 < Y < 2.17, where the trend of EL’s predicts the
dynamics of this laser system. Namely, the evolution of �0

in regions (1) and (2) are consistent with the trend of the
two Lyapunov exponents EL

4 = EL
5 shown in Fig. 16(b). The

evolution of �0 in region (3) follows the trend of the two
Lyapunov exponents EL

2 = EL
3 shown in Fig. 16(a). In the last

region (3) there appears to be a choice in two sets of equal
EL’s to follow. Upon further inspection, however, this is the
region just before injection locking and there are no significant
dynamic events to alter the increase in the output signal. So
the logical choice is the set EL

2 = EL
3 . Between regions (2)

and (3) is the region of chaos.

V. SUMMARY AND DISCUSSION

It is true that research on nonlinear dynamics including the
role of Lyapunov exponents has been extensively explored
since 1980 [1]. Cutting-edge investigators understood and
reported on the many relationships connecting Lyapunov
exponents (EL’s) to dynamic features of nonlinear systems
such as steady states, limit cycles, torus behavior, or chaos.
However, the hypothesis that EL’s had an evolutionary
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FIG. 15. (Color online) 3D phase-space plots of (a) attractor I
and (b) attractor II for Case II with Y = 1.801.

predictive aspect to their calculations was illusive; no one saw
EL’s as a predictor of the global dynamics of the nonlinear
system as a whole.

In this paper we show that the role of the Lyapunov
exponents can be extended beyond the customary stability
considerations to include its use as a predictor of the global
dynamics of nonlinear systems. We use the laser with injected
signal as the investigative nonlinear system. Numerical studies
of LIS reveal that as a function of the input signal the evolution
of two nonzero Lyapunov exponents (generally equal) predicts
the evolution of the fundamental frequency of the output signal,
an important dynamic characteristic of the LIS. This predictive
behavior of the Lyapunov exponents includes also the dynamic
behavior of the individual coexisting attractors. Alternative
coexisting attractors of LIS and configurations of Lyapunov
exponents for both individual attractors and the global system
are examined. Two LIS case studies are considered: (I) a
high-gain system with a rich history of nonlinear behavior but
not experimentally accessible, and (II) a low-gain system that
has complex dynamics and is experimentally accessible for
Class B lasers. Universality arguments support the thesis that
these unique structures and the extended role of the Lyapunov

FIG. 16. (Color online) Case II global view of EL’s for a back-
ward adiabatic scan as a function of the injected field Y . The
coexistence domain is identified by a dashed rectangle: (a) the first
three EL’s and �0, �01, and �02; (b) the last two EL’s.

exponents as a predictor of dynamic evolution will be observed
in other nonlinear, dynamic, dissipative systems as well.

The EL’s are a set of simple numbers that reflect the
rate of separation of infinitesimally close trajectories and are
calculated as a result of computational noise. They are in
essence an m-dimensional volume contracting or expanding
depending on system parameters (m is an integer). The sum
of these EL’s is functionally dependent on the decay rates
that govern the dynamics of the nonlinear model. The sum of
EL’s remains constant regardless of a change in the control
parameter. Fundamentally, this sum is represented by the Tr[Ĵ ]
where Ĵ is the linear matrix of the governing system. For Case
I the sum of EL’s is 3.05 and for Case II the sum of EL’s is 2.01.
As the control parameter changes, EL’s rearrange themselves
in such a way as to predict the trend of the evolution of the
full-blown nonlinear governing system (all the while their sum
remains steadfast). It is fascinating that these simple numbers
can portend the evolution of the fully developed nonlinear
dynamic system.

We support the main hypothesis of this paper using
LIS dynamics. However, during the investigation intriguing
features of EL’s associated with individual attractors and
global features of LIS were also observed. They can be
summarized in the following discussion.
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The two supporting LIS Cases I and II that are reported
herein are different mainly because one is experimental and
the other is not. However, they both have interesting nonlinear
behaviors: (1) They experience period doubling, chaos, and
coexisting attractors. (2) They have two nonzero Lyapunov
exponents calculated as a function of the injected-field strength
that predict the evolution of the dynamics of LIS when
monitoring the dominant frequency of the power spectrum
of the output signal. (3) They support bubble structures in
the evolution of the Lyapunov exponents as a function of the
injected field on both the global and attractor scale.

These three nonlinear behaviors are shown in specific
circumstances. The evolution of the fundamental frequencies
in the dynamics compares favorably to the trend of EL

2 = EL
3

or EL
4 = EL

5 or even EL
4 �= EL

5 given the conditions of the
system. Further, as a function of the injected field we find that
two EL’s initially identical in a single attractor can diverge and
then converge back to a single value simultaneously forming
a bubblelike structure. This event is repeated usually at least
once. These structures are experienced on the global scale as
distorted bubbles in EL

2 and EL
3 , and EL

4 and EL
5 ; as a finer

detail, the global bubbles are often found separated by regions
of EL

2 = EL
3 and EL

4 = EL
5 , respectively. Preliminary evidence

indicates importantly that this equality region may herald the
existence of an attractor that may coexist with others in the
system.

We report for the high-gain case that within a given attractor,
EL’s of one ilk can concatenate to the trajectory of another as a
function of the injected field. The location of this concatenation
does not appear to predict any obvious shift in dynamic trends,
but it is premature to forecast. Also we report two interesting
attractors in Case I that coexist with attractors I and II. One
attractor has dynamics that includes stable two-torus behavior
that collapses as the input signal changes to another stable
coexisting attractor—not to chaos. The other attractor has a
small Y domain and is limited in its bifurcation sequence. Can
these attractors be accessed experimentally?

The effects of noise on these findings broadens the scope
of this study beyond the confines of the paper; however, we
believe it is worthy of some brief comments.

For both Cases I and II the model includes an injected signal
that is represented arguably simplistically as an amplitude and

frequency. In reality the injected signal can have fluctuations
that we designate as noise in the form of either (1) a slow-
frequency drift of the injected signal, or (2) a fast-frequency
jitter that manifests itself as the linewidth of the laser signal.
We use a random number generator scaled appropriately and
with different strengths to explore these two forms of noise.
Our preliminary results involve the two outlying regions: (1)
where the injected signal is weak at the beginning of the
unstable steady-state region, and (2) where the injected signal
is strong at the end of the unstable region and just before the
stable steady state. Between these two regions the dynamics is
complicated and chaotic.

For Case II in the form of slow noise, we find that for
both outlying regions studied, (1) the fundamental frequencies
of the noisy power spectra plot as a scatter plot around the
model’s fundamental frequencies without noise (Fig. 16), as
expected. A linear fit of the noisy frequencies follows the
linear trend of the EL’s with reasonable accuracy just as the
model frequencies do when there is no noise. (2) We find
that there is opportunity for both attractors in the coexisting
region to be accessed depending on the strength of the
noise.

For Case II in the form of fast noise, the results are so
disparate that we can only say the studies are ongoing.

It takes only a brief excursion into noise to conclude that
modeling noise can be an important tool to understanding
noisy experimental systems, but also we may find that noise
can give us guidance into understanding how the attractors are
accessed or even into why one attractor dominates another.
The potential for observing two different output frequencies
(maybe not three) for the same physical setup is a worthy
experiment that is achievable for the parameters of Case II.
Experimental confirmation of different coexisting attractors in
LIS would be very interesting.

Finally, the evolutionary dynamic predictive behavior of the
Lyapunov exponents holds even with the introduction of some
noise.
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