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In this report we study the Vernier effect in coupled laser systems consisting of two cavities. We show that
depending on the nature of their coupling, not only can the “supermodes” formed at overlapping resonances
of these two cavities have the lowest thresholds as previously found, leading to lasing at these overlapping
resonances and a manifestation of the typical Vernier effect, but also they can have increased thresholds and are
hence suppressed, which can be viewed as an inverse Vernier effect. The inverse Vernier effect can also lead to an
increased free spectrum range and possibly single-mode lasing, which may explain the experimental findings in
several previous studies. We illustrate this effect using two coupled micro-ring cavities and a micro-ring cavity
coupled to a slab cavity, and we discuss its relation to the existence of exceptional points in coupled lasers.
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I. INTRODUCTION

The Vernier effect is well known in passive microwave and
optical systems, which depict it as transmission resonances
of a coupled system occurring when the resonances of the
subsystems coincide. The counterpart of the Vernier effect
in lasers has been experimentally studied with two or more
coupled laser cavities, and an increased free spectral range
(FSR) of the lasing spectrum and even single-mode lasing
have been observed [1–8]. While some of these experiments
utilized an interferometer [1–3] (type I; see Fig. 1) and can be
understood similar to the Vernier effect in transmission, the
others were different and consisted of fused or evanescently
coupled slab and micro-ring or micro-disk cavities (type II).
However, the understanding of the increased FSR or single-
mode lasing in type II coupled systems is still often argued
using the same mechanism as in type I systems, i.e., one cavity
acts as an external cavity for frequency selection, and lasing
occurs at the overlapping resonances of the individual laser
cavities.

In this report we show that frequency overlap in type II
systems does not favor lasing in general. Instead, the coupling
of these overlapping resonances increases the lowest threshold
of the corresponding lasing modes. Thus the increased FSR
and single-mode lasing observed can be understood as a
consequence of the suppression of these overlapping modes,
which is the manifestation of an inverse Vernier effect. Below
we illustrate this finding first in two evanescently coupled
micro-ring cavities of different radii (see Fig. 1) and later in a
micro-ring cavity coupled to a slab cavity. We show that the
changes to the lasing thresholds are related to the existence of
exceptional points (EPs) [9–18], at which two lasing modes
have the same frequency, threshold, and spatial intensity
pattern. We further show that the effect of coupling in type I
systems increases with the detuning between two neighboring
resonances, one in each of the two coupled cavities, while
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that in type II systems decreases with the detuning, yielding
the inverse Vernier effect instead of the typical Vernier effect.
Finally, we reveal that while the typical Vernier effect due to
destructive interference does not impose any restrictions on
the losses of the constituted cavities, the inverse Vernier effect
depends on different losses, or equivalently different quality
(Q) factors, in the two coupled cavities, highlighting its origin
in coupling-caused Q spoiling.

Our analysis is based on the coupled-mode formulism sug-
gested by Yariv [19], which takes into account the amplitude
and phase evolutions inside the coupled cavities. Since the
increased FSR and single-mode lasing reported in Refs. [4–8]
were observed close to the lowest lasing threshold, nonlinearity
was not crucial for these observations and we neglect it in
the analysis below. We first consider two coupled micro-ring
cavities (see Fig. 1), and the coupling between them can be
captured by a scattering (S) matrix [19]:(

a−
out

b+
out

)
= S

(
a−

in

b+
in

)
, S =

(
t J

−J ∗ t∗

)
, (1)

where a−
in, out are the incoming and outgoing counterclockwise

wave to the coupling junction in the first cavity, and b+
in, out are

similarly defined for the clockwise waves in the second cavity.
The coupling of the waves traveling in the opposite directions,
i.e., a+

in, out and b−
in, out, is given by the same S matrix because of

the local spatial symmetry at the coupling junction. We note
that the S matrix is dimensionless, and so are t and J . They
satisfy the local flux conservation relation |t |2 + |J |2 = 1, and
the S matrix is unitary as a result. Since we do not expect a
phase jump when a−

in passes through the coupling junction to
become part of a−

out, we take t to be real.
Assuming the circumferences of the two ring cavities are

L1 and L2, the phase and amplitude changes of light after one
circulation in each cavity and before coupling again is given by

a−
in = ei(n+iκ1−iτ )kL1 a−

out ≡ β1a
−
out, (2)

b+
in = ei(n+iκ2−iτ )kL2 b+

out ≡ β2b
+
out, (3)
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FIG. 1. (Color online) Schematics showing two types of coupled
microcavities. Type I utilizes an explicit interferometer setup, while
type II does not.

respectively. Here k = ω/c is the wave vector in free space
and n is the refractive index of the ring cavities. The losses
(radiation loss, material absorption, etc.) are represented by
κ1,κ2 in these two cavities, respectively, and to focus on
coupling-induced threshold changes we will treat them as
constants for all modes. The optical gain is modeled by adding
a negative imaginary part τ to n [20,21], and hence the laser
threshold expressed in terms of τ is dimensionless.

By solving Eqs. (1) and (3), we find the following relation
between the two counterclockwise amplitudes in the first
micro-ring cavity

a−
out = t − β2

1 − tβ2
a−

in, (4)

from which the well-known critical coupling condition t =
β2 �= 1 for a vanished a−

out is readily seen. The lasing thresholds
are determined by the self-consistent condition imposed by
Eqs. (2) and (4), e.g., a−

in should not change in steady-state
lasing oscillation after light circulates the first ring cavity once
and comes back to the same location:

β1
t − β2

1 − tβ2
= 1. (5)

In the absence of coupling, i.e., J = 0 and t = 1, we
recover the simple relation β1 = 1 that determines the lasing
frequencies and thresholds of the first micro-ring cavity, i.e.,

k1,m = 2πm

nL1
, τ1,m = κ1 (m = 1,2, . . .).

Similarly, the lasing modes in the second micro-ring cavity are
given by k2,m = 2πm/nL2 and τ2,m = κ2. In order to recover
the threshold condition of the second micro-ring cavity in the
absence of coupling, i.e., β2 = 1, it is necessary to rewrite
Eq. (5) in the following equivalent form:

β2
t − β1

1 − tβ1
= 1. (6)

In the strong coupling limit, i.e. J → 1 and t → 0, both
Eqs. (5) and (6) become

β1β2 = −1, (7)

which indicates that the system is now effectively a micro-
ring cavity of circumference (L1 + L2), with a π -phase shift
(coming from the “−” sign) due to the coupling. We note that
this result, as well as Eqs. (5) and (6), does not depend on the
phase of the coupling J . As we show in Appendix A, the phase
of J indeed bares no physical significance; it can be eliminated
by shifting the phases of the propagating waves. Therefore, we
take J to be real in the following discussions.

II. INVERSE VERNIER EFFECT

The FSRs of the uncoupled micro-ring cavities are �k1 =
2π/nL1 and �k2 = 2π/nL2, respectively. The average spec-
tral density is then given by �k−1

1 + �k−1
2 , not counting the

double degeneracy of the micro-ring resonances due to the
clockwise and counterclockwise symmetry. Note that it is
equal to the spectral density given by Eq. (7) at J = 1, where
the lasing frequencies and thresholds are given by

km = (2m + 1)π

n(L1 + L2)
, (8)

τm = L1 κ1 + L2κ2

L1 + L2
. (9)

This observation indicates that the lasing modes in the
coupled system are evolved continuously from the uncoupled
resonances as J increases from 0 to 1 [see Fig. 2(a)],
with the ones originating from the larger ring cavity having
the lower thresholds. The thresholds (9) at J = 1 are the
same for all modes, given by the average of the thresholds
of the uncoupled micro-ring cavities and weighted by the
corresponding circumferences.

We note, however, this observation does not mean that the
thresholds of the lasing modes have the same dependence
on the coupling. As can be seen from Fig. 2(b) at J = 0.5,
there is a clear difference between the thresholds of the lasing
modes, which are inversely correlated with the detuning of
the uncoupled resonances. The least overlapped resonances
of the larger ring cavity have the lowest threshold and lase
at a low pump power, while the better overlapped ones have
higher thresholds and are suppressed at a low pump power.
We refer to this effect as the inverse Vernier effect, since it
is opposite to the Vernier effect in transmission that preserves
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FIG. 2. (Color online) Inverse Vernier effect in two evanescently
coupled micro-ring cavities. (a) Trajectories of the lasing thresholds
versus the frequencies as the coupling J increases from 0 to 1.
The squares and dots mark the uncoupled lasing modes at J = 0,
respectively. The triangles show the coupled lasing modes at J = 1.
Arrows indicate the direction of motion as J increases. R and
0.9R are the radius of the larger and smaller cavities, respectively.
(b) Lowest thresholds of the lasing modes at J = 0.5, which are
evolved from the uncoupled resonances in the larger ring cavity.
Note the increased thresholds especially at the perfectly aligned
resonances near kR = 3.3,6.6. (c) shows the detuning of these
uncoupled resonances with the nearest counterparts in the smaller
ring cavity. The total loss in the two cavities are κ1 = 10−4 and
κ2 = 5 × 10−4 respectively, corresponding to Q factors of 1.5 × 104

and 3 × 103. The refractive index is n = 3.
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FIG. 3. Inverse bifurcation of the lasing frequencies (a) and
bifurcation of the corresponding thresholds (b) of the perfectly
aligned modes 1 and 2 near kR = 3.3 shown in Fig. 2(a), as
the coupling increases from J = 0. The bifurcations occur near
J = 4 × 10−3. The solid lines in (c) and (d) show the much weaker
J dependencies of the two low-threshold modes on the left of mode
1 in Fig. 2(a), with the thin one farther away from mode 1. The dots
show the analytical approximations given by Eqs. (16) and (17).

only the overlapping resonances. Nevertheless, the FSR of
the active lasing modes can also be increased as a result and
single-mode lasing may become possible if the gain spectrum
is not too wide.

To better understand the much stronger J dependence of the
thresholds at the spectrally aligned resonances [e.g., mode 1 of
the larger cavity and mode 2 of the smaller cavity in Fig. 2(a)],
we first note one of their qualitative differences from the
detuned resonances. Starting from J = 0, modes 1 and 2 first
move vertically in the k-τ plane when the coupling increases;
they then coalesce before moving largely horizontally. The
detuned resonances undergo avoided crossings instead. This
behavior of modes 1 and 2 is plotted as a function of the
coupling J in Figs. 3(a) and 3(b). Their frequencies and
thresholds experience a bifurcation and inverse bifurcation
respectively when J becomes Jc ≈ 4 × 10−3, which indicate
the existence of an EP [9–18]. In contrast, the detuned
resonances show a much weaker J dependence when J is
small, as shown in Figs. 3(c) and 3(d). At J = Jc the threshold
increase of mode 1 is more than 104 times larger than the
detuned resonances.

The EPs are often studied in an eigenvalue problem [9–
11]. Although in our coupled-mode formalism the threshold
conditions (5) and (6) do not have the explicit form of
an eigenvalue problem, the merging of the frequencies and
thresholds of modes 1 and 2 shown in Figs. 2(a) and 3(a)
and 3(b) at J = Jc is a clear indication of an EP. This is further
confirmed by the coalescence of their wave functions (see
Fig. 4), which distinguishes an EP from a usual (Hermitian)
degeneracy point. In the next section we will analyze the
location of the EP as well as the much weaker J dependence
of the detuned resonances.
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FIG. 4. (Color online) Ratio V of light amplitudes inside the two
micro-ring cavities for modes 1 and 2 in Figs. 3(a) and 3(b). V is
defined by Eqs. (10) and (11). The insets in (a) illustrate their different
intensity ratios at J = 3.5 × 10−3 below the EP at Jc = 4 × 10−3 and
their identical intensity ratio |V | = 1 at J = 7 × 10−3 above the EP.
(b) The identical phase of V for modes 1 and 2, both below and
beyond Jc.

III. ANALYTICAL RESULTS AND PHYSICAL
INTERPRETATIONS

When the coupling is small, modes 1 and 2 concentrate in
the larger and smaller micro-rings, respectively. This can be
seen quantitatively from

V ≡ b+
in

a+
in

= −β2J

1 − tβ2
(10)

for mode 1: the lasing condition of the first micro-ring cavity,
i.e., β1 = 1, holds for this mode when J → 0, and β2 �= 1
because of the different thresholds of modes 1 and 2 when
they are uncoupled. Therefore, V → 0 for mode 1, which has
little amplitude in the second micro-ring cavity as expected.

Similarly, V can be expressed as

V = 1 − tβ1

β1J
(11)

for mode 2: the lasing condition of the second micro-ring
cavity, i.e., β2 = 1, holds for this mode when J → 0, and
β1 �= 1 because of the different thresholds of modes 1 and
2 when they are uncoupled. Therefore, V → ∞ for mode 2,
which has little amplitude in the first micro-ring cavity as
expected.

We note that the two expressions (10) and (11) are
mathematically identical using Eq. (5) or (6). We discussed
them separately above just to avoid the ratio of two vanishing
quantities in the limit J → 0. Once J becomes finite, either
expression can be used for both mode 1 and 2, and their V

values (and hence their wave functions) become the same once
they have the same value of β1 (and consequently β2 as well).
This condition is satisfied when the frequencies and thresholds
of these two modes become the same, i.e., at an EP.

To locate the EP in terms of the coupling J , we first note that
β1 = exp[(τ − κ1)k0L1] ≡ β̃1 and β2 = exp[(τ − κ2)k0L2] ≡
β̃2 are both real at the aligned resonant frequency k = k0.
Consequently, Eq. (5) can be solved at k = k0, with the
threshold τ determined by

t = 1 + β̃1β̃2

β̃1 + β̃2
. (12)

013840-3
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For cavities of relatively high-quality factors (and hence with
low loss), the exponents in β̃1,2 are very small and we expand
them to the second order of τ , which gives rise to

(τ − κ1)(τ − κ2) ≈ 2(t − 1)

k2
0L1L2

. (13)

The left-hand side depicts an quadratic curve of τ , with the
minimum (κ1 − κ2)2/4 at τ = (κ1 + κ2)/2. If this minimum is
lower than the constant on the right-hand side, i.e.,

t > 1 − k2
0L1L2

8
(κ1 − κ2)2, (14)

or equivalently,

J < Jc ≡ 1

2
k0

√
L1L2|κ1 − κ2|, (15)

Eq. (13) gives two real solutions of τ (i.e., modes 1 and 2).
Right at J = Jc, these two solutions coalesce into one, and the
EP is reached. If J is larger than Jc, then there is no solution
to Eq. (12) with a real τ , which means that the corresponding
modes can no longer exist at k = k0, leading to the frequency
bifurcation shown in Fig. 3(b).

Equation (15) gives Jc = 3.97 × 10−3 for the example
shown in Fig. 3, which agrees well with the numerical result
shown. Equation (15) also shows that the toy model given in
Ref. [17] is qualitatively correct, and the location of an EP in
terms of the coupling is proportional to the difference of the
losses in the two coupled cavities.

Similar to the derivation above, we obtain the approxima-
tions for the frequency and threshold changes of the lower-
threshold modes, originating from the uncoupled resonances
in the larger ring cavity:

δk(J ) ≡ k(J ) − k(0) ≈ J 2

2nL1

sin θ

1 − cos θ
, (16)

δτ (J ) ≡ τ (J ) − τ (0) ≈ (κ2 − κ1)δk(J )

�

θ

sin θ
. (17)

Here θ ≡ n�L2 and � is the detuning of one resonant fre-
quency in the larger ring from the nearest resonant frequency
in the smaller ring. Equations (16) and (17) give excellent
agreement with the numerical results when J is small, as can
be seen from Figs. 3(c) and 3(d). They show that both δk

and δτ are proportional to J 2 when J is small, and more
importantly, these changes are inversely correlated with the
detuning � when |θ | � 1, with δk(J ) proportional to �−1

and δτ (J ) proportional to �−2 in this limit. Due to the two
different FSRs of the two coupled cavities, the detuning �

modulates as a function of frequency and so does the lasing
threshold τ , which then leads to the inverse Vernier effect of
the active lasing modes when the pump power is low.

This finding can be interpreted in the following way: for two
cavities of different losses (and hence different Q factors), the
coupling effect is strong for overlapping resonances, and the
higher Q resonances are “spoiled” more by the lower Q ones,
causing a significant increase of their thresholds. For little- or
non-overlapping resonances, this Q-spoiling effect is weak,
and hence the thresholds of the higher quality resonances do
not vary much from their uncoupled values.

From this interpretation it is clear that different Q factors
in the two coupled cavities are crucial for the inverse Vernier
effect, which would not occur if the losses in the two micro-ring
cavities are the same; this can be directly seen from Eq. (17),
which shows that the lasing threshold τ does not change with
the detuning � if κ1 = κ2. A more rigorous proof without using
the expansion for a small coupling J is given in Appendix B.

As we discussed above, the inverse Vernier effect in type
II coupled systems is the result of detuning-dependent Q

spoiling, due to the coupling to a lower Q cavity. The
typical Vernier effect, on the other hand, is caused by the
detuning-dependent destructive interference. To contrast their
different dependencies on the detuning �, below we use
the Michelson interferometer setup [1] to exemplify type I
systems, the threshold condition of which is given by

β1(k,τ )T + β2(k,τ )R = 1, (18)

where β1,2 = ei(n+iκ1,2−iτ )kL1,2 are the phase and amplitude
changes after one circulation along each arm of the Michelson
interferometer. T and R = 1 − T are the transmittance and
reflectance of the beam splitter, and L1,2,κ1,2 are the length
and loss of each arm. For T = 0 or 1, lasing in the two arms
takes place independently.

For simplicity, we consider a 50/50 beam splitter (T = R =
0.5), which simplifies the threshold condition to β1(k,τ ) +
β2(k,τ ) = 2. Similar to the derivation for the type II coupled
systems, we find the threshold change of the higher Q modes
is given by

δτ = τ (T = 0.5) − τ (T = 0) ≈ cos θ − 1 − L2 sin2 θ
L1+L2 cos θ

k0L1
.

(19)

We note that Eq. (19) is proportional to the detuning �2

when |θ | � 1. In other words, the effect of coupling, or
more precisely, the effect of destructive interference, is more
pronounced for a larger detuning as expected. This is in stark
contrast with the relation (17) for the threshold change in type
II coupled systems (∝ �−2), which distinguishes the typical
Vernier effect and the inverse Vernier effect reported here.

We also note that the difference of the losses, κ1 − κ2, does
not appear in Eq. (19); it is a higher order term for high-Q
modes, or more specifically, when |κ1 − κ2|k1L2 � 1. Thus
the typical Vernier effect in type I systems is not related to Q

spoiling due to the coupling to a lower Q cavity, while this
mechanism is what causes the inverse Vernier effect in type II
coupled systems as discussed.

IV. DISCUSSION AND CONCLUSION

Our analysis based on the coupled-mode formalism is
general and can also be applied to, for example, a slab cavity
coupled with a micro-ring or microdisk cavity. The only differ-
ences are (i) a different β factor is needed to capture the phase
and amplitude change of the light after a round trip in the slab
cavity, including the effect of the radiation loss through the
end facets; and (ii) the clockwise and counterclockwise waves
in the micro-ring or microdisk cavity are coupled by a slab
resonance. More specifically, the equivalence of the threshold
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FIG. 5. (Color online) Inverse Vernier effect in a slab cavity of
length L coupled with a micro-ring cavity of radius R = L/1.8π [see
the inset in (a)]. (a) Threshold changes for the lowest threshold modes
near kL = 20 at J = 0.5. They originate from the uncoupled slab
resonances, the loss of which is assumed to come from the radiation
through two mirrors of reflectivity r = 0.99 and lower than that in
the micro-ring (κ = 5 × 10−3). The threshold change is inversely
correlated with the detuning from the nearest micro-ring resonance
[see (b)].

condition (5) or (6) is

βr

t − βs

1 − tβs

= 1, (20)

where βr is defined in the micro-ring cavity similar to β1 in
Eq. (2) and βs ≡ ±ei(n+iκs−iτ )kL is defined in the slab cavity
of length L and loss κs . If the radiation loss from the two
mirrors of reflectivity r dominates in the slab, κs is then given
approximately by − ln(r)/2kL. The inverse Vernier effect still
holds, as we show in Fig. 5.

In summary, we have shown that for two coupled cavities
of different FSRs, the overlap of their resonances does not typ-
ically favor lasing except in an interferometer setup, resulting
in an inverse Vernier effect. Nevertheless, the suppression of
these overlapping resonances can also lead to an increased FSR
and possibly single-mode lasing as well, as found in previous
experiments [4–8]. We have treated J as a constant for all
modes. If we consider a weaker value of the coupling due to a
larger detuning, the differences of the maximum and minimum
thresholds shown in Figs. 2(b) and 5(a) will be smaller, but
their qualitative modulation as a function of the frequency still
holds, and hence so does the inverse Vernier effect.
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APPENDIX A: PHASE OF THE COUPLING
COEFFICIENT J

As we mentioned at the end of Sec. I, the phase of
the coupling coefficient J does not appear in the threshold
equations (5) and (6). Here we show explicitly that the phase
of J can be eliminated by shifting the phases of the propagating
waves a−

in, out, b+
in, out in the coupled equation (1).

Suppose we start with a complex J = J0e
iθ , where J0 =

|J | > 0. We then redefine

ã−
in, out ≡ a−

in, oute
−iθ/2, b̃+

in, out ≡ b+
in, oute

iθ/2, (A1)

and introduce a transformation matrix O and its inverse O−1,

O =
(

e−iθ/2 0
0 eiθ/2

)
, O−1

(
eiθ/2 0

0 e−iθ/2

)
, (A2)

satisfying OO−1 = O−1O = 1, where 1 is the identity matrix.
By multiplying O to both sides of Eq. (1), we find(

ã−
out

b̃+
out

)
= O

(
a−

out

b+
out

)
= O

(
t J

−J ∗ t∗

)(
a−

in

b+
in

)

= O

(
t J

−J ∗ t∗

)
O−1O

(
a−

in

b+
in

)

= O

(
t J

−J ∗ t∗

)
O−1

(
ã−

in

b̃+
in

)
. (A3)

In other words, the S matrix for the phase-shifted waves
ã−

in, out,b̃
+
in, out are

S̃ = O

(
t J

−J ∗ t∗

)
O−1

=
(

e−iθ/2 0

0 eiθ/2

)(
t J0e

iθ

−J0e
−iθ t∗

)(
eiθ/2 0

0 e−iθ/2

)

=
(

t J0

−J0 t∗

)
, (A4)

in which the coupling is now real.

APPENDIX B: ROLE OF DIFFERENT CAVITY LOSSES

In the main text we discussed that the different losses in
coupled cavities is the key factor that leads to the inverse

a1

a2

a 1 a2

a +1 a2

. (1+        )a 1 a2
.

1θ1

θ1

FIG. 6. Schematics showing the right-hand side of Eq. (B1).
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Vernier effect. It was presented using physical intuitions and
the expansion of the threshold condition in the weak coupling
limit (J � 1). Here we show more rigorously that the lasing
threshold τ does not change with the coupling J if the coupled
cavities have the same loss, i.e., κ1 = κ2, and hence the inverse
Vernier effect does not occur in this case.

What we do is the following: we take τ to be
equal to κ1 = κ2, and show that the resulting threshold
condition

t ∈ [0,1] = 1 + eink(θ1+θ2)

eiθ1 + eiθ2
(B1)

can be satisfied simply by varying the lasing frequency k.
Here θ1 ≡ nkL1 and θ2 ≡ nkL2 are the phase changes in
the two ring cavities after a round trip. We note that the
right-hand side of Eq. (B1) depicts the sum of two unit
vectors �a1, �a2 dividing the sum of their inner product ( �a1 · �a2)
and the unit vector along the real axis. From the phasor
diagram shown in Fig. 6, we know that these two sums are
both along the bisector of the angle formed by �a1 and �a2,
because �a1 · �a2 is rotated counterclockwise from �a2 by the
same angle θ1 between 1 and �a1. Therefore, their ratio is
indeed real as required by Eq. (B1). Equation (B1) at any
coupling J = √

1 − t2 can then be satisfied by varying θ1 and
θ2 via k, which changes the ratio of the two aforementioned
sums.
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