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Coherent effect of vacuum fluctuations on driven atoms
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We study the coherent effect of the Casimir-Polder interaction on the oscillations of two-photon driven atoms.
We find that, for oscillations between two degenerate states in � configuration, shifts on the Rabi frequency may
be induced by nonadditive level shifts. For oscillations between two Rydberg states in ladder configuration, shifts
on the Rabi frequency may be induced by the effective renormalization of the laser interaction.
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I. INTRODUCTION

The interaction of a neutral atom with a material surface
is a problem profusely addressed in the literature [1–6]. In
most of the approaches the atom is taken in a stationary state
with respect to the time of observation. At zero temperature
and in the dipole approximation, the atom undergoes a series
of virtual dipole transitions to upper levels. It is the coupling
of the charges of the atom and the currents on the surface
to the quantum electromagnetic (EM) field that induces the
correlation between their transient dipole moments, giving
rise to a nonvanishing interaction. The lifetime of the virtual
atomic transitions is very short in comparison to ordinary
observation times and thus, the use of stationary quantum
perturbation theory is well justified for the calculation of this
interaction [7]. For distances greater than the relevant atomic
transition wavelengths this interaction is referred to as retarded
Casimir-Polder (CP) interaction, while for distances much
shorter than those wavelengths it is referred to as van der
Waals or nonretarded CP interaction.

When atoms close to dielectric surfaces are driven under
the action of external sources, virtual and actual transitions
mix up with each other in the time evolution of the atomic
wave function. From a practical perspective, the effect of the
CP interaction on the dynamics of driven atoms is of great
importance in hybrid quantum systems—e.g. Ref. [8]. At first
sight, under quasistationary conditions, that effect reduces to
an additive level shift on the atomic eigenstates, which is just
a generalized Lamb shift [2,3,9]. In the closely related case
of the interaction between two driven Rydberg atoms, this
phenomenon originates the van der Waals blockade of the Rabi
oscillations. This is the idea behind neutral atoms quantum
gates [10], where the excitation of the target atom is blocked
as the energy shift of its Rydberg level exceeds the value
of the bare Rabi frequency. However, recent findings suggest
that other dynamical effects might be relevant under certain
conditions—cf. Refs. [11,12].

On the other hand, state of the art techniques on atomic
interferometry have proved useful in measuring accurately
the dynamical phase shifts accumulated by the wave function
of coherently driven atoms [13]. Those phase shifts contain
information about the interaction of the atoms with the envi-
ronment. This is at the root of the proposals of Refs. [14,15]
to measure the interaction of an alkali-metal atom with a
macroscopic surface at submicron distances. At this distance,
the dominant interactions are expected to be the CP interaction
and the gravitational interaction. In the experimental setup of

Ref. [14] the atoms are trapped in a one-dimensional vertical
lattice, which allows for an accurate control over the relative
position of the atoms with respect to the surface. The uniform
Earth gravitational field creates a ladder of localized states
referred to as Wannier-Stack states. At first glance, the net
effect of the Casimir interaction reduces to additive shifts on
the atomic energy levels, both external (i.e., those involving
the center of mass) and internal (i.e., those involving the
electronic energy levels) [16]. As for the case of the van
der Waals blockade, this approximation assumes implicitly
that the Casimir energy can be integrated out a priori in the
energy levels, before the atom is driven. However, dynamical
effects may deviate from this assumption. Let us take as
an example an atom driven through a � configuration [see
Fig. 1(a)] in the presence of a material surface. On the one
hand, the atom is pumped by two Raman lasers from two
low-lying states, |g〉 and |e〉, to common excited intermediate
states, |i〉. It is the combined action of both lasers that gives
rise to the effective coherent oscillation of the atom between
the states |g〉 and |e〉 [17–19]. On the other hand, the CP
interaction of the atom with the surface results in similar
excitation and de-excitation transitions which are mediated
by virtual photons rather than laser beams—see Fig. 3(d).
Therefore, it is possible that both processes interfere with
each other affecting the overall dynamics of the atom. It is
our purpose to investigate the conditions under which the
interplay between the Raman interaction and the CP interaction
provides appreciable consequences on the coherent dynamics
of an atom. We will show that, in the perturbative regime, the
net effect is an effective shift of the Rabi frequency.

In this article we concentrate on scenarios similar to those of
Refs. [8,14,16], where atoms are driven through a combination
of Raman lasers and microwaves at the time they interact
with a macroscopic surface. Our approach is based on the
time evolution of the atomic wave function. As long as the
surface resonant frequency is far from the atomic resonances,
the classical treatment of the EM response of the surface
is expected to be a good approximation. The case of the
interaction between two driven Rydberg atoms is left for a
separate publication. The article is organized as follows. In
Sec. II we review the essentials of both the Rabi model and the
Casimir interaction and we motivate our work. In Sec. III we
address the renormalization of the energy levels and of the laser
vertices, and show the role of the nonadditive Casimir terms
on the coherent dynamics of a driven atom. We give explicit
expressions for the effective shift of the Rabi frequency.
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(a) (b)

FIG. 1. (a) Schematic representation of a � system, where two
Raman lasers of frequencies ωp and ωs couple the states |g〉 and |e〉
to a third intermediate state |i〉 with coupling strengths �

p

gi and �s
ei

respectively. (b) Schematic representation of a ladder system. In this
case the intermediate state |i〉 lays between |g〉 and |e〉.

Section IV A contains an explicit calculation of this shift
for a 87Rb atom oscillating between two degenerate Zeeman
sublevels close to a perfectly reflecting surface. In Sec. IV B
the calculation is done for a 87Rb atom oscillating between
two Rydberg states. In Sec. V we present our conclusions.

II. ESSENTIALS OF THE EM INTERACTIONS

We briefly review here the two EM interactions which
govern the atomic dynamics. These are the interaction with
external electric fields and the interaction with the vacuum
EM field.

A. Laser fields interaction: Bare1 Rabi oscillations

Let us consider first the interaction of the atom with the
external electric fields of two monochromatic lasers. An atom
in free space with atomic levels {|i〉} is described by the free
Hamiltonian given by

H at
0 =

∑
i

�ωi |i〉〈i|, (1)

from which the unperturbed time-evolution operator reads
Uat(t) = ∑

i e
−iωi t |i〉〈i|. The Hamiltonian of interaction of the

atom with the electric field of lasers of frequencies ωs and ωp

is

H int
ex (t) = �

∑
i

�
p

gi cos ωpt |i〉〈g| + �s
ei cos ωst |i〉〈e|

+ �

∑
j �=i,m

�s
gj cos ωst |j 〉〈g|

+ �

∑
m�=i,j

�p
em cos ωpt |m〉〈g| + H.c., (2)

1Throughout this article we refer as bare all those observables which
are computed in the absence of surface-induced quantum fluctuations.

(a) (b)

FIG. 2. (a) Schematic representation of the effective vertices of
the Rabi Hamiltonian, H int

R |eg(t) and H int
R |ge(t). (b) Diagrammatic

representation of the light shifts, δωg and δωe.

where the strengths of the driven transitions are �
p,s
gr,er =

−〈g,e|d|r〉 · Ep,s , with d the electric dipole moment operator
and Ep,s the amplitude of the electric field of the lasers p

and s at the position of the atom. The intermediate states
labeled by i are commonly accessible from |g〉 and |e〉. On the
contrary, states labeled by j are only accessible from |g〉 by
the action of laser s and states labeled by m are only accessible
from |e〉 by the action of laser p. Adjusting conveniently the
detuning of the lasers with respect to the transition frequencies
to the common intermediate states, with �

p,s

gi,ei = ωig,ie − ωp,s ,
as well as the strengths of the transitions, it is possible
to make the atom oscillate coherently between the states
|g〉 and |e〉. That is for instance the case of an atom in
either a � or a ladder system like those of Fig. 1. Provided
that |�p,s

gi,ei | � |�p,s

gi,ei | ∀i, the population of the common
intermediate states can be eliminated adiabatically2 and the
effective dynamics of the atom reduces to that of a two-level
system [18]. Straightforward application of time-dependent
perturbation theory with the interaction Hamiltonian of Eq. (2)
yields the effective Rabi Hamiltonian HR = H at

R + H int
R , with

H at
R = �(ωg + δωg)|g〉〈g| + �(ωe + δωe)|e〉〈e|, (3)

H int
R (t) =

∑
i

�

2
�ie

iωLt |g〉〈e| + H.c., (4)

where δωg,e are the frequency light shifts, δωg =∑
i(�

p

gi)
2/4�

p

gi+
∑

j �=i(�
s
gj )2/4�s

gj and δωe = ∑
i(�

s
ei)

2/

4�s
ei + ∑

m�=i(�
p
em)2/4�

p
em respectively, �i is the effective

bare Rabi frequency associated to the transition to the
common state |i〉, �i = �

p

gi�
s
ei(�

p

gi + �s
ei)/4�

p

gi�
s
ei , and

ωL = ωp − ωs is the effective laser frequency. We note that for
a two-photon transition in ladder configuration we must take
ωs < 0 in all the above equations. The diagrams contributing
to the effective vertices of interaction and to the light shifts are
represented in Figs. 2(a) and 2(b) respectively. In particular,
the equation for the effective vertex represented by the lower

2The probability of excitation to the state |i〉 is proportional to
(�p

gi/�
p

gi)
2 sin2 �

p

gi t + (�s
ei/�

s
ei)

2 sin2 �s
ei t .
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diagram of Fig. 2(a) reads

H int
R

∣∣
ge

(t)

= 〈g|Uat(t)U†(t)H int
ex (t)U(t)Uat†(t)|e〉

�
∑

i

[−i

2�

∫ t

0
dt ′e−iωi (t−t ′)H int

ex

∣∣
ie

(t ′)e−iωet
′
H int

ex

∣∣
gi

(t)eiωgt

]

× eiωegt + [e ↔ g]†eiωegt , (5)

where U(t) = T exp
∫ t

0 dt ′[H at
0 + H int

ex (t ′)] and we have kept
only the leading order terms in the second row. In Eq. (4),
far off-resonant terms and terms of order �

s,p

ei,gi/ωie,ig smaller
have been discarded.

Under the action of the Rabi Hamiltonian, an atom initially
prepared in a linear combination of states |g〉 and |e〉 will
undergo coherent Rabi oscillations. This problem is solved
since long ago [19]; for an extensive review see [20]. For the
sake of comparison later on we are interested in two particular
cases for which analytical solutions are well known. These
are that of equal laser frequencies in � configuration, ωL = 0,
and that for which the rotating-wave approximation (RWA) is
applicable.3 The solution of the former is obtained by taking
ωL = 0 in the equations of the latter.

Transforming HR into the rotating frame with matrix
R = −ωL|g〉〈g| and discarding counter-rotating terms, the
eigenstates and eigenenergies of the transformed Hamiltonian,
eiRt [HR − �R]e−iRt , read

|+〉 = cos θc|g〉 + sin θc|e〉, (6)

|−〉 = sin θc|g〉 − cos θc|e〉, (7)

E± = (Ee + Eg + �ωL)/2 ± �

2
�R, (8)

with cos 2θc = �

�R

, sin 2θc = |�|
�R

, (9)

� = ωL − ωeg − δωe + δωg, (10)

� =
∑

i

�i, �R =
√

�2 + |�|2. (11)

The wave function �(T ) for a time T > 0 of an atom driven
by the Rabi Hamiltonian and initially prepared at t = 0
in a linear superposition of the states |g〉 and |e〉, �(0) =
ag(0)|g〉 + ae(0)|e〉, is given in the Schrödinger picture by

�(T ) = UR(T )�(0) = [
g
UR

g (T )ag(0) + gU
R
e (T )ae(0)

]|g〉
+ [

e
UR

g (T )ag(0) + eU
R
e (T )ae(0)

]|e〉,
where the components iU

R
j (T ), i,j = g,e are

gU
R
g (T ) = e−i(ωg−�/2)T

[
cos (�RT/2) − i

�

�R

sin (�RT/2)

]
,

gU
R
e (T ) = −ie−i(ωg−�/2)T |�|

�R

sin (�RT/2),

3The RWA is valid as long as the effective laser frequency is close
to the atomic transition, |ωL − ωeg| 
 ωeg , and much larger than the
inverse time of observation, ωL � T −1.

eU
R
e (T ) = e−i(ωe+�/2)T

[
cos (�RT/2) + i

�

�R

sin (�RT/2)

]
,

eU
R
g (T ) = −ie−i(ωe+�/2)T |�|

�R

sin (�RT/2). (12)

B. Vacuum field interaction

We evaluate now the effect of the vacuum fluctuations on
the dynamics of a free atom for the case that the state of
the atom is a coherent superposition of the states |g〉 and |e〉
and the vacuum fluctuations contain the interaction of free
photons with a close-by dielectric surface. In this respect, we
use a semiclassical approach based on linear response theory.
It consists of considering the photonic states as dressed by the
classical interaction of free photons with the dielectric surface.
This implies that the linear response of the EM field—i.e., its
Green function, includes the scattering with the surface.4 As
we did above for the driven atom, we restrict the calculation
of the time-evolution operator to the subspace {|g〉,|e〉}.

The interaction of dressed photons with the atom is
treated quantum mechanically. In the dipole approximation,
the interaction Hamiltonian is W = −d · E(R) − m · B(R),
where d and m are the atomic electric and magnetic dipole
operators respectively and E(R) and B(R) are the electric and
magnetic quantum field operators at the location of the atom
R. They can be decomposed in terms of ω modes as

E(R) =
∫ ∞

0
dω[Ê(R; ω) + Ê†(R; ω)],

B(R) =
∫ ∞

0
dω[B̂(R; ω) + B̂†(R; ω)],

where Ê(R; ω)[B̂(R; ω)] and Ê†(R; ω)[B̂†(R; ω)] are the cre-
ation and annihilation electric (magnetic) field operators of
photons of energy �ω respectively. The quadratic vacuum
fluctuations of Ê(R; ω) satisfy the fluctuation-dissipation
theorem (FDT) relations at zero temperature [21],

〈0̃|Ê(R; ω)Ê†(R′; ω)|0̃〉 = −�ω2

πε0c2
Im[G(R,R′; ω)], (13)

〈0̃|B̂(R; ω)B̂†(R′; ω)|0̃〉 = �

πε0c2

× Im[∇R × G(R,R′; ω) × ∇R′],

where |0̃〉 is the EM vacuum state in the presence of the
surface and G(R,R′; ω) is the Green function of the Helmholtz
equation for the electric field,[

ω2

c2
εr · −∇ × (

μ−1
r · ∇) ×

]
G(R,R′; ω) = δ(3)(R,R′)I,

Z,Z′ > 0, (14)

which derives from Maxwell’s equations and from the
constitutive equations for the electric and magnetic fields.
G(R,R′; ω) is the response function of the electric field
to a polarization density field P(R′; ω), 〈Ê(R; ω)〉 =

4The resultant EM interaction is also referred to in the literature as
body assisted interaction [3].
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(a) (b) (c) (d)

FIG. 3. (Color online) (a) Atom (in red) placed at R in front of a plane surface perpendicular to the Ẑ axis, with relative permittivity εr and
permeability μr . (b) Feynman diagram of a multiple reflection process which contributes to gU

W
g in the nondegenerate case, ωegT � 1. The

diagram equals three one-particle-irreducible additive phase shift factors, (δEg
gg)3—dissipative factors are omitted here for brevity. (c) Feynman

diagram of a single reflection process which contributes to the nonadditive shift factor δEg
ge. Left-handed (L) and right-handed (R) photons are

created or annihilated at the time the atom transits from |g〉 to |i〉 and from |i〉 to |e〉 respectively. (d) Feynman diagram of a multiple reflection
process which contributes to eU

W
g in the degenerate case, ωegT 
 1. The diagram equals three one-particle-irreducible nonadditive phase shift

factors, (δEE
ge)

2δEE
eg—dissipative factors are omitted here for brevity.

k2ε−1
0

∫
d3R′G(R,R′; ω) · P(R′; ω) [21]. In Eq. (14) εr and μr

are the relative electric permittivity and magnetic permeability
tensors respectively, and the atom’s position lies to the right
of the surface, Z > 0 [Fig. 3(a)]. The Green function can be
decomposed into a free-space component and a scattering
component. The contribution of the free-space term to the
Casimir energy is the ordinary free-space Lamb shift that we
consider included in the bare values of the atomic transition
frequencies.

Next, we consider W as a perturbation acting upon
atomic and dressed photon states. The time-evolution op-
erator of the latter is U0(t) = [Uat ⊗ Uγ ](t), with Uγ (t) =∑∞

a=1

∏a
j=1

∑
γkj ,εj

e−iωj t |γkj ,εj
〉〈γkj ,εj

| the time-evolution

operator of dressed multiphoton states of frequencies ωj ,
effective momentum �kj , and polarization εj . In the following,
we will refer to W as Casimir-Polder (CP) interaction.

We will show that for the case that the doublet {|g〉,|e〉} is
nondegenerate in comparison to the observation time, ωeg �
T −1, the net effect of the vacuum fluctuations is an atomic level
shift. On the contrary, for ωeg 
 T −1 we will show that, in
addition, the vacuum fluctuations may induce Rabi oscillations
in the degenerate doublet. In the latter case, the perturbative
nature of the calculation is preserved as long as the CP
interaction induced by the transition dipole moments 〈g|d|e〉
and 〈g|m|e〉 is negligible. We assume this condition in the
following and apply time-dependent perturbation theory [22]
for the calculation of the time-evolution operator projected on
the subspace |�〉 ≡ {|e〉,|g〉} ⊗ |0̃〉,

UW
� (T ) = [|0̃〉〈0̃| ⊗ (|g〉〈g| + |e〉〈e|)] U0(T )

× T exp
∫ T

0
dt U†

0(t) W U0(t)

× [(|g〉〈g| + |e〉〈e|) ⊗ |0̃〉〈0̃|]. (15)

1. CP interaction in the nondegerate case: Atomic level shifts

In the nondegenerate case, with ωegT � 1, at any order in
T the diagrams which weight the most in the T exponential
of the diagonal components of UW

� , gU
W
g , and eU

W
e , are those

in which the atom transits through intermediate virtual states

before getting back repeatedly to the original state, g and
e respectively. Each transition through intermediate states is
accompanied by the emission and reabsorption of a single
virtual photon which is reflected off the dielectric surface [see
Fig. 3(b)].

On the contrary, the diagrams corresponding to the off-
diagonal components, gU

W
e and eU

W
g , weight much less and

the T exponential can be truncated at leading order. That
involves a single diagram in which the virtual photons are
created at the atom in one of the states and annihilated at
the atom in the other state [see Fig. 3(c)]. Adding up the
corresponding diagrams we obtain the components

gU
W
g (T ) = e−i(ωg+�

−1δE
g
gg)T −

g
ggT /2,

gU
W
e (T ) = −e−iωgT

[
δEe

ge − i�g
ge

/
2
]
/Eeg

+ e−iωeT δEe
ge/Eeg,

eU
W
e (T ) = e−i(ωe+�

−1δEe
ee)T −e

eeT /2,

eU
W
g (T ) = e−iωeT

[
δEg

eg − i�e
eg

/
2
]
/Eeg−e−iωgT δEg

eg

/
Eeg.

From these expressions we deduce that the off-diagonal
components of UW

� can be neglected up to terms of order
O(δEg,e

eg,ge/Eeg) for ωegT � 1. Thus, the effect of the CP
interaction reduces here in good approximation to a renor-
malization of the energy levels of the atom. In particular,
Eg,e → Eg,e + δE

g,e
gg,ee − i�

g,e
gg,ee/2.

In the above equations the additive energetic and dissipative
terms have the usual expressions,

δEg
gg = −

∑
i,γk,ε

|〈i,γ |W |g,0̃〉|2
�ω + �ωig

, (16)

g
gg = 2π

�2

∑
i,γk,ε

�(ωgi)|〈i,γ |W |g,0̃〉|2δ(ωgi − ω). (17)

Analogous expressions hold for δEe
ee and e

ee with the
substitution e ↔ g.
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The nonadditive energetic terms are

δEg
eg = −

∑
i,γk,ε

〈e,0̃|W |i,γ 〉〈i,γ |W |g,0̃〉
�ω + �ωig

, (18)

δEe
ge = −

∑
i,γk,ε

〈g,0̃|W |i,γ 〉〈i,γ |W |e,0̃〉
�ω + �ωie

. (19)

As for the nonadditive dissipative terms, they are

g
ge = 2π

�2

∑
i,γk,ε

�(ωgi)〈g,0̃|W |i,γ 〉〈i,γ |W |e,0̃〉δ(ωgi − ω),

and an analogous expression holds for e
eg with the substitution

e ↔ g. Single superscripts, g or e, in the expressions for  and
δE denote the reference frequency for the transitions within
the sums. Double subscripts, gg, ee, eg, or ge, denote the bra
and ket states in the quantum amplitudes. In Appendix A we
evaluate the electric and magnetic vacuum field fluctuations
which enter all the above quantities via the FDT.

2. CP interaction in the degenerate case: CP-induced
Rabi oscillations

For ωegT 
 1 we review the calculation on Ref. [11]
adding up some details to it. In this case the diagrams which
weight the most, both in the diagonal and in the off-diagonal
components of UW

� , are similar to those of Fig. 3(b) in the
nondegenerate case, but for the fact that after each emission
reabsorption of a single virtual photon the atom may arrive at
either state, |g〉 or |e〉, with a similar probability. Figure 3(c)
illustrates this process. Initially, a virtual photon of left-handed
circular polarization, γ L, is created at the time the atom is in
state |g〉. Later, that photon is reflected off the surface turning
into right-handed circularly polarized γ R . Finally, the photon
is annihilated at the time the atom gets to state |e〉. Diagrams
involving n-photon intermediate states with n > 1 can be
disregarded in good approximation since their contribution
is of the order of (T ω)1−n times smaller than the diagram
with n single-photon intermediate states, with ω the typical
frequency of the vacuum photons. In the nonretarded regime
multiphoton intermediate states are negligible since ω �
c/R > 2/T . In the retarded regime it holds that ω ∼ c/R, and
neglecting multiphoton states is possible as long as T � R/c,
which is a realistic condition too. A typical diagram which
contributes to the off-diagonal components of UW

� is depicted
in Fig. 3(d). Their summation yields the following recurrent
formulas:

gU
W
g (T ) = e−iωET

[
1 +

∑
n=1

δ(n)
gU

W
g (T )

]
, (20)

eU
W
g (T ) = e−iωET

∑
n=1

δ(n)
eU

W
g (T ), with

δ(n)
gU

W
g (T ) = −iT (n − 1)!

�n!

[(
δEE

gg − i�E
gg/2

)
δ(n−1)

gU
W
g (T )

+ (
δEE

ge − i�E
ge/2

)
δ(n−1)

eU
W
g (T )

]
,

δ(n)
eU

W
g (T ) = −iT (n − 1)!

�n!

[(
δEE

ee − i�E
ee/2

)
δ(n−1)

eU
W
g (T )

+ (
δEE

eg − i�E
eg/2

)
δ(n−1)

gU
W
g (T )

]
,

δ(1)
gU

W
g (T ) = −iT �

−1
(
δEE

gg − i�E
gg/2

)
,

δ(1)
eU

W
g (T ) = −iT �

−1
(
δEE

eg − i�E
eg/2

)
, (21)

where we have used E = (Eg + Ee)/2, ωE = E/�. Analogous
expressions hold for eU

W
e (T ) and gU

W
e (T ) exchanging the

subscripts e ↔ g in the above equations.
From the diagram of Fig. 3(d) we observe that each factor

(δEE
eg − i�E

eg/2) flips the state of the atom from |e〉 to |g〉,
while each transposed factor produces an opposite flip. This is
analogous to the action of the factors ��/2 and ��∗/2 of the
Rabi Hamiltonian respectively, except for the fact that here the
damping terms break the time reversal symmetry. As a result,
UW

� possesses the same functional form asUR in Eq. (12), with
the following substitution of the bare parameters in Eq. (12)
with the tilded ones defined below:5

ω̃g ≡ ωg + δEE
gg

/
� − iE

gg

/
2,

ω̃e ≡ ωe + δEE
ee

/
� − iE

ee

/
2, �̃ ≡ ω̃e − ω̃g,

�̃ ≡ 2δEE
ge

/
� − iE

ge, �̃∗ ≡ 2δEE
eg� − iE

eg,

|�̃|2 ≡ �̃�̃∗, �R ≡
√

|�̃|2 + �̃2.

This means that the Casimir-Polder interaction may in-
deed induce Rabi oscillations between two quasidegenerate
states [11].

III. VACUUM-INDUCED SHIFT ON THE
RABI FREQUENCY

In this section we derive an expression for the total shift
induced on the Rabi frequency of a driven atom by vacuum
fluctuations, δ�R = δ1�R + δ2�R + δ3�R . In this equation
we distinguish three different kinds of shifts, namely that
induced by the additive CP terms δ1�R , the one induced
by the nonadditive CP terms δ2�R , and the one induced
by the renormalization of the vertices of interaction in
H int

ex , δ3�R .

A. Shift by additive CP terms

It is obvious that the additive terms of the Casimir
interaction cause a shift on the atomic levels which induces
a variation on the Rabi frequency [23]. First, the effective
couplings �i appearing in Eq. (4) experience a variation δa�i

as a consequence of the shifts on the detunings. Second,
the global detuning of Eq. (10), �, changes by an amount
δ� due to the shifts of the levels Ee and Eg as well as to
the variations induced on the light shifts, δωe and δωg [see
Fig. 4(a)]. As a result, as a function of the bare quantities �,
�R , and �, and of the additive CP terms, we have at leading

5Note here that �̃∗ so defined is not the complex conjugate of �̃

because of the damping factors.
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(a) (b) (c)

FIG. 4. (a) Diagrammatic representation of a multiple reflection process in which additive CP terms induce a shift on the Rabi frequency of
the kind δ1�R of Eq. (22). One-loop shifts in the levels Eg , Ee, and Ei are included. (b) Diagrammatic representation of a multiple reflection
process in which nonadditive CP terms induce a shift on the Rabi frequency of the kind δ2�R of Eq. (28) for ωeg 
 |�|. (c) Diagrammatic
representation of the one-loop vertex renormalization processes which generates δH

p

ig and δH s
ig respectively. They give rise to a shift on the

Rabi frequency of the kind δ3�R of Eq. (33). The transient states ĩ, g̃, and ẽ belong to the same energy levels as the states i, g, and e respectively.

order

δ1�R

� �

�R

∑
i

δa�i + �

�R

δ�

= −
∑

i

[
��

p

gi�
s
ei

4��R

(
δEi

ii − δE
g
gg

�
p2
gi

+ δEi
ii − δEe

ee

�s2
ei

)

+ �

4��R

(
�

p2
gi

(
δEi

ii − δE
g
gg

)
�

p2
gi

− �s2
ei

(
δEi

ii − δEe
ee

)
�s2

ei

)]

+ �

��R

⎛
⎝δEg

gg − δEe
ee −

∑
j �=i,m

�s2
gj

4�s2
gj

(
δE

j

jj − δEg
gg

)

+
∑

m�=i,j

�
p2
em

4�
p2
em

(
δEm

mm − δEe
ee

)⎞⎠. (22)

B. Shift by nonadditive CP terms

We have found in Sec. II B 2 that for ωegT 
 1 an induced
Rabi frequency may be provided by vacuum fluctuations. In
the case of a driven atom, |�| ∼ 1/T , so that the degenerate
condition is equivalent to the so-called deep strong coupling
(DSC) regime, |�| � ωeg [24]. The corresponding shift on
� is given by diagrams in which pairs of consecutive Raman
vertices and pairs of consecutive CP vertices alternate—e.g.,
diagram of Fig. 4(b). As an example, we compute the leading
order terms which contribute to the variation of gU

at
g , δgUg .

To this aim, we treat W + H int
R as a perturbative interaction

upon H at
0 . Leading order contributions are of cubic order and

correspond to the terms H int
R W 2 and W 2H int

R . At this order, we
find

δgUg � −(iT /2Eeg)
[
e−iωgT �

(
δEe

eg − i�e
eg

/
2
)

(23)

+ e−iωeT �∗(δEe
ge − i�e

ge

/
2
)]

for ωeg � |�|,

� −T 2

4�
e−iωgT

[
�

(
δEg

eg − i�g
eg

/
2
)

(24)

+�∗(δEe
ge − i�e

ge

/
2
)]

for ωeg 
 |�|,
where, in order to simplify matters, we consider zero global
detuning, � � 0, and we assume that all the transition
frequencies to intermediate states are much larger than |�|.
Straightforward comparison with the equation for gU

R
g reveals

that Eq. (24) is its term of O(T 2) for

� → � + 2
(
δEg

ge

/
� − ig

ge

/
2
)
,

(25)
�∗ → �∗ + 2

(
δEe

eg

/
� − ie

eg

/
2
)
.

A similar calculation at order 4 in W + H int
R containing the

terms (H int
R )2W 2, W 2(H int

R )2, and H int
R W 2H int

R yields

δgUg = e−iωgT
i|�|2T 3

12�

[(
δEg

gg − i�g
gg

/
2
)

+ (
δEe

ee − i�e
ee

/
2
)/

2
]
. (26)

Again, comparison with the equation for gU
R
g reveals that

Eq. (26) is its term of O(T 3) for

� → � + [(
δEg

gg − δEe
ee

)/
� − i

(
g

gg − �e
ee

)/
2
]
. (27)
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As expected, additive terms appear always as energy shifts
irrespective of the magnitude of the ratio |�|/ωeg .

Disregarding dissipative terms, the shift of � was already
accounted for in Eq. (22). The additional CP-induced shift on
the Rabi frequency is therefore

δ2�R � 2�

�R

Re
{
δEE

eg

}
, for ωeg 
 |�|. (28)

Alternatively, the shifts on the Rabi frequency induced
by the additive and nonadditive CP terms δEE

gg , δEE
ee,

δEE
ge, δEE

eg for ωeg 
 |�| can be computed out of the

renormalization of the eigenstates |+〉, |−〉, and their corre-
sponding eigenenergies—see Appendix B.

C. Shift by vertex renormalization

Last, we are left with the effect of vacuum fluctuations on
the Raman vertices appearing in Eq. (2). This corresponds
to diagrams in which single Raman vertices and single
CP vertices alternate. At leading order of time-dependent
perturbation theory, the variations correspond to the diagrams
of Fig. 4(c). They read

δH int
ex |ig(t) = 〈i,0̃|Uat(t)UW†(t)H int

ex (t)UW (t)Uat†(t)|g,0̃〉 − 〈i|H int
ex (t)|g〉

� �
−2

∑
γω,ĩ

∫ t

0
dt ′ei(T −t ′)(ω+ωg)eit ′ωi 〈i,0̃|W |g̃,γ 〉e−iωig t 〈g̃,γ |H int

ex (t)|ĩ,γ 〉
∫ t

0
dt ′′e−i(T −t ′′)(ω+ωi )e−it ′′ωg 〈ĩ,γ |W |g,0̃〉

+ �
−2

∑
γω,ĩ

∫ t

0
dt ′ei(T −t ′)(ω+ωe)eit ′ωi 〈i,0̃|W |ẽ,γ 〉e−iωig t 〈ẽ,γ |H int

ex (t)|ĩ,γ 〉
∫ t

0
dt ′′e−i(T −t ′′)(ω+ωi )e−it ′′ωg 〈ĩ,γ |W |g,0̃〉

� δH
p

ig cos ωpt + δHs
ig cos ωst, (29)

with

δH
p

ig =
∑
ĩ,g̃

−�
p

g̃ĩ

2ε0c2

(
ωigTr{dig̃ · G∗(ωig) · dĩg} + 2

π

∫ ∞

0

du u2

u2 + ω2
ig

Tr{dig̃ · G(iu) · dĩg}
)

,

δH s
ig =

∑
ĩ,ẽ

−�s

ẽĩ

πε0c2

∫ ∞

0

du u2(u2 − ωigωei)(
u2 + ω2

ig

)(
u2 + ω2

ei

)Tr{diẽ · G(iu) · dĩg},

where dab denotes 〈a|d|b〉 and G(ω) denotes G(R,R; ω). In Eq. (29) the UW matrices have been at order W . An analogous
equation for δH int

ex |ie(t) yields

δH int
ex

∣∣
ie

(t) � δH
p

ie cos ωpt + δHs
ie cos ωst, (30)

with

δHs
ie =

∑
ĩ,ẽ

−�s

ẽĩ

2ε0c2

(
ωeiTr{diẽ · G∗(ωei) · dĩe} + 2

π

∫ ∞

0

du u2

u2 + ω2
ie

Tr{diẽ · G(iu) · dĩe}
)

,

δH
p

ie =
∑
ĩ,g̃

−�
p

g̃ĩ

ε0c2

(
ω2

ig

ωig − ωei

Tr{dig̃ · G∗(ωig) · dĩe} − ω2
ei

ωig − ωei

Tr{dig̃ · G(ωei) · dĩe}

+π−1
∫ ∞

0

du u2(u2 − ωigωei)(
u2 + ω2

ig

)(
u2 + ω2

ei

)Tr{dig̃ · G(iu) · dĩe}
)

.

In the above equations the tilded states |ĩ〉, |g̃〉, and |ẽ〉 belong
to the same energy levels as the states i, g, and e respectively.
For simplicity, we have assumed equal energies for all the
intermediate states, ωĩ = ωi ∀ĩ. Far off-resonant terms with
respect to the transition |g〉 ↔ |e〉 and rapidly evanescent terms
have been discarded. The complete expressions for δH int

ex |ig(t)
and δH int

ex |ie(t) can be found in Appendix C. We note that
all the terms above are of the order of �

p,s

ig,egδE
g,e
gg,ee/ωig,ei .

Therefore, their contribution is generally relevant for very
strong CP interaction with respect to the transition frequencies
to intermediate states. This might be for instance the case
of an atom which is made to oscillate between two close
Rydberg states in ladder configuration, near a metallic surface.

Thus, ωei > 0 has been assumed in the above equations.
It is now straightforward to calculate the effect of vertex
renormalization (v) on the coherent evolution of the atomic
wave function. By comparing Eqs. (29) and (30) with Eq. (2)
we read that it consists of a shift on the effective bare Rabi
frequencies. Generally we find

δv�i = (
δH

p

gi

/
��

p

gi + δHs
ei

/
��s

ei

)
�i, (31)

while for the special case |2ωp,s − ωL| 
 |�| we have

δv�i = [(
δH

p

gi + δHs
gi

)/
��

p

gi + (
δHs

ei + δH
p

ei

)/
��s

ei

]
�i.

(32)
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Using these expressions, the total variation of the Rabi
frequency due to vertex renormalization reads

δ3�R � �

�R

∑
i

δv�i. (33)

IV. CP-INDUCED SHIFTS ON THE RABI FREQUENCY OF
A RUBIDIUM ATOM CLOSE TO A REFLECTING SURFACE

A. Oscillations between degenerate Zeeman sublevels
in � configuration

In Ref. [11] it was found that a CP-induced Rabi fre-
quency as large as 2π Hz could be obtained between the
Zeeman sublevels |g〉 = |5 2S1/2,F = 1,mF = −1〉 and |e〉 =
|5 2S1/2,F = 1,mF = +1〉 of a 87Rb atom at zero temperature
when it is placed in the vicinity of a perfectly reflecting surface
parallel to the quantization axis, and as long as |g〉 and |e〉
remain degenerate, ωeg 
 2π Hz. Symmetry considerations
imply that the CP interaction respects this condition since
the additive energy shifts of both states are equivalent.
However, the presence of stray magnetic fields may induce a
Zeeman splitting, �ωeg = μBB0, with B0 the effective strength
of the magnetic fields along the quantization axis, say X̂,
which could break the quasidegeneracy of the states and
violate the condition ωeg 
 �̃R = 2δEE

eg/�. In order to avoid
this potential problem we propose an alternative setup in
which we aim to measure the CP-induced shift on the bare
Rabi frequency of a driven atom in the DSC regime. The
computation is in all points equivalent to the one of Ref. [11].
The advantage of working with a driven atom is that, for a
sufficiently high value of the bare Rabi frequency |�|, the
unknown quantity ωeg contributes to the actual Rabi frequency
with a shift � ω2

eg/2|�|, which can be made negligible for
sufficiently large |�| with respect to the shift provided by the
nonadditive CP terms, 2δEE

eg/�.
The setup is sketched in Fig. 5, where the parameters

have been chosen so that the value of the effective bare
Rabi frequency is �R = |�| = 2π × 20 Hz. Two Raman
lasers of equal frequency and opposite circular polarization
drive the transitions from |g〉 and |e〉 respectively to a
virtual state close to |i1〉 = |5 2P1/2,F = 1,mF = 0〉 and |i2〉 =
|5 2P1/2,F = 2,mF = 0〉. For convenience we take �s

gi1
=

�
p

ei1
= �0 = 10 GHz, and the same intensity for both lasers,

|�0| = 2π × 8.0 MHz, such that |�0| 
 �0 
 ω1
5S5P1/2

. De-
noting their electric field strength by |E0|, we define

�0 ≡ �
−1〈5 2S1/2||d||5 2P1/2〉|E0|, (34)

and the effective bare Rabi frequency can be computed as a
function of �0, �0, and δω1 as

� = |E0|2[〈g|d+|i1〉〈e|d−|i1〉∗/2�0

+〈g|d+|i2〉〈e|d−|i2〉∗/2(�0 + δω1)]

� −|�0|2
24�2

0

δω1, (35)

where the hyperfine interval satisfies δω1 
 �0 and the dipole
moment operator is expressed in the spherical basis. The
expectation values and transition frequencies have been taken
from Ref. [25].

FIG. 5. Schematic representation of the action of two Raman
lasers which drive a 87Rb atom between two Zeeman sublevels
of the ground state, |g〉 = |5 2S1/2,F = 1,mF = −1〉 and |e〉 =
|5 2S1/2,F = 1,mF = +1〉. The quantization axis is taken along the
X̂ direction. The lasers have opposite polarization, σ+ and σ−,
equal frequency, λ � 795 nm such that �0 = 2π × 10.0 GHz and
equal intensity such that �0 = 2π × 8.0 MHz. They couple both
states to a pair of common intermediate states of the level |5 2P1/2〉,
|i1〉 = |5 2P1/2,F = 1,mF = 0〉 and |i2〉 = |5 2P1/2,F = 2,mF = 0〉,
with transition frequencies ω1

5S5P1/2
and ω1

5S5P1/2
+ δω1 respectively,

where ω1
5S5P1/2

= 2π × 377.107 THz and the hyperfine interval is
δω1 = 2π × 0.817 GHz. Grey lines represent secondary couplings
of the three Zeeman sublevels of the ground state, |5 2S1/2,F = 1〉, to
other states in |5 2P1/2〉. They are relevant for the computation of light
shifts. In addition to the D1 transition line, relevant to the calculation
of δ2�R are the D2 line transitions from |g〉 and |e〉 to the Zeeman sub-
levels of 5P3/2 with mF = 0. For those transitions, ω1

5S5P3/2
= 2π ×

384.230 THz, δω2a = −2π × 0.072 GHz, δω2b = 2π × 0.157 GHz.
Also relevant to δ1�R are the transitions 5P1/2 ↔ 6S1/2 and 5P1/2 ↔
4D3/2.

Besides the couplings between the states |g〉 and |e〉 and the
common intermediate states |i1〉 and |i2〉, the Raman lasers also
couple the Zeeman sublevels of the multiplet |5 2S1/2,F = 1〉
to all the hyperfine Zeeman sublevels within |5 2P1/2〉. The
pairs of couplings are depicted in Fig. 5 with gray lines.
The result is that while the differential light shift between
|e〉 and |g〉 is exactly zero, there exists a differential light
shift between the state |5 2S1/2,F = 1,mF = 0〉 and the other
two states. This light shift breaks the degeneracy between
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the three Zeeman sublevels and rises |5 2S1/2,F = 1,mF = 0〉
above |g〉 and |e〉 by an amount �|�|/2 = 10 Hz × 2π�. In
turn, this is an advantage, since the states |g〉 and |e〉 become
the lowest energy states and no dissipative decay terms enter
the calculation. Only at very short distances may the positive
magnetic energy shifts, μ2

B/192πε0c
2Z3, take the states |g〉

and |e〉 over |5 2S1/2,F = 1,mF = 0〉 [11].
We proceed to compute δ�R . In the first place, given that

the bare global detuning is approximately zero, the Rabi shift
induced by additive CP terms is caused by the variation of �0

in the equation for � [Eq. (35)]. The variation of �0 is itself
due to the differential level shift between the states 5S1/2 and
5P1/2. In the near field, Z � 100 nm, the main contribution
to it comes from the difference between the reduced dipole
matrix elements 〈6 2S1/2||d||5 2P1/2〉, 〈4 2D3/2||d||5 2P1/2〉, and
〈5 2S1/2||d||5 2P1/2,3/2〉 [26]. As a result, we have δ1�R �
2�R

�0
(δEi

ii − δE
g
gg), where i stands for any of the intermediate

states, i1 or i2. Using the equations in Appendix A for the
additive CP terms as functions of the Green’s tensor which is,
for a perfectly conducting reflector,

Gxx(Z; ω) = Gyy(Z; ω) = e2ikZ

32πk2Z3
(−1 + 2ikZ + 4k2Z2),

Gzz(Z; ω) = e2ikZ

16πk2Z3
(−1 + 2ikZ), (36)

the differential level shift in the near field can be written as

δEi
ii − δEg

gg

� −1

48πε0Z3

(
|〈6 2S1/2||d||5 2P1/2〉|2

+
6∑

n=4

|〈n 2D3/2||d||5 2P1/2〉|2 − |〈5 2S1/2||d||5 2P3/2〉|2

−2|〈5 2S1/2||d||5 2P1/2〉|2
)

. (37)

As for the Rabi shift induced by nonadditive CP terms, the
calculation was already carried out in Ref. [11]. Here we just
give the final formula,

δ2�R � 1

16�cπ2ε0Z2

∫ ∞

0
du

f (u)

u2 + κ2
jF

3/2,j+3/2∑
j=1/2,F=|j−3/2|

ωF
5S5Pj

×〈e|d−|5 2Pj ,F,mF = 0〉〈g|d+|5 2Pj ,F,mF = 0〉,
where f (u) = e−2u(1 + 2u − 4u2) and κjF = ωF

5S5Pj
Z/c,

with ωF
5S5Pj

being the transition frequency from the hyperfine

level F of 5 2Pj to the states |g〉, |e〉.
In Fig. 6 we represent the values of the Rabi frequency shifts

as a function of the distance to the surface in the nonretarded
regime, Z � 100 nm. It is clear that δ2�R dominates over
δ1�R in our setup.

B. Oscillations between Rydberg states in ladder configuration

Let us consider now the 87Rb atom close to the re-
flecting surface oscillating between two Rydberg states,
|g〉 = |48 2S1/2,F = 1,mj = −1/2〉 and |e〉 = |49 2S1/2,F =

FIG. 6. Graphical representation of the Rabi frequency shifts as
a function of the distance to the reflecting surface for the 87Rb atom
driven in � configuration.

1,mj = −1/2〉, under the action of a π -polarized microwave
source which is resonant with the two-photon transition,
ω0 = ωeg/2 = 2π × 35.2387 GHz (Fig. 7). This setup is
meant to mimic the situation of some hybrid quantum systems
in which the coherent manipulation of Rydberg atoms is
used to probe the EM fluctuations near a surface—e.g.,
Ref. [8]. The microwave source couples the states |g〉 and
|e〉 to the intermediate states |i1〉 = |48 2P1/2,mj = −1/2〉
and |i2〉 = |48 2P3/2,mj = −1/2〉, with equivalent detunings
�1 = �i1g,e = −2π × 1.093 GHz, �2 = �i2g,e = −2π ×
0.1611 GHz, and with nearly equivalent strengths −�0 =
�i1,2g � �i1,2e. We set �0 = 2π × 53.884 MHz so that �R =
2π × 10.0 MHz. We note that, despite the two-photon reso-
nance condition, there exists a bare global detuning due to the
light shift, � = δωg − δωe = −2π × 1.719 MHz.

As already done in the previous section, the computation of
δ1�R involves the evaluation of differential light shifts. In the
nonretarded regime this implies the addition and subtraction
of the squares of reduced dipole matrix elements. While the
nS states couple only to nP and (n − 1)P states in good
approximation, nP states couple also to nD, (n − 1)D, and
(n − 2)D states. This implies that the order of magnitude of
the differential shifts in Eq. (22) is ∼δE48P

48P 48P . Making use of
the data in Refs. [27,28], we obtain

δ1�R �
[

�

�R

18.148

Z3 (μm)
+ �

�R

8.147

Z3 (μm)

]
2π MHz

= − 18.282

Z3 (μm)
2π MHz. (38)

As for the shift induced by the renormalization of the
laser vertices, δ3�R , we use Eq. (33) combined with Eq. (32)
since there exists only one microwave source. Nonetheless,
it can be verified that, in the nonretarded regime, δHs

i1,2g

and δH
p

i1,2e
are much smaller than δH

p

i1,2g
and δHs

i1,2e
, and

hence negligible. This means that processes like that depicted
in Fig. 8(a) in which two virtual transitions take place
between |g〉 and |e〉 can be neglected, and we end up
with δv�i1,2 � −[δHp

i1,2g
+ δHs

i1,2e
]�i/�0. Discarding next the

resonant components of δH
p

i1,2g
and δHs

i1,2e
, which are much

smaller than the nonresonant components in the nonretarded
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FIG. 7. Schematic representation of the action of a π -polarized
microwave source which drives the oscillations of a 87Rb atom
between two Rydberg levels, |g〉 = |48 2S1/2,mj = −1/2〉 and |e〉 =
|49 2S1/2,mj = −1/2〉. The quantization axis is taken along the X̂
direction. The intermediate states are |i1〉 = |48 2P1/2,mj = −1/2〉
and |i2〉 = |48 2P3/2,mj = −1/2〉. Exact a priori resonant condition is
assumed, ω0 = ωeg/2 = 2π × 35.2387 GHz. Hence, �gi1,2 = �ei1,2 .

(a) (c)

(b)

FIG. 8. Schematic representation of three processes which con-
tribute to (a) δH s

gi2
, (b) δH s

ei2
, and (c) δH

p

gi1
, respectively. Wavy

lines depict virtual transitions driven by vacuum photons. Dashed
lines depict actual transitions driven by the microwave source. In the
nonretarded regime (a) is negligible and, after considering all kinds
of transitions, only processes of the kind of (c) survive.

FIG. 9. Graphical representation of the Rabi frequency shifts as
a function of the distance to the reflecting surface for the 87Rb atom
driven ladder configuration.

regime, and using the Green’s function of Eq. (36) in the near
field, we obtain

δH
p

ig � �0

ω064πε0Z3

∑
ĩg̃

[〈i|d0|g̃〉〈ĩ|d0|g〉

− (3/2)〈i|d−|g̃〉〈ĩ|d+|g〉]. (39)

An analogous expression holds for δHs
ie. In Eq. (39) conser-

vation of total angular momentum implies that only processes
mediated either by two π virtual transitions or by two consec-
utive σ+ and σ− transitions yield a nonvanishing contribution.
In Figs. 8(b) and 8(c) we depict two of these processes. It turns
out that the contribution of those processes involving π virtual
transitions vanishes for Ei1 � Ei2 . Therefore, we are left only
with processes of the kind of Fig. 8(c),

δH
p

ig � −3�0

ω0128πε0Z3
〈i|d−|48S1/2, + 1/2〉

× [〈48P1/2, + 1/2|d+|g〉 + 〈48P3/2, + 1/2|d+|g〉].
(40)

Finally, adding the contribution of δHs
ie and making use of

the fact that the reduced dipole matrix elements between S1/2

and Pj states hardly depend on j [27], we can write in closed
form

δ3�R � −�

�R

2�i1 + �i2

ω0512πε0�Z3

× [|〈48P ||d||48S〉|2 + |〈48P ||d||49S〉|2]

� − 0.025

Z3 (μm)
2π MHz, (41)

which is almost three orders of magnitude smaller than δ1�R .
A graphical representation is given in Fig. 9. The ratio
δ1�R/δ3�R can be worked out from their expressions in
Sec. III. We have δ1�R/δ3�R ∼ �2/Aω0, with A a numerical
prefactor of order unity. We conclude that, although δ3�R is
generally a few orders of magnitude smaller than the ordinary
δ1�R , it may have an effect on high precision measurements.

We finalize this section with a comment on the setup
of Ref. [13], where a 87Rb atom is made to oscillate in
ladder configuration between two hyperfine-structure states,
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|g〉 = |5 2S1/2,F = 1,mF = 0〉 and |e〉 = |5 2S1/2,F =
2,mF = 0〉, with ωeg � 7 GHz. The two states are connected
by an M1 transition. An analogous calculation to the one
performed above yields δ3�R ∼ �/100Z3 (nm), which is
negligible for operational distances larger than 100 nm.

V. CONCLUSIONS

We have analyzed all one-loop radiative corrections which
contribute to the shift on the Rabi frequency of a driven atom
close to a material surface. In addition to the shift induced
by the ordinary differential level shifts, δ1�R , two additional
contributions have been reported. A shift induced by the
nonadditive Casimir-Polder terms, δ2�R , is found to dominate
when the atom is made to oscillate between two degenerate
Zeeman sublevels in � configuration. A shift induced by the
renormalization of the laser vertices of interaction, δ3�R ,
contributes at higher order than δ1�R for an atom which
is made to oscillate between two Rydberg states in ladder
configuration.
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APPENDIX A: ADDITIVE AND NONADDITIVE CP TERMS

In this Appendix we compile the expressions for the
energy shift and dissipative CP terms, δE and  respectively,
both additive and nonadditive. As in Sec. II B, the single
superscripts in the expressions 

j

kl and δE
j

kl denotes the
reference frequency for the transitions, j = g,e,E , while the
double subscript denotes the bra and ket states in the quantum
amplitudes, kl = gg,ee,ge,eg. In addition, we use the notation
dab = 〈a|d|b〉, mab = 〈a|m|b〉. We apply the FDT outlined
in Sec. II B for the evaluation of vacuum field fluctuations
at zero temperature. We separate electric and magnetic field
contributions and, for the sake of simplicity, we assume that
the surface possesses no chiral response,

δE
j

kl = −
∑
i,γk,ε

[1 − δEj (δie + δig)]

[ 〈k,0̃|Wel|i,γ 〉〈i,γ |Wel|l,0̃〉
�ω + �ωij

+ 〈k,0̃|Wm|i,γ 〉〈i,γ |Wm|l,0̃〉
�ω + �ωij

]

= 1

πε0c2
P

∫ ∞

0
dω ω2

∑
i

[1 − δEj (δie + δig)]Tr
dki · Im[G(R,R; ω)] · dil

ω + ωij

− 1

πε0c2
P

∫ ∞

0
dω

∑
i

[1 − δEj (δie + δig)]Tr
mki · Im[∇R × G(R,R; ω) × ∇R] · mil

ω + ωij

, (A1)


j

kl = 2π

�2

∑
i,γk,ε

[1 − δEj (δie + δig)]�(ωji)[〈k,0̃|Wel|γ,i〉〈γ,i|Wel |l,0̃〉δ(ωji − ω) + 〈k,0̃|Wm|γ,i〉〈γ,i|Wm|l,0̃〉δ(ωji − ω)]

= −2

�ε0c2

∑
i

[1 − δEj (1 − δie − δig)]�(ωji)ω
2
jiTr{dki · Im[G(R,R; ωji)] · dil}

+ 2

�ε0c2

∑
i

[1 − δEj (δie + δig)]�(ωji)Tr{mki · Im[∇ × G(R,R; ωji) × ∇] · mil}. (A2)

The factor [1 − δEj (δie + δig)] in these expressions accounts for the removal of the states g and e from the sums when the
reference energy level is E = (Eg + Ee)/2 in the quasidegenerate case. This ensures the perturbative nature of the calculation.

In general, in the energy shift terms we can distinguish resonant (r) and off-resonant (or) components [2,5,9]. The resonant
components account for the single poles of the integrand in Eq. (A1),

δE
j

kl|r = 1

ε0c2

∑
i

[1 − δEj (1 − δie − δig)]�(ωji)ω
2
jiTr{dki · Re[G(R,R; ωji)] · dil}

− 1

ε0c2

∑
i

[1 − δEj (δie + δig)]�(ωji)Tr{mki · Re[∇ × G(R,R; ωji) × ∇] · mil}. (A3)

For the off-resonant components, making use of the properties of the Green’s functions, G(R,R; −ω) = G∗(R,R; ω),
ω2G(R,R; ω) → 0 as |ω| → ∞, and employing standard integration techniques in the complex plane [2] we find

δE
j

kl|or = −∑
i

πε0c2

∫ ∞

0
du u2

∑
i

[1 − δEj (δie + δig)]ωij Tr
dki · G(R,R; iu) · dil

u2 + ω2
ij

−
∑

i

πε0c2

∫ ∞

0
du

∑
i

[1 − δEj (δie + δig)]ωij Tr
mki · Im[∇R × G(R,R; iu) × ∇R] · mil

u2 + ω2
ij

. (A4)
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Finally we note that these expressions can be formally rewritten as functions of the atomic polarizabilities using the appropriate
definitions [3].

APPENDIX B: RENORMALIZATION OF EIGENENERGIES AND EIGENSTATES FOR ωeg � |�|.
We consider the eigenstates of the Hamiltonian HR of Eqs. (3) and (4), |+〉, |−〉, as stationary states upon which W acts as

a stationary perturbation. This is a good approximation for small effective laser frequency, ωLT 
 1, and for the case that the
virtual transition between |g〉 and |e〉 are irrelevant in the CP interaction. Application of time-independent perturbation theory at
order W 2, up to O(δE�2/|�|2), yields the energy shifts

δE+ = −
∑

i �=g,e,γk,ε

|〈i,γ |W |+〉|2
�ck + Ei − E+

� 1

2

(
δEE

gg + δEE
ee

) + Re
{
δEE

eg

} + �

2|�|
(
δEE

gg − δEE
ee

) − �2

2|�|2 Re
{
δEE

eg

}
, (B1)

δE− = −
∑

i �=g,e,γk,ε

|〈i,γ |W |−〉|2
�ck + Ei − E−

� 1

2

(
δEE

gg + δEE
ee

) − Re
{
δEE

eg

} − �

2|�|
(
δEE

gg − δEE
ee

) + �2

2|�|2 Re
{
δEE

eg

}
. (B2)

As already explained in Sec. II B, the double subscripts in the quantities δE, gg, ee, eg, or ge, denote the bra and ket
states in the quantum amplitudes, while the superscript E denotes the common reference frequency, ωE = (ωg + ωe)/2, for the
intermediate atomic transitions involved in their calculations. We have assumed |�| 
 ωie,ωig,ωiE ∀i relevant in the sums over
intermediate states, i �= g,e, so that we can approximate δEE

eg,gg,ee � δE
E±|�|/2
eg,gg,ee . As anticipated in Sec. III B, the net result of

these energy shifts is a renormalization of the bare parameters which enter UR ,

ωg → ω̃g = ωg + δEE
gg

/
�, ωe → ω̃e = ωe + δEE

ee

/
�, � → �̃ = � − (

δEE
ee − δEE

gg

)/
�, (B3)

|�| → |�̃| = |�| + 2Re
{
δEE

eg

}
, (B4)

�R → �̃R = �R + 2Re
{
δEE

eg

} + �

|�|
(
δEE

gg − δEE
ee

) − �2

|�|2 Re
{
δEE

eg

}
. (B5)

For the sake of completeness we compute the variations on UR due to the interaction W , δUR . To this aim we calculate the
wave function at time T > 0 for the initial condition �(0) = |g〉,

|�(T )〉 = [UR + δURW ](T )|g〉 = e−iT (E++δE+)[cos2 θ̃c|g〉 + sin 2θ̃c|e〉/2] + e−iT (E−+δE−)[sin2 θ̃c|g〉 − sin 2θ̃c|e〉/2], (B6)

where the renormalized (tilded) trigonometric functions are given by the expressions in Eq. (9) but for the replacement of the
bare parameters with the renormalized ones of Eqs. (B3)–(B5). In turn, [UR + δUR](T ) presents the same functional form as
the operator UR(T ) in Eq. (12) with the replacement of the bare parameters by the renormalized ones. For the sake of simplicity
we choose � = −ωeg , so that all exponential prefactors in front of the components of UR(T ) in Eq. (12) become e−iωET with
ωE = (ωg + ωe)/2. We obtain, at leading order in the energy shifts up to terms of the order of O(�δE/�|�|2),

δgU
R
g (T ) � e−iωET

{
cos (|�|T/2) − i

δEE
gg

�
[cos (|�|T/2)T/2 + |�|−1 sin (|�|T/2)] − T

�
Re

{
δEE

ge

}
sin (|�|T/2)

− i
δEE

ee

�
[cos (|�|T/2)T/2 − |�|−1 sin (|�|T/2)]

}
, (B7)

δeU
R
g (T ) � −e−iωET

{
i sin (|�|T/2) + (

δEE
ee + δEE

gg

)
sin (|�|T/2)T/2� + i

�
Re

{
δEE

eg

}
T cos (|�|T/2)

}
. (B8)

APPENDIX C: VERTEX RENORMALIZATION

We give the complete expressions for the one-loop vertex shifts, δH int
ex |ig(t) and δH int

ex |ie(t). We restrict ourselves to the electric
dipole approximation and assume that the atom is driven in ladder configuration, ωig,ωei > 0,

δH int
ex

∣∣
ig

(t) =
∑
ĩ,g̃

−�
p

g̃ĩ

4ε0c2

[
ωigTr{dig̃ · G∗(ωig) · dĩg}eiωpt + ωigTr{dig̃ · G(ωig) · dĩg}ei(ωp−2ωig)t

+ 2

π

∫ ∞

0

du u2

u2 + ω2
ig

(eiωpt + ei(ωp−2ωig )t )Tr{dig̃ · G(iu) · dĩg}

− 2

π

∫ ∞

0

du u2e−ut

u2 + ω2
ig

ei(ωp−ωig)t × Tr{dig̃ · [G(iu) − G(−iu)] · dĩg}
]

+ [ωp → −ωp]
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+
∑
ĩ,ẽ

[ −�s

ẽĩ

2πε0c2

∫ ∞

0

du u2(u2 − ωigωei)(
u2 + ω2

ig

)(
u2 + ω2

ei

)Tr{diẽ · G(iu) · dĩg}(eiωs t + ei(ωs+ωei−ωig)t )

+ ei(ωs−ωig )t

2

∫ ∞

0

du u2e−ut

(iu − ωig)(iu − ωei)
Tr{diẽ · [G(iu) − G(−iu)] · dĩg}

+ ei(ωs+ωei )t

2

∫ ∞

0

du u2e−ut

(iu + ωig)(iu + ωei)
Tr{diẽ · [G(iu) − G(−iu)] · dĩg}

]
+ [ωs → −ωs],

δH int
ex

∣∣
ie

(t) =
∑
ĩ,ẽ

−�s

ẽĩ

4ε0c2

[
ωieTr{diẽ · G∗(ωie) · dĩe}eiωs t + ωieTr{diẽ · G(ωie) · dĩe}ei(ωs−2ωie)t

+ 2

π

∫ ∞

0

du u2

u2 + ω2
ie

(eiωs t + ei(ωs−2ωie)t )Tr{diẽ · G(iu) · dĩe}

− 2

π

∫ ∞

0

du u2e−ut

u2 + ω2
ie

ei(ωs−ωie)tTr{diẽ · [G(iu) − G(−iu)] · dĩe}
]

+ [ωs → −ωs]

+
∑
ĩ,g̃

[ −�
p

g̃ĩ

2πε0c2

∫ ∞

0

du u2(u2 − ωigωei)(
u2 + ω2

ig

)(
u2 + ω2

ei

)Tr{dig̃ · G(iu) · dĩe}(eiωpt + ei(ωp+ωei−ωig)t )

+
∫ ∞

0

du u2e−ut

(iu + ωig)(iu + ωei)
Tr{dig̃ · [G(iu) − G(−iu)] · dĩe}[ei(ωp−ωig)t + ei(ωp+ωei )t ]/2

+ π

ωig − ωei

Tr{dig̃ · [
ω2

igG(ωig)ei(ωp+ωei−ωig)t + ω2
igG

∗(ωig)eiωpt

−ω2
eiG

∗(ωei)e
i(ωp+ωei−ωig )t − ω2

eiG(ωei)e
iωpt

] · dĩe}
]

+ [ωp → −ωp].

As in Sec. III C, the tilded states |ĩ〉, |g̃〉, and |ẽ〉 belong to the same energy levels as the states |i〉, |g〉, and |e〉 respectively. Equal
energies have been assumed for all the intermediate states, ωĩ = ωi ∀ĩ.
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[3] S. Y. Buhmann, L. Knöll, D.-G. Welsch, and H. Trung Dung,

Phys. Rev. A 70, 052117 (2004).
[4] M.-P. Gorza and M. Ducloy, Eur. Phys. J. D 40, 343 (2006).
[5] S. Scheel and S. Y. Buhmann, Acta Phys. Slovaca 58, 675 (2004).
[6] C. Henkel, S. Pötting, and M. Wilkens, Appl. Phys. B 69, 379

(1999).
[7] D. P. Craig and T. Thirunamachandran, Molecular Quantum

Electrodynamics (Dover, New York, 1998).
[8] J. D. Carter and J. D. D. Martin, Phys. Rev. A 88, 043429 (2013).
[9] M. Donaire, Phys. Rev. A 85, 052518 (2012).

[10] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Cote, and
M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000).

[11] M. Donaire, M.-P. Gorza, A. Maury, R. Guerout, and A.
Lambrecht, Europhys. Lett. 109, 24004 (2015).

[12] S. Ribeiro, S. Y. Buhmann, T. Stielow, and S. Scheel, Europhys.
Lett. (to be published), arXiv:1406.0172v2.

[13] Q. Beaufils, G. Tackmann, X. Wang, B. Pelle, S. Pelisson, P.
Wolf, and F. Pereira dos Santos, Phys. Rev. Lett. 106, 213002
(2011).

[14] P. Wolf, P. Lemonde, A. Lambrecht, S. Bize, A. Landragin, and
A. Clairon, Phys. Rev. A 75, 063608 (2007).

[15] F. Sorrentino, A. Alberti, G. Ferrari, V. V. Ivanov, N. Poli, M.
Schioppo, and G. M. Tino, Phys. Rev. A 79, 013409 (2009).

[16] R. Messina, S. Pelisson, M. C. Angonin, and P. Wolf, Phys. Rev.
A 83, 052111 (2011).

[17] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, New York, 1997).

[18] L. Allen and J. H. Eberly, Optical Resonance and Two-Level
Atom (Dover, New York, 1987).

[19] E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89
(1963).

[20] P. L. Knight and P. W. Milonni, Phys. Rep. 66, 21 (1980).
[21] G. S. Agarwal, Phys. Rev. A 11, 230 (1975), Eqs. (2.12), (3.3),

(3.6), (3.13) at zero temperature.
[22] J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley

Pearson, Reading, 1967).
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