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Shrinking cloaks in expanding space-times: The role of coordinates and the meaning
of transformations in transformation optics
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The fully covariant formulation of transformation optics is used to find the configuration of a cloaking
device operating in an expanding universe modeled by a Friedmann-Lemaı̂tre-Robertson-Walker space-time.
This space-time cloak is used as a platform for probing the covariant formulation of transformation optics, thereby
rigorously enhancing the conceptual understanding of the theory. By studying the problem in both comoving and
physical coordinates, we explicitly demonstrate the preservation of general covariance of electrodynamics under
the transformation optics procedure. This platform also enables a detailed study of the various transformations that
arise in transformation optics. We define a corporeal transformation as the “transformation” of transformation
optics and distinguish it from coordinate and frame transformations. We find that corporeal transformations
considered in the literature have generally been restricted to a subset of all possible corporeal transformations,
providing a potential mechanism for increased functionality of transformation optics.
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I. INTRODUCTION

The prediction and subsequent laboratory demonstration of
an electromagnetic cloaking device has created a fundamen-
tally new approach to the design of electromagnetic and optical
devices, called “transformation optics” or “transformation
electrodynamics” (which we generically abbreviate as TO)
[1–4]. The approach has been widely explored over the
past decade, both theoretically and experimentally, with
studies of cloaks of various shapes, sizes, and operating
frequencies and applications beyond cloaking to myriad
different optical systems including lenses, waveguides,
antennas, and beam splitters. The transformation method has
even been extended beyond electrodynamics to encompass
acoustics, elastics, thermodynamics, and even quantum
systems. Several extensive reviews are available which delve
into the increasingly voluminous literature related to cloaking
and the transformation method, including Refs. [5,6].

The TO design paradigm introduced by Pendry et al. [1]
was based on the covariance of Maxwell’s equations under
coordinate transformations. In a nutshell, shifting from one
coordinate system to another changes the coefficients in
Maxwell’s equations, but it was found that these transformed
coefficients could be absorbed by a redefinition of the
permittivity and permeability within the original coordinates.
The redefined material parameters essentially introduce a non-
vacuum medium in place the of the coordinate transformation.

Since a coordinate transformation is a diffeomorphism that
leaves the system physically invariant, it is unclear from
this nutshell description how TO actually works. Potential
misunderstanding stems from the fact there are several
different mathematical operations involved, all of which are
usually referred to as some kind of “transformation.” Even
more unfortunately, they are all likely to be referred to as
“coordinate transformations,” and significant confusion exists
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within the field as to the nature and meaning of these different
transformations.

In Ref. [6], the idea of passive vs active transformations
was discussed. A passive transformation is a true coordinate
transformation that leaves the physical object (a vector, say)
unchanged while, for example, rotating the coordinate system.
The same vector has different component values relative to the
original and rotated coordinate systems, but still represents
the same object. An active transformation, on the other hand,
actually changes the physical quantity while leaving the
coordinates unchanged, rotating the actual vector rather than
rotating the coordinates.

In TO, the main transformation at work is one that results
in the description of a physical object—a “transformation
medium”—whose parthenogenesis from the vacuum must be
in some way related to the notion of an active transformation
rather than that of a passive coordinate transformation. The
word corporeal means “having a material existence” or
“consisting of a material object,” and in the spirit of this
word we introduce the terminology corporeal transformation
to mean a transformation that results in the description
of a transformation medium. Thus, the “transformation” of
transformation optics is a corporeal transformation, rather than
a true coordinate transformation. In addition to corporeal and
coordinate transformations, we find that frame transformations
also play an important role in TO.

In this paper we study cloaking in a curved space-time,
specifically in an expanding Friedmann-Lemaı̂tre-Robertson-
Walker (FLRW) space-time. Friedmann-Lemaı̂tre-Robertson-
Walker has some physical relevance as the space-time of mod-
ern cosmological models describing our expanding universe,
although the actual cloak parameters for such a cloak are of
limited practical value, and obtaining the FLRW space-time
cloak parameters is not the primary objective of this paper.
Instead, the FLRW cloak serves as a vehicle for investigating
the underlying framework of TO, and there are three main
results of this investigation.

(1) We show that general covariance is carried across the
corporeal transformation, meaning that an actual coordinate
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transformation may be applied either before or after the
corporeal transformation without changing the physical nature
of the transformation medium. Although one hopes this should
be true by the construction of the general theory used here,
it is not entirely obvious and not guaranteed. In fact, it is
not possible to rigorously answer this question within the
more widely used constructions of TO that interpret the
transformation as a coordinate transformation associated with
a fictitious curved space-time.

(2) The distinction between corporeal, coordinate, and
frame transformations is clarified through a detailed study
of the FLRW cloak. The FLRW cloak is the ideal platform
for this work because it is the simplest cloak and space-time
for which the distinctions become readily apparent and most
easily explicable.

(3) We find that the set of all corporeal transformations
may be divided into two classes, which we call “coordinate
corporeal transformations” and “frame corporeal transforma-
tions.” The frame corporeal transformations present an avenue
for further study in TO and may be an interesting and useful
class of corporeal transformations.

The most natural framework for TO is that of general
relativity, where light propagates on a four-dimensional,
possibly curved manifold. The connection between TO and
curved space-time was first hinted at in Ref. [7], where the
propagation of light through a fictitious curved space-time
was identified with the propagation of light through a medium
residing in flat space-time. However, that approach was
both restrictive in its scope and included an artificial and
nonrigorous interpretation of a coordinate transformation of
flat space-time as a curved space-time. Later it was shown how
TO may be more rigorously formulated in such a way that the
space-time manifold under consideration is always the space-
time manifold where the device will operate, enabling the TO
paradigm to be applied in curved space-time environments
[8]. Although for many years general relativity was seen
as an esoteric subject with no real-world applications, it is
well known that general relativistic corrections are crucial
to the operation of global positioning systems and so may
not be ignorable for future near-Earth TO applications. Such
corrections have been studied for TO in the Schwarzschild
space-time of a massive spherical object such as Earth [9].
There is, therefore, merit in developing the most complete and
general theory possible and in exploring its capabilities and
limits. Friedmann-Lemaı̂tre-Robertson-Walker space-time is a
nice choice for this study because, while it is relatively simple,
it exhibits rich physics.

This paper is organized as follows. In Sec. II we review
the completely covariant, four-dimensional theory of electro-
dynamics and dielectric media on space-time manifolds. This
form of electrodynamics leads naturally to the formulation of
TO described in Sec. III. In Sec. IV the FLRW space–time is
described, the appropriate cloak transformations are defined,
and the covariant theory of TO is employed to determine
the cloak parameters. The resultant cloak is subjected to
coordinate transformations and studied in the flat space of
a local observer, demonstrating that the general covariance
of electrodynamics is preserved under the operation of TO.

In Sec. V we interpret the results of Sec. IV and suggest
how corporeal transformations considered in the literature to
date have generally been restricted to a subset of the possible
corporeal transformations, providing a potential mechanism
for increased functionality of the TO paradigm. A very detailed
analysis of light propagation in FLRW space-time is provided
in Appendix A, while detailed discussions of coordinate
transformations and frame transformations are relegated to
Appendixes B, C, and D.

II. COVARIANT ELECTRODYNAMICS

The standard vectorial representation of Maxwell’s
equations,

�∇ · �B = 0, �∇× �E + ∂ �B
∂t

= 0, (1a)

�∇ · �D = ρ, �∇× �H − ∂ �D
∂t

= �j, (1b)

makes the assumption of flat, Minkowski space-time. How-
ever, it has been shown that transformation electrodynamics
can only be fully understood in the context of a theory that can
adequately distinguish space-time from medium [8,10], so it is
advantageous to work with a formulation of electrodynamics
where this distinction can be easily made, even if the space-
time is flat. Here we review the salient features of a formulation
that is manifestly covariant, containing only tensorial objects
and the space-time metric [6,8].

We let space-time consist of a manifold M along with a
symmetric metric g that describes the shape of the space-
time. Given a curve on the space-time manifold, the squared
infinitesimal distance between two points on the curve is given
by the line element

ds2 = gμνdxμdxν, (2)

where gμν is the matrix representation of g. We adopt the sign
convention (− + ++) and we use units where the speed of
light c = 1. With these conventions the metric of Minkowski
space-time in Cartesian coordinates is

ημν =

⎛
⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠. (3)

Although the scalar and vector potentials are often treated
as nonphysical mathematical tools, in light of their role
in quantization of the field we follow Maxwell himself in
maintaining their central role, although now combined into the
1-form potential A = Aμ, where Aμ = (φ, �A) in Minkowski
space-time. The field strength tensor F = Fμν is obtained by
taking the exterior derivative of A,

F = dA, Fμν = ∂μAν − ∂νAμ. (4)

This is the four-dimensional generalization of obtaining �E and
�B as derivatives of the potentials, so it follows that F contains
the field components. In the locally flat space of an observer,
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the components of F form an antisymmetric matrix,

Fμν =

⎛
⎜⎝

0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

⎞
⎟⎠. (5)

On the other hand, we let the components of the electric
displacement �D and magnetic field �H be contained in the
excitation tensor G. In a locally flat space, the components of
G form an antisymmetric matrix,

Gμν =

⎛
⎜⎝

0 H1 H2 H3

−H1 0 D3 −D2

−H2 −D3 0 D1

−H3 D2 −D1 0

⎞
⎟⎠. (6)

As they stand, Maxwell’s equations (1) are incomplete
and require the specification of an independent relationship
between the fields before solutions can be found, and the same
holds true when the fields are expressed in tensorial form. In
the Minkowski vacuum, that relationship reduces to equating
components Ha = Ba and Da = Ea . This can be made more
precise by employing the Hodge dual �, a well-defined and
natural operation on pseudo-Riemannian manifolds endowed
with a metric, such that in vacuum

G = �F, (7)

or, in component form,

Gμν = (�F)μν = 1
2

√
|g| εμναβgαγ gβδFγ δ. (8)

Consider Earth’s oceans for a moment. A dense object
dropped into the ocean will sink, experiencing the inexorable
pull of gravity regardless of how much water surrounds it.
However, gravity is nothing more than a word used to describe
the curvature of space-time, and from the ocean example it is
clear that the space-time surrounds and permeates everything
that exists; it cannot be removed or ignored. Realizing that
dielectric media exists within, and is permeated by, the
space-time, we seek a formulation of Maxwell’s equations that
clearly distinguishes any space-time or metric contributions
from the medium contributions. It has been shown [6,8] that
for linear media such a formulation can be obtained through a
simple extension of the vacuum constitutive relation Eq. (7) to

G = �χF, (9)

where the tensor χ encodes parameters equivalent to per-
mittivity, permeability, and magnetoelectric couplings. In
component form, the constitutive relation is

Gμν = �μν
αβχαβ

σρFσρ. (10)

The most general χ has 36 independent components, and we
require that χαβ

σρ is independently antisymmetric on each pair
of indices, α ↔ β and σ ↔ ρ. Additional symmetry condi-
tions may be imposed based on thermodynamic arguments, in
particular, that χαβσρ is symmetric under the pair exchange
αβ ↔ σρ. The general linear constitutive relation Eq. (9) can
be made applicable to the vacuum, thereby superseding Eq. (7),
by requiring

χvacF = F, (11)

which is sufficient to specify χvac uniquely. Expanding
Eq. (10), the coefficients may be collected into the form

Da = (εc)a
bEb + (bγ c)a

bBb, Ha = (μ−1)a
bBb + (eγ c)a

bEb,

(12)

or in the more traditional form

Da = εa
bEb + hγ b

aHb, Ba = μa
bBb + eγ b

aEb. (13)

The 3×3 matrices ¯̄μ−1, ¯̄εc, etc., of the “covariant representa-
tion” Eqs. (12) may be connected to the 3×3 matrices ¯̄μ, ¯̄ε,
etc., of the “traditional representation” Eqs. (13) by

¯̄μ = ( ¯̄μ−1)−1, ¯̄ε = ¯̄εc − (b ¯̄γ c) ¯̄μ(e ¯̄γ c),
h ¯̄γ = (b ¯̄γ c) ¯̄μ, e ¯̄γ = − ¯̄μ(e ¯̄γ c). (14)

Finally, the covariant, four-dimensional formulation of
Maxwell’s equations may be summarized as

dF = 0, dG = J, G = �χF, (15)

where J is the free charge and current source, which in what
follows we take to be zero.

III. TRANSFORMATION OPTICS

A good first step at generalizing TO was to employ
the Plebanski equations to identify a fictitious space-time
with a dielectric material in flat space-time [7,11,12]. One
disadvantage of the Plebanski-based approach is that the final
transformation medium is restricted to applications in vacuum
Minkowski space-times. Since the Plebanski equations are
furthermore not strictly covariant, this approach fails to satisfy
the desire for a completely general, manifestly covariant theory
of TO. A strictly covariant theory is necessary for a complete
and rigorous foundation and to fully understand the role of
transformations as studied here. Several authors contributed to
the development of such a covariant theory [12–15], but here
we review the approach initially presented in Refs. [8,10,16],
as modified slightly in Ref. [6].

The idea of TO can be formalized as follows. Begin with
an initial configuration consisting of a space-time manifold M

and metric g, with associated Hodge dual � and initial material
distribution χ (enabling TO within a prior nonvacuum medium
[16]). Let F and G be the electromagnetic field tensors on M ,
obeying Maxwell’s equations and the constitutive relation G =
�χF. Let T : M → M̃ ⊆ M be a map of M to the image M̃ ,
as in Fig. 1. The image M̃ may not cover all of M; for example,

FIG. 1. Manifold M is mapped under T to the image M̃ ⊆ M .
T may be defined as a cloak transformation such that M̃ contains
a “hole” relative to M . However, the fields are transformed by the
pullback of T , where T = T −1.
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M̃ may contain a hole relative to M , leading to an invisibility
cloak.

Given a map between two manifolds ϕ : M → N , there
exists an associated pushforward map ϕ∗ that maps vector
fields in the tangent space of M to the tangent space of N , and
a pullback map ϕ∗ that maps covector fields from the cotangent
space of N to the cotangent space of M . For differential forms
like F, the associated map of interest is the pullback. Since
the pullback map ϕ∗ : T ∗N → T ∗M is opposite the direction
of ϕ : M → N itself, it follows that in TO we cannot use the
pullback of T : M → M̃ to map F from the cotangent space of
M to the cotangent space of M̃ . Instead, we need the pullback
T ∗ of a map T : M̃ → M . The pullback map T ∗ takes the
form of the Jacobian matrix of T .

The map T has taken center stage in TO because it provides
an intuitive visualization of the desired propagation of light
through the transformation medium and an easy method for
picking a corporeal transformation based on a mapping of
the trajectories of light—curves on the manifold—to new
trajectories. In this picture an invisibility cloak can be imagined
as mapping the space to a new space with a hole in it, but when
calculating the transformation medium we actually require the
inverse of T ; in other words, we may take T = T −1. In fact,
TO may be pursued without recourse to the pullback T ∗ at all.
Instead, a map P : T ∗M → T ∗M̃ between cotangent bundles
may be specified independently of a map between manifolds,
as further discussed in the following sections.

The essential feature is that the fields (F,G) are mapped to
a new set of fields (F̃,G̃) on M̃ , but for these new fields to
be valid solutions of Maxwell’s equations we require a new
“transformation” medium χ̃ . Furthermore, since TO cannot
change the space-time, only the medium, M̃ ⊆ M inherits the
metric from M . From the constitutive relations on M and M̃

we find

G̃ = T ∗(G) = T ∗(χ � F) = χ̃ � T ∗F, (16)

which can be solved for the transformation medium
[6,8,10,16],

χ̃ητ
πθ (x) = −�ητ

λκ
∣∣
x
�α

λ

∣∣
x
�β

κ |x�αβ
μν |T (x)

×χμν
σρ |T (x)(�

−1)π σ |x(�−1)θ ρ |x. (17)

In Eq. (17), � is the Jacobian matrix of T ; �−1 is the matrix
inverse of �. The initial material tensor χ and the first � are
evaluated at T (x), while everything else is evaluated at x ∈ M̃ .

IV. CLOAKING IN FLRW SPACE-TIME

A. FLRW space-time

In 1929, Edwin Hubble discovered that not only were all
distant galaxies receding from us but that the recessional speed
of more distant galaxies was faster than the recessional speed
of less distant galaxies. This phenomenon, now referred to as
Hubble’s law, appears to be universal and holds true for any
choice of origin; on large scales, everything in the universe
is moving away from everything else. The interpretation of
this Hubble flow is that the universe is uniformly expanding,
with all the galaxies we see going along for the ride. Not all
large-scale motion is due solely to the universal expansion,
but, as reviewed in Appendix A, this extra peculiar velocity

is damped out as the universe expands, so that eventually all
motion will asymptote to the Hubble flow. Such an expanding
universe is well described by a FLRW space-time, which is
the general relativistic solution of a space-time filled with a
perfect fluid.

The FLRW space-time is typically described in “comoving”
spherical coordinates (t,rc,θ,ϕ), with the line element

ds2 = −dt2 + a(t)2(dr2
c + r2

c d�2) (18)

and corresponding metric

gμν =

⎛
⎜⎜⎜⎝

−1 0 0 0

0 a2 0 0

0 0 a2r2
c 0

0 0 0 a2r2
c sin2 θ

⎞
⎟⎟⎟⎠, (19)

where a(t) is a scale factor that governs the size of a spatial slice
of the manifold. From the line element one can see that if a(t)
is either increasing or decreasing with time, then the spatial
universe is either expanding or contracting. For definiteness,
in what follows we assume that the universe is expanding.
Comoving coordinates are somewhat peculiar in that they are
fixed to the space-time. Since the spatial universe is expanding,
it follows that the physical separation between two points of
fixed comoving coordinates is actually increasing with the
expansion, similar to the way that the distance between two
nearby dots drawn on the surface of a balloon will increase
as the balloon is inflated. An object at rest at radius rc in
comoving coordinates has an increasing physical distance
d = a(t)rc. Objects at rest in comoving coordinates are said to
be comoving, and a comoving object has 4-velocity

uμ = (1,0,0,0). (20)

On the other hand, an observer at the origin would interpret
the recession of objects due to universal expansion as some
nonzero velocity of the object. To reflect this observer experi-
ence, it is useful to describe FLRW space-time in “physical”
coordinates (t,rp,θ,ϕ). Physical coordinates are related to
comoving coordinates via the coordinate transformation

rp = a(t)rc, (21)

and in these coordinates the line element becomes

ds2 = −
[

1 − ȧ(t)2

a(t)2
r2
p

]
dt2 − 2

ȧ(t)

a(t)
rpdrpdt + dr2

p + r2
pd�2,

(22)

where an overdot denotes the derivative with respect to t , with
corresponding metric

gμ′ν ′ =

⎛
⎜⎜⎜⎜⎝

−(
1 − ȧ2

a2 r
2
p

) − ȧ
a
rp 0 0

− ȧ
a
rp 1 0 0

0 0 r2
p 0

0 0 0 r2
p sin2 θ

⎞
⎟⎟⎟⎟⎠. (23)

In this and what follows, primed indices refer to physical coor-
dinates, while unprimed indices refer to comoving coordinates.
In physical coordinates, a comoving object has 4-velocity,

uμ′ =
(

1,
ȧ

a
rp,0,0

)
, (24)
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FIG. 2. (Color online) Null curves of FLRW space-time plotted
in (a) comoving coordinates and (b) physical coordinates. Despite
the nonzero curvature of FLRW space-time, its conformal flatness is
apparent in comoving coordinates, where initially parallel geodesics
remain parallel as in Minkowski space-time. The expansion of an
initially parallel congruence of null geodesics is made clear in
physical coordinates.

with the characteristic feature that the radial velocity depends
on the distance, in agreement with Hubble’s law and providing
compelling evidence that the universe is well modeled by an
expanding FLRW space-time. On the other hand, an object at
rest in physical coordinates has normalized 4-velocity,

uν ′ =
{[

1 −
(

ȧ

a
rp

)2]−1/2

,0,0,0

}
. (25)

The comoving and physical pictures are two equally valid
coordinate descriptions of the same space-time, with a well-
defined coordinate transformation to switch between the two.
Despite the fact that the different coordinates describe the same
physics, the geometric optics description of light propagation
appears to be quite different for an observer using comoving
vs physical coordinates. By solving the geodesic equation
for null geodesics in each case, as outlined in Appendix A,
parametric equations of null trajectories are found, with the
result plotted in Fig. 2. In the figure, the affine parameter is
increasing from left to right, and in Fig. 2 the initial conditions
specify a congruence of initially “parallel” geodesics. It is
clear from the figure that the notion of parallel does not have
its usual meaning in this space of uniform curvature (constant
curvature over a constant-time spatial hypersurface).

Note that by making a change of the time coordinate,
Eq. (18) can be rewritten as

ds2 = a(τ )2
(−dτ 2 + dr2

c + r2
c d�2

)
, (26)

which is just a conformally scaled version of Minkowski space.
Since conformal maps preserve angles, the null geodesics
of Minkowski space-time are conformally mapped to null
geodesics in FLRW, thereby preserving the path (although
the propagation along the path is different). Thus, it is no
surprise that Fig. 2 looks just like Minkowski space-time, but
we see that looks can be deceiving when it comes to defining
a cloak transformation in the comoving coordinates of FLRW
space-time.

B. Cloak transformations in FLRW

Given the multiple coordinate choices of FLRW space-time
and the different propagation pictures provided in each, the
next step is to choose an appropriate corporeal transformation.
Consider first the Pendry et al. transformation [1] in comoving

coordinates,

rc → rc(1) + rc(2) − rc(1)

rc(2)
rc. (27)

Bear in mind that this is part of the map T : M → M̃ ⊆ M;
the complete specification of T is

T (t,rc,θ,ϕ) =
(

t,rc(1) + rc(2) − rc(1)

rc(2)
rc,θ,ϕ

)
. (28)

Also recall that to calculate the transformation medium χ̃ with
Eq. (17) we actually require the inverse T = T −1 rather than
T itself.

This transformation maps the origin to the cloak’s inner
surface at fixed radius rc(1), but in comoving coordinates the
fixed radius rc(1) defines the surface of a physically expanding
sphere. To a local observer, such a comoving cloak would
appear to be expanding with the expansion of the universe.
Although one could, with all validity in the context of TO, use
this corporeal transformation and calculate the corresponding
transformation medium, a physically expanding cloak is not
what we had in mind.

Instead, the picture we have in mind is of a cloak of
fixed physical size relative to a real, physical observer. Every
element of a cloak of fixed physical size with inner radius
R1 and outer radius R2 would actually have some nonzero
velocity in comoving coordinates. This means that the cloak
medium would not be comoving, being instead held together
by whatever electrostatic forces are present to overcome the
universal expansion and keep the cloak from breaking apart.
In other words, a cloak of fixed physical size would actually
appear to be shrinking if described in comoving coordinates.

On the other hand, in physical coordinates a cloak of fixed
physical size would not appear unordinary to a real, physical
observer, and there the transformation

rp → R1 + R2 − R1

R2
rp (29)

would be appropriate. It is not immediately obvious whether
the Pendry transformation will work in this setting of universal
expansion, but the action of a cloak derived from this corporeal
transformation in physical coordinates is depicted in Fig. 3,
and it may be observed that the downstream ray trajectories
are perfectly preserved.

Using the coordinate transformation Eq. (21), the corporeal
cloak transformation Eq. (29) may be transformed to comoving
coordinates, where the corporeal transformation becomes

rc → R1

a(t)
+ R2 − R1

R2
rc, (30)

which for increasing a(t) does indeed represent a shrinking
cloak transformation, as predicted for comoving coordinates.

As will be shown, Eqs. (29) and (30) are corporeal
transformations for the same cloaking device described by
two different coordinates systems. Recalling that it is the
inverse transformation that appears in Eq. (17), we find the
Jacobian matrices

�α
β(rc) =

⎛
⎜⎜⎝

1 0 0 0

− R1R2ȧ

(R2−R1)a2
R2

R2−R1
0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ (31)
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FIG. 3. (Color online) Equatorial slice of a cloak in physical
coordinates of FLRW space-time. The universal expansion of a
set of initially parallel null curves is accommodated by the cloak
transformation.

in comoving coordinates and

�α′
β ′ (rp) =

⎛
⎜⎜⎜⎝

1 0 0 0

0 R2
R2−R1

0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ (32)

in physical coordinates.
Using the cloak transformations Eqs. (30) and (29), their

associated Jacobian matrices Eqs. (31) and (32), and the
metrics Eqs. (19) and (23), the tensorial components of
the transformation medium χ̃ may be calculated in each
coordinate system through the application of Eq. (17) (we
assume that the initial space is vacuum, χ = χvac). We write
the components as χαβ

μν(xc) and χα′β ′μ
′ν ′

(xp), where again
unprimed and primed indices refer to comoving and physical
coordinates, respectively.

C. Local frame results

However, the coordinate components χαβ
μν(xc) and

χα′β ′μ
′ν ′

(xp) are of somewhat limited value since they refer
to coordinate basis fields of the global coordinates, whereas
engineers tasked with building the cloaking device would
prefer to work in their locally flat frame. This is because a
local observer measures electric and magnetic fields relative
to her local frame, and the permeability and permittivity, as
derived from χ in [10], only have their traditional meaning
relative to that local frame.

One of the defining features of a classically curved space-
time is that if you look at only a small portion of the manifold it
appears to be Minkowskian, in the same way that the curvature
of the Earth is ignorable on the local scale. By saying that the
manifold “appears locally Minkowskian” we mean that it is
possible, at each point, to define a basis {eA} of the tangent
space and related basis {θA} of the cotangent space such that
the line element relative to this basis is

ds2 = ηABθAθB, (33)

where ηAB is the Minkowski metric. This is similar to the
way the line element takes on different forms in different

coordinates, such as Eqs. (18), (22), and (26). However,
whereas the tangent and cotangent space bases in Eqs. (18),
(22), and (26) follow from the choice of coordinates, the
so-called “coordinate bases,” here the tangent and cotangent
bases are changed independently of the coordinates, as further
described in Appendixes B and C. The main point is that a
basis may be chosen such that relative to the chosen basis the
metric becomes Minkowskian even though the space-time is
fundamentally curved, which makes this the natural choice for
observers working relative to their locally flat environment.

We have seen that using the corporeal transformation
Eqs. (30) and (29) results in transformation media χαβ

μν(xc)
and χα′β ′ μ

′ν ′
(xp). As described in Appendix C, the components

of χ̃ in a local frame of comoving coordinates are

χAB
CD(xc) = eA

αeB
βeC

μeD
νχαβ

μν(xc), (34)

while the components of χ̃ in a local frame of physical
coordinates are

χA′B ′ C
′D′

(xp) = eA′α
′
eB ′β

′
eC ′

μ′eD′
ν ′χα′β ′μ

′ν ′
(xp). (35)

It still remains to find the frame transformation matrices eA
α

and eA′ α
′
. It may be seen from Eqs. (33) and (C9) that the frame

transformation matrix can be determined from the condition

eA
αeB

βgαβ = ηAB, (36)

where

ηAB =

⎛
⎜⎜⎜⎝

−1 0 0 0

0 1 0 0

0 0 r2
c 0

0 0 0 r2
c sin2 θ

⎞
⎟⎟⎟⎠ (37)

is the Minkowski metric in spherical comoving coordinates.
An obviously similar condition holds for eA′α

′
in spherical

physical coordinates. In addition to this condition, we demand
that the 4-velocity of an observer at rest in the coordinate basis,
e.g., Eqs. (20) and (25), is frame transformed to the 4-velocity
of an observer at rest in the local frame basis. This is equivalent
to setting e

μ

0 = uμ. One finds

eA
α =

⎛
⎜⎜⎝

1 0 0 0
0 a−1 0 0
0 0 a−1 0
0 0 0 a−1

⎞
⎟⎟⎠ (38)

and

eA′α
′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1√
1−

(
rp ȧ

a

)2
0 0 0

− rpȧ

a

√
1−

(
rp ȧ

a

)2

√
1 − ( rpȧ

a

)2
0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(39)

in comoving and physical coordinates, respectively, with
eC

μ and eC ′
μ′ found from the inverse transpose of these

matrices. The permeability and permittivity relative to the local
observer may now be calculated as follows: The corporeal
transformations in each coordinate systems are given by
Eqs. (30) and (29); the Jacobian matrices Eqs. (31) and (32) of
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the corporeal transformations are used in Eq. (17) to calculate χ̃ relative to the coordinate basis; the frame transformation matrices
Eqs. (38) and (39) are used in Eq. (35) to calculate χ̃ relative to the locally flat frame; the coefficients of χ̃ are collected into
three-dimensional matrices through the identifications of Eq. (10) (the component identifications may also be found in Ref. [6]),
which are finally put into the traditional representation through Eqs. (14). The result is

¯̄μ = ¯̄ε =

⎛
⎜⎜⎜⎝

R2
R2−R1

(
rc− R1

a

)2

r2
c

0 0

0 R2(R2−R1)a2

(R2−R1)2a2−R2
1R2

2 ȧ2 0

0 0 R2(R2−R1)a2

(R2−R1)2a2−R2
1R2

2 ȧ2

⎞
⎟⎟⎟⎠, (40a)

e ¯̄γ = −h ¯̄γ =

⎛
⎜⎝

0 0 0

0 0 − R1R
2
2aȧ

(R2−R1)2a2−R2
1R2

2 ȧ2

0 R1R
2
2aȧ

(R2−R1)2a2−R2
1R2

2 ȧ2 0

⎞
⎟⎠, (40b)

in a local frame of comoving coordinates and

¯̄μ = ¯̄ε =

⎛
⎜⎜⎜⎝

R2
R2−R1

(rp−R1)2

r2
p

0 0

0
(R2−R1)R2(a2−r2

pȧ2)

(R2−R1)2a2+R2
2 (rp−R1)2ȧ2 0

0 0
(R2−R1)R2(a2−r2

pȧ2)

(R2−R1)2a2+R2
2 (rp−R1)2ȧ2

⎞
⎟⎟⎟⎠, (41a)

e ¯̄γ = −h ¯̄γ =

⎛
⎜⎝

0 0 0

0 0 −R1ȧ
a

(R2
2+R1rp−2R2rp)a2+R2

2rp(rp−R1)ȧ2

(R2−R1)2a2+R2
2 (rp−R1)2ȧ2

0 R1ȧ
a

(R2
2+R1rp−2R2rp)a2+R2

2rp(rp−R1)ȧ2

(R2−R1)2a2+R2
2 (rp−R1)2ȧ2 0

⎞
⎟⎠, (41b)

in the local frame of physical coordinates. It may be readily
seen that setting a(t) = 1 returns us to Minkowski space-time,
where the results for both comoving and physical coordinates
reduce to the ordinary flat space-time Pendry cloak.

D. Coordinate transformations

Finally, we can now show that the TO procedure and
the resulting transformation medium is generally covariant,
meaning that, knowing the coordinate transformation to switch
between comoving and physical coordinates, we can relate the
coordinate expressions of χ by (see Appendix B)

χα′β ′μ
′ν ′

(xp) = Lα
α′Lβ

β ′χαβ
μν(xc)Jμ′

μJ ν ′
ν |xc→C(xc), (42)

where Jμ′
μ is the Jacobian matrix of the coordinate trans-

formation xp = C(xc) and Lα
α′ is the Jacobian matrix of the

inverse coordinate transformation xc = C−1(xp). As applied to
a tensor, the coordinate transformation is enacted by contract-
ing the Jacobian matrices of the coordinate transformation and
inverse coordinate transformation with the tensor. However,
the Jacobian matrices of the coordinate transformation, by
construction, refer to the coordinate basis of the tangent
bundle; hence, by themselves, they can only transform from
the coordinate basis representation in one coordinate system
to the coordinate basis representation in the other coordinate
system. Instead, what we would really like is to transform
from the local frame of comoving coordinates to the local
frame of physical coordinates. As shown in Appendix D, the
coordinate and frame transformations may be combined such
that the components of χ̃ in one local frame may be directly

transformed to the other local frame,

χA′B ′C
′D′

(xp) = KA′AKB ′BMC ′
CMD′

D χAB
CD(xc)

∣∣
xc→T (xc),

(43)

with

KA′A = eA
αLα

α′eA′α
′

(44)

and

MC ′
C = eC

μJμ′
μ eC ′

μ′ . (45)

It is now possible to verify that Eqs. (40) correctly transform
to Eqs. (41) under the combined action of the coordinate and
frame transformations embodied in Eq. (43).

There is a widespread misconception within the field of
TO that the formulation and results of TO are intimately
tied to a choice of coordinates and a subsequent coordinate
transformation. Here we have explicitly demonstrated that
this is not the case. A corporeal transformation given in one
coordinate system may be given a different description in
another coordinate system, and the resulting transformation
media are physically equivalent and are mutually and directly
related via a well-defined coordinate transformation.

Although one hopes this to be true by the construction of
Eq. (17), it turns out that it is not an entirely trivial or obvious
result. The complete derivation of Eq. (17) requires a more
rigorous specification of the metric on each manifold [8]; in
particular, we may generalize the picture of Fig. 1 by mapping
between different space-time manifolds. This generalization
has been used to describe dielectric analog space-time models
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that mimic the propagation of light through a vacuum space-
time by the propagation of light through a suitably chosen
dielectric medium and forms the basis for a rigorous derivation
of Plebanski’s equations [17]. However, in that case the coordi-
nates of the target manifold are physically distinct from those
of the domain, thereby breaking strict covariance. Thus, for
example, the FLRW space-time described in either comoving
or physical coordinates may be mapped into an analog medium
described by spherical coordinates of Minkowski space-time,
but these will be physically inequivalent representations of the
space-time that cannot be related through a simple coordinate
transformation. The reason covariance is maintained across
the corporeal transformation is that in TO we have insisted
on the preservation of the underlying space-time. Thus, it
would seem that formulations of TO based on the Plebanski
equations, or equivalently on the analog model, are incapable
of rigorously demonstrating the general covariance of the
transformation media. The lack of strict covariance in analog
models will be discussed in more detail elsewhere.

V. DISCUSSION AND CONCLUSIONS

We have studied cloaking in an expanding FLRW space-
time, which is a nice choice because, while it is a relatively
simple space-time, it is rich in physics and serves as the
model for our expanding universe. The FLRW cloak makes
an ideal platform from which to examine and clarify the
role of several different kinds of transformations that may
appear in TO. In particular, it was shown how medium-
producing TO transformations, here referred to as corporeal
transformations, are distinct from coordinate transformations
and frame transformations, and it was shown that all three types
of transformations play distinct but important roles in TO. The
corporeal transformation is responsible for what manifests
itself as a transformation medium. Coordinate and frame
transformations, on the other hand, simply provide different
descriptions of the same physical phenomenon and cannot be
used to generate a new medium. A corporeal transformation
may be referred to different coordinate systems, but the physics
carried by the corporeal transformation remains invariant
under the coordinate transformation, resulting in different
coordinate descriptions of the same transformation medium. In
other words, the transformation medium obtained from a cor-
poreal transformation in one coordinate system is physically
equivalent to the transformation medium obtained when the
corporeal transformation is expressed in a different coordinate
system, and the two descriptions of the transformation medium
are covariantly related by the coordinate transformation.

The FLRW cloak provides a good example of how de-
ciding on the appropriate cloaking transformation depends
on the point of view of the observer and their choice of
coordinates, but that ultimately the same cloak transformation
may be referred to different coordinate systems. The desirable
scenario of a cloak of fixed physical size was obtained from
the usual cloak transformation in physical coordinates, but
when referred to comoving coordinates the transformation
actually actually describes a radially shrinking cloak. The
cloak transformations in different coordinates are related
by the coordinate transformation, and it turns out that this
relationship is preserved across the corporeal map such that the

transformation media obtained from either coordinate system
are physically equivalent and also related by the coordinate
transformation. Although this coordinate invariance is clearly
desirable, it is not obvious and, in fact, hinges on the fact
that the corporeal transformation acts only on the fields, while
leaving the manifold untouched. This analysis clearly shows
that the general covariance of electrodynamics is preserved
through the corporeal transformation into the transformation
medium, but this need not have been guaranteed. In fact, the
closely related formulation of analog space-times [17] from
which the Plebanski equations may be derived and were used
in earlier formulations of TO [7], breaks covariance under the
analog map.

A coordinate transformation acts on a tensor via the
differential of the coordinate map. Practically, this differential
manifests itself as the Jacobian matrix of the transformation,
with one index referred to each coordinate system, and is
implemented via matrix multiplication; one Jacobian matrix
for each tensor index. The implementation of a frame transfor-
mation is also basically matrix multiplication on each tensor
index, but while one index of the frame transformation matrix
eA

μ refers to the coordinates, the other index refers only to an
arbitrary basis vector field that is not, in general, associated
with any coordinate system. As described in Appendix C, a
frame field assigns a set of basis vectors at every point, so
a frame field is nothing more than a set of four vector fields
that may either be chosen freely or chosen to satisfy some
conditions, and any vector field can be decomposed relative to
this chosen set of basis vector fields. Here the frame field is
chosen such that the associated metric is Minkowskian. The
arbitrary index on a frame transformation matrix refers to these
basis vector fields.

If the frame transformation is smooth, then one may find
integral curves of the frame basis fields. If, in addition, the
frame fields {eA} commute, [eA,eB ] = 0, then the parametrized
integral curves may be identified as a set of coordinate
functions {yA} such that eA = ∂

∂yA and θA = dyA act as
mutually dual bases for the tangent and cotangent bundles.
What this shows is that for commuting frame basis vector
fields, the arbitrary index on the frame transformation matrix
actually refers to the coordinates corresponding to the integral
curves of the fields, and in this case the frame transformation is
nothing more than a coordinate transformation. This provides
a refined perspective of the Jacobian matrix, where instead
of considering the indices as referring to coordinates, they
should be thought of as referring to the vector fields whose
integral curves correspond to the coordinates, i.e., to the
coordinate vector fields. With this refinement, the Jacobian
of a coordinate transformation is actually just a special type of
frame transformation matrix.

Transformation optics was initially conceived as a co-
ordinate transformation but we have shown that corporeal
transformations are distinct from coordinate transformations.
Nevertheless, there is a clear analogy in that each can be
identified with a set of functions on the manifold that act
upon tensors via the Jacobian matrix of those functions. On
the other hand, we have seen how coordinate transformations
of tensors are a special case of frame transformations; in other
words, if {R} is the set of all possible frame transformation
tensors, then the coordinate transformations are the set of all
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C ∈ R such that C = dT for some function T . It follows from
the analogy with coordinate transformations that the space
of possible corporeal transformations is actually much larger
than what has generally been considered in the literature. In
particular, in analogy with a frame transformation, a corporeal
transformation may more generally be given through the direct
specification of the transformation tensor. Letting {S} be the
set of all possible corporeal transformation tensors, then the
set of all D ∈ S such that D = dT for some function T
could reasonably be called “coordinate corporeal transfor-
mations.” Although coordinate transformations are actually
a subset of frame transformations, the terminology “frame
transformation” usually refers to frame transformations that
do not belong to the subset of coordinate transformations. By
analogy, we may refer to the set of corporeal transformations
that are not coordinate corporeal transformations as “frame
corporeal transformations.”

With few exceptions [18,19], the multifaceted “transfor-
mation physics” program has restricted itself to coordinate
corporeal transformations and very little seems to have
been done with more general classes of transformations.
Frame corporeal transformations therefore present a potential
mechanism for increased functionality of the TO paradigm. A
detailed analysis of these frame corporeal transformations in
the context of TO presents a new avenue for further study that
lies beyond the scope of the present paper, but is the subject
of ongoing investigation.
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APPENDIX A: AFFINE PARAMETRIZATION
IN SPACE-TIME

By applying the map T (see, e.g., Fig. 1), a parametrized
curve xμ(τ ) ⊂ M will be mapped to the parametrized curve
x̃μ(τ ) ⊂ M̃ , which is the path followed by light traversing the
transformation medium. Such direct visualization is one of the
alluring features of TO in that the corporeal transformation can
be elucidated from a deformation of an initial set of trajectories
of light into a desired set of trajectories. However, to take
advantage of this procedure it is necessary to know the initial
set of trajectories. Since the parametrization of null geodesics
on space-time manifolds may be unfamiliar, here we explain
how to obtain the parametrization of null geodesics in FLRW
space-time. We do this in some detail because a complete
derivation is not readily found in the literature.

We parametrize a curve with affine parameter τ , along with
its velocity and acceleration as

xμ(τ ) = (x0(τ ),x1(τ ),x2(τ ),x3(τ )), (A1a)

vμ(τ ) = dxμ

dτ
= ẋμ = (ẋ0(τ ),ẋ1(τ ),ẋ2(τ ),ẋ3(τ )), (A1b)

aμ(τ ) = d2xμ

dτ 2
= ẍμ = (ẍ0(τ ),ẍ1(τ ),ẍ2(τ ),ẍ3(τ )), (A1c)

where

ẋ0(τ ) = dx0

dτ
, ẍ0(τ ) = d2x0

dτ 2
, etc. (A2)

It should be mentioned that although the point xμ =
(x0,x1,x2,x3) is often thought of as a “vector,” such a position
vector is only a point on the manifold and is not an element of
the tangent space, as vμ is. In this setting, xμ is not a vector
and does not transform like a vector. Thus, a curve xμ(τ )
transforms with the map T itself, while the vector field vμ

transforms via the pushforward of T (assuming it exists).

1. Null geodesics in Minkowski space-time

Before considering null geodesics in FLRW space-times,
it is worthwhile to review the explicit affine parametrization
of null geodesics in Minkowski space-time, first in Cartesian
coordinates and then in spherical coordinates.

a. Cartesian coordinates

In Cartesian coordinates the line element for Minkowski
space-time is

ds2 = −c2dt2 + dx2 + dy2 + dz2. (A3)

For a null geodesic we require

gαβvαvβ = −c2 ṫ2 + ẋ2 + ẏ2 + ż2 = 0. (A4)

The geodesic equation is

ẍμ + �
μ
αβẋαẋβ, (A5)

but in Cartesian coordinates �
μ
αβ = 0, so we are left with the

set of equations ẍμ = 0. These integrate immediately to

(t(τ ),x(τ ),y(τ ),z(τ )) = (ut ,ux,uy,uz)τ + (t0,x0,y0,z0), (A6)

with the requirement that u2
x + u2

y + u2
z = u2

t c
2, and we

generally set c = 1.

b. Spherical polar coordinates

Integrating the geodesic equations in Cartesian coordinates
was immediate, but things get messy in spherical polar
coordinates. The Minkowskian line element is now

ds2 = −c2dt2 + dr2 + r2dθ2 + r2 sin2 θ dϕ2 (A7)

and the null condition is

gαβvαvβ = −c2 ṫ2 + ṙ2 + r2(θ̇2 + sin2 θϕ̇2) = 0. (A8)

The geodesic equations are now

ẗ = 0, (A9a)

r̈ − r(θ̇2 + sin2 θϕ̇2) = 0, (A9b)

θ̈ + 2
ṙ

r
θ̇ − cos θ sin θϕ̇2 = 0, (A9c)

ϕ̈ + 2
ṙ

r
ϕ̇ + 2 cot θ θ̇ ϕ̇ = 0. (A9d)

The t equation of course integrates immediately to the same
result as previously obtained. This should be expected since
transforming between Cartesian and spherical coordinates
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leaves t unchanged. Although the ϕ equation can readily be
integrated to

ϕ̇ = ω0

(
r0 sin θ0

r sin θ

)2

, (A10)

we quickly run into difficulties finding an analytic solution to
the θ equation. Things can be simplified by restricting motion
to the equatorial plane, in which case θ = θ0 = π/2. With this
restriction,

ϕ̇ = ω0

(
r0

r

)2

, (A11)

and the radial equation becomes

r̈ − ω2
0r

4
0

r3
= 0, (A12)

which, with

ṙ(τ = 0) = ur (A13)

and the null condition

u2
r + ω2

0r
2
0 = u2

t c
2, (A14)

can be directly integrated to

r(τ ) =
[(

r2
0 ω0

utc

)2

+
(

r0
ur

utc
± utcτ

)2]1/2

. (A15)

It is easy to verify that for purely radial geodesics, in
which case ω0 = 0 and ur = c, r(τ ) = r0 ± cτ , as expected.
Knowing r(τ ), Eq. (A11) can now be integrated to find the
parametrization of ϕ

ϕ(τ ) = ± tan−1

[
r0ur ± u2

t c
2τ

r2
0 ω0

]
∓ tan−1

[
ur

r0ω0

]
+ ϕ0.

(A16)

Choosing an initial point (t0,r0,π/2,ϕ0) and initial velocity
with respect to τ (ut ,ur ,0,ω0), we then have an explicit expres-
sion for the curve. Furthermore, one can readily convert this to
Cartesian coordinates with x(τ ) = r(τ ) cos (ϕ(τ )), and y(τ ) =
r(τ ) sin (ϕ(τ )) if, for example, one wanted to make a paramet-
ric plot with something like Mathematica. These become

x = (ur cos ϕ0 − r0ω0 sin ϕ0)τ + r0 cos ϕ0,

y = (ur sin ϕ0 + r0ω0 cos ϕ0)τ + r0 sin ϕ0. (A17)

Note that if the chosen initial point on the trajectory
coincides with the point of closest approach, then r0 = b

is just the impact parameter, ur = 0 because at the point
of closest approach the velocity is purely tangential, and
ϕ0 = ϕin + π/2, where ϕin is the angle at which the trajectory
crosses the x axis (special care is needed for trajectories with
the initial point at the origin). If one is unconcerned with
following the wave front and only cares about the geometrical
path, then rescaling τ → r0ω0τ allows us to write

x = τ cos ϕin − b sin ϕin,

y = τ sin ϕin + b cos ϕin. (A18)

2. Null geodesics in FLRW: Comoving Cartesian coordinates

a. Null geodesics

In comoving Cartesian coordinates the FLRW metric is

ds2 = −c2dt2 + a2(t)(dx2 + dy2 + dz2). (A19)

We parametrize a curve with affine parameter τ , along
with its velocity and acceleration, in the same manner as
Eqs. (A1a)–(A1c). It should be borne in mind that the scale
factor a(t) appearing in the metric, which is a scalar function,
is different from the acceleration vector aμ. Note that with
this parametrization, the scale factor is also parametrized by
τ through its dependence on t , in other words a = a(t(τ )).
We suppress the explicit dependence on t or τ except where
necessary for clarity. Dot notation will denote derivatives with
respect to τ and primes will denote derivatives with respect
to t :

a′ = a′(t) = da

dt
, ȧ = da

dτ
= a′ ṫ . (A20)

For a null geodesic we require

gαβvαvβ = −c2 ṫ2 + a2(ẋ2 + ẏ2 + ż2) = 0. (A21)

The geodesic equation yields

ẗ + aa′

c2
(ẋ2 + ẏ2 + ż2) = 0, (A22a)

ẍ + 2a′

a
ṫ ẋ = 0. (A22b)

The equations for y and z are identical to that of x; thus, it is
sufficient to consider only the equations for t and x. Using the
null condition Eq. (A21) and a′ ṫ = ȧ, the t and x equations
become

ẗ + ȧ

a
ṫ = 0, (A23a)

ẍ + 2
ȧ

a
ẋ = 0, (A23b)

with solutions

t(τ ) = uta0

∫
1

a
dτ, (A24a)

x(τ ) = uxa
2
0

∫
1

a2
dτ, (A24b)

and similarly for y and z. The coefficients (ut ,ux,uy,uz) give
the direction of propagation of the geodesic at τ = 0, i.e.,
vμ|τ=0 = (ut ,ux,uy,uz), and satisfy the null condition

−c2u2
t + a2

0

(
u2

x + u2
y + u2

z

) = 0. (A25)

b. Conformal flatness

It is well known that FLRW is conformally flat, which
means that FLRW is equivalent to a conformal rescaling of
Minkowski space. In other words, transforming to “conformal
time,”

dη = 1

a(t)
dt, (A26)
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the metric becomes

ds2 = a(t)(−c2dη2 + dx2 + dy2 + dz2). (A27)

Since the null character of a tangent vector (and hence
the null character of a geodesic) is invariant to conformal
transformations, null geodesics of Minkowski space-time are
conformally mapped to null geodesics of FLRW space-time.
In Minkowski space-time, a defining characteristic of null
geodesics is that �x = c �t for light propagating along the x

axis, and this relation between intervals should also be reflected
in FLRW if we switch to conformal time. Indeed, transforming
Eq. (A23a) to conformal time, we find the equation

η̈ + 2
ȧ

a
η̇ = 0, (A28)

with corresponding solution

η(τ ) = uτa
2
0

∫
1

a2
dτ. (A29)

Thus, the intervals �x = c �η clearly show the conformal
flatness of FLRW.

3. Evaluating the scale factor

To proceed further requires knowledge about the form
of the scale factor function a(τ ). The scale factor cannot
be specified arbitrarily, but instead must be obtained from
Einstein’s equations, Gμν = 8πTμν . It is known that the FLRW
metric is the solution for a space-time filled with a perfect fluid.
The stress tensor Tμν for a perfect fluid with 4-velocity uμ is
given by

Tμν = ρuμuν + p

c2
(gμν + uμuν), (A30)

where ρ is the energy density and p is the pressure. Raising
one index, Tμ

ν has matrix form

Tμ
ν =

⎛
⎜⎜⎜⎝

−ρ 0 0 0

0 p

c2 0 0

0 0 p

c2 0

0 0 0 p

c2

⎞
⎟⎟⎟⎠. (A31)

The continuity equation

ρ ′ + 3
a′

a

(
ρ + p

c2

)
= 0 (A32)

may be obtained from the divergence-free condition on the
stress tensor Tμ

ν
;ν = 0. Letting w = p/c2ρ be the equation of

state and dividing through by ρ, Eq. (A32) is rewritten as

ρ ′

ρ
+ 3(1 + w)

a′

a
= 0. (A33)

For the perfect fluids upon which most cosmological models
are based, the equation of state is a constant, and we therefore
find

ρ = ρ0

(
a0

a

)3(1+w)

. (A34)

Next, there are two independent Einstein equations,

(
a′

ca

)2

= 8

3
πρ (A35a)

and

2
a′′

c2a
+

(
a′

ca

)2

= −8π
p

c2
. (A35b)

In the previous section on Cartesian coordinates we found
the relations ȧ = ṫa′ and ṫ = uta0a

−1. Given that changing
to comoving spherical polar coordinates, or even physical
spherical coordinates, leaves the time coordinate invariant,
we should expect the equation for t(τ ) to remain unchanged,
as explicitly demonstrated below. Hence, a′ = aȧ

ut a0
in all

coordinates under consideration, and Eq. (A35a) becomes

ȧ2

u2
t c

2a2
0

− 8

3
πρ0

(
a0

a

)3(1+w)

= 0, (A36)

which has solution

a = a0

[
1 ±

√
8

3
πρ0

(
5 + 3w

2

)
utcτ

] 2
5+3w

. (A37)

Note that this solution looks rather different from the usual
derivation of this sort; in particular, for a cosmological constant
with w = −1 one normally obtains a = a0e

Ht . The difference
stems from the fact that we are parametrizing with respect to
the affine parameter τ rather than the coordinate time or, as is
often done, the conformal time η.

The Cartesian parametrizations of null geodesics in FLRW
are finally obtained by using the form of a(τ ) given by
Eq. (A37) in Eqs. (A24a) and (A24b). Choosing the positive
branch we find, for w �= −1,

t = 2

3(1 + w)c

(
8

3
πρ0

)−1/2

×
{[

1 +
√

8

3
πρ0

(
5 + 3w

2

)
utcτ

] 3(1+w)
5+3w

− 1

}
+ t0

(A38)

and

x =
(

ux

utc

)(
2

1 + 3w

)(
8

3
πρ0

)−1/2

×
{[

1 +
√

8

3
πρ0

(
5 + 3w

2

)
utcτ

] 1+3w
5+3w

− 1

}
+ x0,

(A39)

with similar results for y and z. For w = −1, a(τ ) becomes

a = a0

(
1 +

√
8
3πρ0 utcτ

)
, (A40)

with

t = 1

c

(
8

3
πρ0

)−1/2

ln

[
1 ±

√
8

3
πρ0 utcτ

]
+ t0 (A41)
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and

x =
(

ux

utc

)(
8

3
πρ0

)−1/2
⎛
⎝1 − 1

1 + τ

√
8
3πρ0

⎞
⎠ + x0. (A42)

One of the fascinating things about FLRW space-times is that
the peculiar motion (that portion of the motion that is not due
to the Hubble flow) of timelike objects gets damped out, and
eventually the physical motion is due solely to the Hubble flow.
In other words, everything eventually becomes comoving.
However, the explicit parametric equation for the x coordinate
of null geodesics Eq. (A42) shows that the same holds true
for light in a universe dominated by a cosmological constant,
w = −1. As τ → ∞ the null geodesic limits to comoving
coordinate

x(τ → ∞) = x0 +
(

ux

utc

)(
8

3
πρ0

)−1/2

. (A43)

The physical distance, of course, continues to increase such
that a physical observer always measures c = 1 for the speed
of light. Note that the scale factor when the light was emitted,
a0, enters utc through the null condition. This shows that in a
cosmological-constant-dominated universe light is limited in
the comoving distance it is able to travel. Thus, all observers
separated by a comoving distance

D >
1

a0

(
8

3
πρ0

)−1/2

(A44)

at τ = 0 are not causally connected.

4. Null geodesics in FLRW: Comoving spherical coordinates

Next, let us consider spherical polar coordinates with the
line element given by Eq. (18). The null condition is

−c2 ṫ2 + a2
[
ṙ2
c + r2

c (θ̇2 + sin2 θϕ̇2)
] = 0, (A45)

and the geodesic equations are now

ẗ + aa′

c2

[
ṙ2
c + r2

c (θ̇2 + sin2 θϕ̇2)
] = 0, (A46a)

r̈c + 2
ȧ

a
ṙc − rc(θ̇2 + sin2 θϕ̇2) = 0. (A46b)

θ̈ + 2

(
ṙc

rc

+ ȧ

a

)
θ̇ − cos θ sin θϕ̇2 = 0, (A46c)

ϕ̈ + 2

(
ṙc

rc

+ ȧ

a
+ cot θ θ̇

)
ϕ̇ = 0. (A46d)

From the null condition and ȧ = a′ ṫ , Eq. (A46a) leads
immediately to

ẗ + ȧ

a
ṫ = 0. (A47)

That the t equation is the same as that found previously
is entirely expected; the change of coordinate system from
Cartesian to spherical leaves the t coordinate unchanged, and
hence the parametric equation for t should also remain un-
changed. A first integral for ϕ can also be found immediately,

ϕ̇ = ω0

(
rc0a0 sin θ0

rca sin θ

)2

. (A48)

However, to find complete solutions it is advantageous to
assume that θ = π/2, in which case Eq. (A46c) also yields
a first integral,

θ̇ = θ̇0

(
rc0a0

rca

)2

. (A49)

What this shows is that if we confine ourselves to the equatorial
plane with θ̇0 = 0, then we remain in the equatorial plane.
Finding the solution to the r equation (A46b) is more difficult.
In the limited case of purely radial null geodesics then
θ̇ = ϕ̇ = 0, and the equation reduces to

r̈c

ṙc

+ 2
ȧ

a
= 0, (A50)

which is straightforward to solve.
The task is somewhat less straightforward for nonradial null

geodesics. As in the previous Minkowski example, we restrict
to θ = π/2, whence the radial equation can be written

r̈c

ṙc

+ 2
ȧ

a
− ω2

0r
4
0 a4

0

ṙr3a4
= 0. (A51)

The complexity of the last term prevents us from finding an
analytic solution in terms of rc and a. Although Eq. (A37)
provides an explicit expression for a(τ ), even this is too
complicated to solve. On the other hand, this differential
equation for rc is second order, but the null condition gives
us a first-order equation,

a2ṙ2
c + ω2

0r
4
c0
a4

0

a2r2
c

− a2
0

a2
= 0. (A52)

By substituting Eq. (A37) for a(τ ), one eventually finds the
solution

rc(τ ) =
[
u2

t c
2

(
2

utca0(1 + 3w)

(
8

3
πρ0

)− 1
2
{[

1 ±
√

8

3
πρ0

(
5 + 3w

2

)
utcτ

] 1+3w
5+3w

− 1

}
± a0rc0urc

u2
t c

2

)2

+
(

a0r
2
c0
ω0

utc

)2] 1
2

. (A53)

This can also be written in terms of a(τ ) as

rc(τ ) =
(

u2
t c

2

{
2

1 + 3w

[
a0

a(τ )ȧ(τ )
− 1

ȧ0

]
± a0rc0urc

u2
t c

2

}2

+
(

a0r
2
c0
ω0

utc

)2) 1
2

. (A54)
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Knowing rc(τ ) explicitly, Eq. (A48) can now be integrated to find an explicit parametrization of ϕ(τ )

ϕ(τ ) = tan−1

[
c2u2

t

a0r2
c0
ω0

(
2

utca0(1 + 3w)

(
8

3
πρ0

)− 1
2
{[

1 ±
√

8

3
πρ0

(
5 + 3w

2

)
utcτ

] 1+3w
5+3w

− 1

}
± a0rc0urc

u2
t c

2

)]

∓ tan−1

[
urc

rc0ω0

]
+ ϕ0. (A55)

Choosing an initial point (t0,rc0 ,π/2,ϕ0) and initial velocity (ut ,urc
,0,ω0), we then have an explicit parametrization for the curve.

Furthermore, one can readily convert this to Cartesian coordinates with xc(τ ) = rc(τ ) cos (ϕ(τ )) and yc(τ ) = rc(τ ) sin (ϕ(τ )).
These become

xc(τ ) = 2

utca0(1 + 3w)

(
8

3
πρ0

)− 1
2
{[

1 ±
√

8

3
πρ0

(
5 + 3w

2

)
utcτ

] 1+3w
5+3w

− 1

}
(urc

cos ϕ0 − rc0ω0 sin ϕ0) + rc0 cos ϕ0,

yc(τ ) = 2

utca0(1 + 3w)

(
8

3
πρ0

)− 1
2
{[

1 ±
√

8

3
πρ0

(
5 + 3w

2

)
utcτ

] 1+3w
5+3w

− 1

}
(urc

sin ϕ0 + rc0ω0 cos ϕ0) + rc0 sin ϕ0. (A56)

It can be useful to write these main results in a more compact notation. We let

d = 2

5 + 3w
and A = utc

√
8

3
πρ0. (A57)

Then we have

a = a0

[
1 ± A

d
τ

]d

(A58)

for the scale factor. Equations (A41) and (A42) become

t = utd

(1 − d)A

[(
1 + A

d
τ

)1−d

− 1

]
+ t0 (A59)

and

xc = uxd

(1 − 2d)A

[(
1 + A

d
τ

)1−2d

− 1

]
+ x0. (A60)

The spherical coordinate results Eqs. (A54) and (A55) become

rc(τ ) =
(

u2
t c

2

{
d

a0(1 − 2d)A

[(
1 ± A

d
τ

)1−2d

− 1

]
± a0rc0urc

u2
t c

2

}2

+
(

a0r
2
c0
ω0

utc

)2) 1
2

(A61)

and

ϕ(τ ) = tan−1

(
c2u2

t

a0r2
c0
ω0

{
d

a0(1 − 2d)A

[(
1 ± A

d
τ

)1−2d

− 1

]
± a0rc0urc

u2
t c

2

})
∓ tan−1

[
ur

rc0ω0

]
+ ϕ0. (A62)

While Eqs. (A56) become

xc(τ ) = d

a0(1 − 2d)A

[(
1 ± A

d
τ

)1−2d

− 1

]
(urc

cos ϕ0 − rc0ω0 sin ϕ0) + rc0 cos ϕ0,

yc(τ ) = d

a0(1 − 2d)A

[(
1 ± A

d
τ

)1−2d

− 1

]
(urc

sin ϕ0 + rc0ω0 cos ϕ0) + rc0 sin ϕ0. (A63)

As discussed in the Minkowski example, if one is only
interested in the shape of the curve and does not care whether
the parameter is affine or not, then by rescaling with

s = d

a0(1 − 2d)A

[(
1 ± A

d
τ

)1−2d

− 1

]
, (A64)

we recover

xc(τ ) = s(urc
cos ϕ0 − rc0ω0 sin ϕ0) + rc0 cos ϕ0,

yc(τ ) = s(urc
sin ϕ0 + rc0ω0 cos ϕ0) + rc0 sin ϕ0, (A65)

which is exactly the same as the spatial parametrizations in
Minkowski space-time. With an additional rescaling of t we
have explicitly recovered the conformal flatness of FLRW in
comoving spherical coordinates. This may seem like a very
roundabout way to get to a result that could have been found
more or less immediately from conformal arguments; however,
the point of this approach is that we can find an explicit affine
parametrization of the geodesics in these coordinates, and the
fact that we explicitly recover the conformality of the solutions
is an important check on the calculations.
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5. Null geodesics in FLRW: Physical coordinates

It is also advantageous to work in “physical coordinates”
centered on the cloak, rather than comoving coordinates.
The reason for this is that for the cloak to remain of fixed
size, the individual elements making up the cloak must
overcome the Hubble flow by whatever internal forces that are
keeping the cloak together. This means that although we may
consider the center of the cloak to be comoving, other points on
the cloak are not comoving. Therefore, a cloak of fixed physical
size must actually be shrinking when described in comoving
coordinates. Despite the fact that any coordinate system should
be equally adequate for describing null geodesics, physical
coordinates may be more advantageous for describing a
cloaking device of fixed physical size and for describing the
cloak parameters in a system in which all parts of the cloak
are seen to be at rest with respect to the observer.

Physical coordinates are reflective of the distances actually
measured by an observer. A fixed comoving observer measures
the physical distance from himself (at rp = 0) to a galaxy at
fixed comoving coordinate rp to be d = a(t)rp. We let this
increasing physical distance be the physical radial coordinate,
so rp = a(t)r , where r refers to the comoving coordinates.
From this relation we have

drp = a′rcdt + adrc = a′

a
rpdt + adrc, (A66)

and, therefore,

drc = 1

a
drp − a′

a2
rpdt. (A67)

Plugging this into the FLRW line element Eq. (18), there
results

ds2 = −
[
c2 − ȧ(t)2

a(t)2
r2
p

]
dt2−2

ȧ(t)

a(t)
rpdrpdt+dr2

p + r2
pd�2.

(A68)

Since the transformation from comoving to physical coordi-
nates only involves transforming the r coordinate, it is expected
that the equations for t and ϕ̇ should remain essentially
unchanged (we again assume equatorial motion). Calculating
the geodesic equations confirms that expectation, with

ṫ = uta0

a
, ϕ̇ = ω0

(
rp0

rp

)2

. (A69)

With motion constrained to the equatorial plane and these
expressions for ṫ and ϕ̇, the null condition becomes

ṙ2
p − 2

ȧṙprp

a
+ ȧ2r2

p

a2
+ ω2

0r
4
p0

r2
p

− u2
t c

2a2
0

a2
= 0. (A70)

However, it is straightforward to show that this same equation
may be obtained by starting with the null condition Eq. (A52)
in comoving coordinates and making the replacement rc →
rp/a. Therefore, the solution may be found pretty much
immediately from Eq. (A53) or Eq. (A61); it is

rp(τ ) =
(

1 + A

d
τ

)d

√√√√
u2

t c
2

{
d

(1 − 2d)A

[(
1 + A

d
τ

)1−2d

− 1

]
+ rp0

(
urp

− Arp0

)
u2

t c
2

}2

+ r4
p0

ω2
0

u2
t c

2
. (A71)

The equation for ϕ̇ can now be directly integrated to find

ϕ(τ ) = tan−1

(
u2

t c
2

r2
p0

ω0

{
d

(1 − 2d)A

[(
1 − A

d
τ

)1−2d

− 1

]
+ rp0

(
urp

− Arp0

)
u2

t c
2

})
− tan−1

[
urp

− Arp0

rp0ω0

]
+ ϕ0. (A72)

Once again the Cartesian coordinates can be expressed as xp = rp cos ϕ and yp = rp sin ϕ. We find

xp(τ ) = d

(1 − 2d)A

(
1 + A

d
τ

)2d[(
1 + A

d
τ

)1−2d

− 1

][(
urp

− Arp0

)
cos ϕ0 − rp0ω0 sin ϕ0

] +
(

1 + A

d
τ

)2d

,rp0 cos ϕ0

yp(τ ) = d

(1 − 2d)A

(
1 + A

d
τ

)2d[(
1 + A

d
τ

)1−2d

− 1

][(
urp

− Arp0

)
sin ϕ0 + rp0ω0 cos ϕ0

]+
(

1 + A

d
τ

)2d

.rp0 sin ϕ0 (A73)

This is an interesting result that is substantially different
to the usual behavior that an observer in Minkowski space-
time expects. As before, suppose that at τ = 0 the curve
makes its closest approach to rp = 0, in which case the
initial tangent to the curve has no radial component, urp

= 0,
and we can relate ϕ0 to the angle ϕin at which the tra-
jectory crosses the x axis via ϕ0 = ϕin + π/2. In both
the Minkowski and comoving cases this allowed us to make the
simplification

x(s) = s cos ϕin − b sin ϕin,

y(s) = s sin ϕin + b cos ϕin, (A74)

which carries with it the implication that if ϕin = 0 then the
trajectory remains at fixed y and if ϕin = π/2 the trajectory
remains at fixed x. However, in the case of physical coordinates
this is no longer the case. Indeed, for a trajectory with ur = 0
and ϕin = 0, the y component continues to evolve as

y(τ ) = rp0

(
1+A

d
τ

)2d{
1+ d

1−2d

[(
1 + A

d
τ

)1−2d

− 1

]}
.

(A75)

Thus, according to a physical observer, expansion of a
congruence of null geodesics is inevitable and unavoidable.
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APPENDIX B: COORDINATE TRANSFORMATIONS
BETWEEN COMOVING AND PHYSICAL COORDINATES

The coordinate transformation between comoving coordi-
nates (t,rc,θ,ϕ) and physical coordinates (t,rp,θ,ϕ) is given
by

rp = a(t)rc, (B1)

while the coordinate transformation from comoving to physi-
cal coordinates is given by the inverse of this, or

rc = 1

a(t)
rp. (B2)

We may make manifest the invariance of a tensorial object
under this kind of diffeomorphism of the manifold to itself; call
it C : M → M and its inverse C−1. The associated differential
dC : Tqc

M → Tqp
M defines a map from the tangent space at

a point xc = qc in comoving coordinates to the tangent space
at the related point xp = qp = T (xc) in physical coordinates.
The vectorial components v

μ
qc

at point xc = q in comoving
coordinates transform to the vectorial components vν ′

qp
(where

primed indices refer to physical coordinates) at point xp =
qp = C(p) in physical coordinates via the pushforward map
given by the differential dC. This takes the form

vν ′
qp

= J ν ′
μ

∣∣
qc

vμ
qc

, (B3)

where J ν ′
μ is the Jacobian matrix of C, evaluated at qc, and is

the matrix representation of the differential dC. Note that if
J ν ′

μ depends explicitly on the coordinate function xc, then the
components of the vector field vν ′

will be expressed in terms of
xc, so we must furthermore use the coordinate transformation
C to transform the coordinate function appearing in vν ′

.
Next consider the mapping of differential forms. A 1-form

ωμ in comoving coordinates must be pulled back to physical
coordinates via the pullback map associated with C−1 rather
than C itself. The covectorial components ωμ(qc) at point qc

in comoving coordinates transform to covectorial components
ων ′

(qp) (where primed indices refer to physical coordinates) at
point xp = qp = C(p) in physical coordinates via the pullback
map given by the differential dC−1. This takes the form

ων ′(qc) = L
μ

ν ′
∣∣
qp

ωμ(qc), (B4)

where L
μ

ν ′ is the Jacobian matrix of C−1 and is evaluated at
the point qp. Since C−1 is the inverse of C, the two Jacobian
matrices are related. In particular,

L
μ

ν ′ = (
J ν ′

μ

)−1∣∣
xc→C(xc), (B5)

and the coordinate invariance of a tensorial object follows

v(xc) = vμ
qc

J ν ′
μ

∣∣
qc

L
μ

ν ′
∣∣
qp

∂

∂x
μ
c

∣∣∣∣
xc→C(xc)

= vν ′
qp

∂

∂xν ′
p

= v(xp).

(B6)

Now if we want to transform the tensor components χαβ
μν(xc)

from comoving to physical coordinates, we apply

χα′β ′ μ
′ν ′

(xp) = Lα
α′L

β

β ′χαβ
μν(xc)Jμ′

μ J ν ′
ν

∣∣
xc→C(xc). (B7)

A similar construction allows us to transform from physical
coordinates back to comoving coordinates. The essential

difference between a coordinate and corporeal transforma-
tion is that a coordinate transformation transforms both the
components and the basis elements, as in Eq. (B6), whereas
a corporeal transformation acts only upon the components,
while leaving the basis elements intact.

APPENDIX C: LOCAL FRAME TRANSFORMATIONS

In curved space-times we often deal with coordinate patches
where the coordinates are not orthonormal. This implies that
the metric appears as something other than the Minkowski
metric. It is desirable to be able to construct a locally flat
frame, relative to which a vector, covector, or mixed tensor
may be described.

Begin with vectors. For a given choice of coordinates there
exists a set of associated vector fields { ∂

∂xα }. This set of basis
vector fields span the tangent bundle over some portion of the
manifold. Relative to this set of coordinate basis vector fields,
any vector field may be decomposed as

V = V α ∂

∂xα
. (C1)

These basis vector fields are chosen out of convenience be-
cause they have a natural association to the chosen coordinates.
However, even with the chosen coordinates it is possible to
choose a different set of basis vector fields that will span the
tangent bundle over the same portion of the manifold. Let us
label this new set of basis vector fields {eA}, which is often
called a tetrad or vierbein field. Since the basis sets { ∂

∂xα } and
{eA} both span the same vector (tangent bundle) space, we may
express one set as a linear combination of the other,

eA = eA
α ∂

∂xα
. (C2)

Generally, the set {eA} is not associated with a coordinate
system in the same way that the set ∂

∂xα is. We therefore refer
to the set {eA} as a noncoordinate set of basis vector fields.
Since they both span the tangent bundle, the set {eA} is just as
good a choice as { ∂

∂xα } for decomposing a vector field. Thus,
the vector field V that was previously decomposed over the
coordinate basis vector fields may now be decomposed over
the noncoordinate vector fields

V = V AeA. (C3)

One can think of the usual coordinate basis vector fields as an
especially chosen tetrad field, subject to conditions discussed
in Sec. V.

Similarly, associated with the chosen coordinate system we
have the set of basis covector fields (1-forms) {dxμ}. This set
of basis 1 forms spans the cotangent bundle over the same
portion of the manifold as above. Relative to this basis, any
1-form ω may be decomposed as

ω = ωαdxα. (C4)

Again, these basis covector fields are chosen out of conve-
nience because they have a natural association to the chosen
coordinates. However, even with the chosen coordinates it
is possible to choose a different set of basis covector fields
that span the cotangent bundle over the same portion of the
manifold. In particular, we choose a set of covector fields
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{θA} that are dual to the vector fields chosen above such that
θAeB = δA

B , just as for coordinate basis fields we have the dual
relation dxμ ∂

∂xν = δμ
ν . Since the basis sets {θA} and {dxμ}

both span the same vector (cotangent bundle) space, we may
express one set as a linear combination of the other. We let

θA = eA
μdxμ. (C5)

Since the set {θA} is not associated with a coordinate system in
the same way that {dxμ} is, we refer to {θA} as a noncoordinate
set of basis covector fields.

Because of the dual nature of both the coordinate and the
noncoordinate sets of basis fields, we have

θAeB = (
eA

μdxμ
)(

eB
α ∂

∂xα

)
= (eA

μeB
α)dxμ ∂

∂xα

= (
eA

μeB
α
)
δμ
α = eA

μeB
μ. (C6)

However, since by duality θAeB = δA
B we have a condition on

the coefficients, namely that

eA
μeB

μ = δA
B . (C7)

Now, since

V = V AeA = V AeA
α ∂

∂xα
= (

V AeA
α
) ∂

∂xα
= V α ∂

∂xα
, (C8)

we have a way of transforming the coefficients of a vector
field from the coordinate basis to the noncoordinate basis and
similarly for 1 forms. Thus, we know how to transform both
the coefficients and basis elements that describe vector fields
and 1 forms. Transformation of mixed tensor fields follows
straightforwardly in the usual manner.

Given a line element 2-form ds2, it can be decomposed
relative to either the coordinate basis fields, or any other set of
basis fields,

ds2 = gABθAθB = eA
αeB

βgαβeA
αdxαeB

βdxβ = gαβdxαdxβ.

(C9)

In particular, we may choose a set of tetrad basis fields such
that gAB is the Minkowski metric. However, that metric does
not refer to Minkowski coordinates or even to the Minkowski
coordinate basis covector fields. Instead, it refers to the
noncoordinate basis covector fields {θA}.

To summarize, we may decompose a vector field V,
covector field ω, or mixed tensor χ with respect to either
coordinate or noncoordinate basis fields, and this can be done

regardless of the choice of coordinates. A tetrad comprises a
chosen set of basis vector fields at each coordinate point, but
they are independent of the coordinate basis at that point.

APPENDIX D: COORDINATE TRANSFORMATION
BETWEEN LOCAL FRAMES

Given χαβ
μν(xc) in comoving coordinates, we now under-

stand this symbol to represent the coefficients of the tensor
object χ decomposed relative to the sets of coordinate basis
vector and covector fields (or some tensor product of them).
From the previous discussion of local frames and tetrads, we
can instead decompose χ relative to a chosen frame where the
metric is Minkowskian,

χAB
CD(xc) = eA

αeB
βeC

μeD
νχαβ

μν(xc). (D1)

On the other hand, in physical coordinates we have χα′β ′μ
′ν ′

(xp)
as the coefficients of the same object χ decomposed relative
to the coordinate basis vector and covector fields of physical
coordinates. However, we can just as well describe this relative
to a locally flat set of basis vector fields as

χA′B ′C
′D′

(xp) = eA′α
′
eB ′β

′
eC ′

μ′eD′
ν ′χα′β ′μ

′ν ′
(xp). (D2)

We know how to transform the coordinate decomposition of
χ from comoving to physical coordinates, so the remaining
question is how do we transform from the noncoordinate
decomposition of χ in a local frame of comoving coordinates
to the noncoordinate decomposition of χ in a local frame of
physical coordinates? From Eqs. (B7) and (D2) this should be

χA′B ′C
′D′

(xp) = eA′α
′
eB ′ β

′
eC ′

μ′eD′
ν ′Lα

α′L
β

β ′e
A

αeB
βeC

μeD
ν

×χAB
CD(xc)Jμ′

μ J ν ′
ν

∣∣
xc→T (xc). (D3)

Combining the frame transformations with the coordinate
transformations leads to

χA′B ′C
′D′

(xp) = KA′AKB ′BMC ′
CMD′

DχAB
CD(xc)|xc→T (xc),

(D4)

with

KA′A = eA
αLα

α′eA′α
′

(D5)

and

MC ′
C = eC

μJμ′
μ eC ′

μ′ . (D6)
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