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Coherence and dimensionality of intense spatiospectral twin beams
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Spatiospectral properties of twin beams at their transition from low to high intensities are analyzed in parametric
and paraxial approximations using decomposition into paired spatial and spectral modes. Intensity auto- and
cross-correlation functions are determined and compared in the spectral and temporal domains as well as the
transverse wave-vector and crystal output planes. Whereas the spectral, temporal, and transverse wave-vector
coherence increases with the increasing pump intensity, coherence in the crystal output plane is almost independent
of the pump intensity owing to the mode structure in this plane. The corresponding auto- and cross-correlation
functions approach each other for larger pump intensities. The entanglement dimensionality of a twin beam is
determined with a comparison of several approaches.
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I. INTRODUCTION

The nonlinear process of parametric down-conversion [1]
is the most frequently used process for the generation of light
with nonclassical properties. It provides entangled photon
pairs in its spontaneous regime [2]. Photons comprising a
photon pair can be entangled in different degrees of freedom
including polarization, frequency, emission direction, or or-
bital angular momentum. Entanglement in all these degrees of
freedom has been found useful both for testing the rules of
quantum mechanics [3] and for applications [4].

On the other hand, parametric down-conversion generates
so-called twin beams when stimulated emission is important.
Such twin beams are composed of a signal and an idler fields
with large intensities that are mutually strongly correlated.
These correlations occur both in the spectra and in the emission
directions as a consequence of the properties that give different
kinds of entanglement at the single-photon level. Moreover,
the intensity correlations are so strong that they violate the
standard shot-noise limit (sub-shot-noise correlations) [5,6].
This nonclassical property originates in the genuine pairwise
character of parametric down-conversion at its quantum level.
Experimental evidence of sub-shot-noise intensity correlations
has been given in Refs. [7–10]. Such states are useful also for
quantum imaging. Even imaging based upon sub-shot-noise
intensity correlations has been recently demonstrated [11,12].

Spontaneous parametric down-conversion with its pro-
duction of entangled photon pairs has been studied by far
the most frequently. In theory, the first-order solution of
the appropriate Schrödinger equation provides a two-photon
amplitude that determines all properties of entangled photon
pairs [13,14]. This simple formalism is also easily applicable
to more complex nonlinear structures generating photon
pairs (waveguides, fibers, layered structures, Bragg-reflector
waveguides, periodically poled structures; for details, see,
e.g., [15]). At present, photon pairs with more or less arbitrary
properties can be efficiently generated due to the many kinds
of available sources.

*jan.perina.jr@upol.cz

On the other hand, investigations of twin beams have
been concentrated on more intense twin beams [16] because
of the lack of detection techniques capable of detecting
intensities at the transition from the single-photon level to
the intense (“classical”) one [17]. This has required intense
pump lasers that have provided quasimonochromatic beams
(usually picosecond pulses). As a consequence, the developed
theoretical models usually invoke the quasimonochromatic
approximation. When combined with the pump-field quasi-
plane-wave approximation, a twin beam in the model has
been decomposed into many more or less independent pairs
of signal and idler modes localized both in the spectrum and
in the transverse wave-vector plane [18–21]. The dynamics
of individual pairs of modes has then been treated by the
solution of linear Heisenberg equations. Under more general
conditions, numerical solution of the Maxwell equations
using a statistical ensemble of initial conditions has been
useful [22].

The Schmidt decomposition [23,24] of two-photon ampli-
tudes introduced for pure states at the single-photon level has
become popular in the last couple of years due to its ability to
quantify entanglement in larger Hilbert spaces and to reveal the
genuine dual structure of a bipartite entangled state [25,26].
Such modes can even be selected from a beam [27–30] or
changed on demand. However, the revealed paired modes
have been found suitable also for making a bridge between
the perturbation theory of weak paired fields and that of
intense beams. The corresponding theory has been based
upon solution of the Heisenberg equations for individual and
independent paired modes, similarly to the theory developed
earlier for intense twin beams. In contrast to this theory based
on localized modes, it uses the Schmidt modes spread over
the whole spectrum or transverse wave-vector plane [31]. This
makes the theory suitable for describing the coherence of the
twin beams and especially its growth with increasing pump
intensity. It has already been applied to describe spectral
properties and amplitude squeezing of weaker as well as
more intense twin beams [32–34]. Angular properties of the
twin beams have also been addressed [35]. Even nonlinear
waveguides with back-scattering have been investigated using
this approach [36].
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However, the spectral and spatial properties of a twin beam
have been considered only separately in this approach up to
now. This represents a serious simplification as the spectral
and spatial modes are inevitably mutually coupled in the
nonlinear interaction. The consideration of only the spectral
(or spatial) modes allows an understanding of the behavior
of twin beams only to a certain extent as the approach is
not able to describe correctly the common dynamics of both
spectral and spatial degrees of freedom. The “one-dimensional
Schmidt-mode models” developed up to now are in fact simple
phenomenological models that are conveniently applied for
interpreting the experimental results obtained under specific
conditions [strong spatial (spectral) filtering for the spectral
(radial transverse direction) model]. On the other hand, real
down-conversion occurs in a nonlinear crystal with all possible
spatiospectral modes participating in the interaction. As bulk
nonlinear crystals are commonly used for the generation of
intense twin beams, the number of participating modes is large.
Moreover, the number of modes giving an important (intensity)
contribution to the generated twin beam is also large. That is
why a general spatiospectral model of twin-beam generation
is necessary.

In this contribution, we develop the Schmidt-mode ap-
proach for describing such a general spatiospectral twin
beam. Using the paired spatiospectral modes, we address
coherence of the twin beams, determining their auto- and cross-
correlation functions in the spectral and temporal domains, the
transverse wave-vector plane, and the crystal output plane.
Properties of the twin beams manifested under different
experimental conditions are compared. Special attention is
paid to the dependence of coherence on the pump intensity.
The coherence properties of the twin beams together with their
photon-number statistics are used to compare several suitable
quantifiers of their dimensionality [37,38]. This provides a
complete picture of an intense spatiospectral twin beam.

The developed model can easily be generalized to more
complex nonlinear structures with nonlinearity homogeneous
in the transverse plane, including poled nonlinear crys-
tals [39,40] and nonlinear layered structures [15]. It can
even be applied for the description of intense twin beams
originating in the nonlinear process of four-wave mixing, both
in nonlinear crystals with χ (3) nonlinearity and in atomic
ensembles. Four-wave mixing in atomic ensembles [41],
although partly noisy [42], is very attractive due to the high
effective nonlinear coupling constants. Noiseless spatially
resolved amplification [43] as well as entangled images [12]
in this scheme using 85Rb vapors have been experimentally
demonstrated.

Recently, the first experimental investigations of ul-
traintense twin beams have been reported both for mul-
timode [17,44–48] and for single-mode (bright squeezed-
vacuum states) fields [49]. The effects of pump-field depletion
have been observed. Also backflow of energy from the twin
beam into the pump field may occur. These processes affect
the spectra as well as the transverse profiles of the twin
beams [45–47]. Here, we restrict our attention to the case of
undepleted pump fields (parametric approximation). However,
and importantly, the generalization of the theory to account
for pump-field depletion and backflow of energy is possible
due to the fact that the model incorporates all spatiospectral

degrees of freedom. This generalization will be reported
elsewhere.

The paper is organized as follows. A spatiospectral model
of parametric down-conversion based upon the Schmidt paired
modes is developed in Sec. II. Quantities characterizing
spectral and temporal properties of twin beams are defined
in Sec. III. Several suitable quantifiers of dimensionality of a
twin beam are introduced in Sec. IV. Spectral and temporal
properties of twin beams as functions of the pump intensity are
discussed in Sec. V. Properties of twin beams in the transverse
wave-vector plane and the crystal output plane are analyzed in
Sec. VI. Conclusions are drawn in Sec. VII. In the Appendix,
twin beams are described in their transverse wave-vector plane
(far field) and the crystal output plane (near field).

II. THEORY OF A SPATIOSPECTRAL TWIN BEAM

Optical parametric down-conversion and its evolution along
a nonlinear medium characterized by the tensor d of second-
order nonlinear coefficients is described by the momentum
operator Ĝint written in the interaction representation as
follows [50,51]:

Ĝint(z) = 4ε0

∫
dxdy

∫ ∞

−∞
dt[d : E(+)

p (r,t)Ê(−)
s (r,t)

×Ê(−)
i (r,t) + H.c.]; (1)

r = (x,y,z). In Eq. (1), E(+)
p describes the positive-frequency

part of a classical pump electric-field amplitude and Ê(−)
s

[Ê(−)
i ] stands for the negative-frequency part of a signal-

(idler-) field operator amplitude. The symbol : is shorthand
for tensor shortening with respect to its three indices, ε0 is
the permittivity of vacuum, and H.c. replaces the Hermitian
conjugated term.

The electric-field amplitudes E(+)
a (r,t) [E(+)

a (r,t) =
E(−)∗

a (r,t)] of the interacting fields can be decomposed into
harmonic plane waves with wave vectors ka and frequencies
ωa:

E(+)
a (r,t) = 1

√
2π

3

∫
dka E(+)

a (ka) exp(ikar − iωat),

(2)
a = p,s,i.

We assume that the interacting fields can be described
in paraxial approximation which provides the relation k =
(kx,ky,kz) = (kx,ky,k − [k2

x + k2
y]/2k), k =

√
k2
x + k2

y + k2
z ,

valid for fields propagating close to the z direction.
We consider a strong pump field with a Gaussian spectrum

and Gaussian transverse profile. It is described in paraxial
approximation as follows:

E(+)
p (r,t) = 1

√
2π

3

∫
dk⊥

p

∫ ∞

0
dωp E⊥

p (k⊥
p )E‖

p(ωp)

× exp(ikp,xx) exp(ikp,yy) exp(ikpz)

× exp

(
− i

k2
p,x + k2

p,y

2kp
z

)
exp(−iωpt); (3)
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k⊥
p ≡ (kp,x,kp,y) and kp = kp(ωp). The temporal spectrum

E
‖
p(ωp) of the Gaussian pump pulse is expressed as

E‖
p(ωp) = ξp

√
τp√
2π

exp

[
−τ 2

p

(
ωp − ω0

p

)2

4

]
. (4)

According to Eq. (4), the pump pulse has amplitude ξp,
duration τp, and carrying frequency ω0

p. Provided that the
pulsed pump field source has power Pp and repetition rate
f , the amplitude ξp is given by the relation

ξp =
√

Ppωp

ε0c2kpf
, (5)

where c is the speed of light in vacuum. The pump field,
radially symmetric in its transverse plane, is characterized by
the Gaussian spatial spectrum

E⊥
p (k⊥

p ) = wp√
2π

exp

[
−w2

p

(
k2

p,x + k2
p,y

)
4

]
, (6)

where wp gives the beam radius.
The signal and idler electric-field operator amplitudes Ê(−)

s

and Ê(−)
i are decomposed in a similar way to the pump field

in paraxial approximation:

Ê(−)
a (r,t) = 1

√
2π

3

∫
dk⊥

a

∫ ∞

0
dωa Ê(−)

a (k⊥
a ,ωa) exp(−ika,xx) exp(−ika,yy) exp(−ikaz) exp

(
i
k2
a,x + k2

a,y

2ka

z

)
exp(iωat),

(7)
a = s,i.

The spectral operator amplitudes Ê(−)
a (k⊥

a ,ωa) can be expressed using creation operators â†(k⊥
a ,ωa) that add a photon into the

mode with transverse wave vector k⊥
a and frequency ωa:

Ê(−)
a (k⊥

a ,ωa) = −i

√
�ω2

a

2ε0c2ka

â†
a(k⊥

a ,ωa); (8)

� is the reduced Planck constant. We note that na = cka/ωa gives the index of refraction of field a. The creation and annihilation
operators fulfill the usual boson commutation relations appropriate for the quantization of photon flux [52,53],

[âa(k⊥
a ,ωa),â†

a′ (k′⊥
a′ ,ω

′
a′ )] = δaa′δ(k⊥

a − k′⊥
a′)δ(ωa − ωa′), (9)

where δ means the Dirac δ function and δaa′ stands for the Kronecker symbol.
Substituting expressions (3) and (7) into Eq. (1) for momentum operator Ĝint we arrive at the formula

Ĝint(z)=− 2�deff√
2π

3
c2

∫
dk⊥

s

∫
dk⊥

i

∫ ∞

0
dωs

∫ ∞

0
dωi

∫ ∞

0
dωp δ(ωp−ωs − ωi)E

‖
p(ωp)

ωsωi√
kski

TL(k⊥
s ,k⊥

i )

× exp{i[kp(ωs + ωi) − ks(ωs) − ki(ωi)]z}â†
s (k⊥

s ,ωs,z)â†
i (k⊥

i ,ωi,z) + H.c., (10)

where deff is an effective nonlinear coefficient. The function TL describes correlations between the signal and idler fields in the
transverse wave-vector plane:

TL(k⊥
s ,k⊥

i ) =
∫

dk⊥
p δ(k⊥

p − k⊥
s − k⊥

i )E⊥
p (k⊥

p )
1

L

∫ L

0
dz exp

(
−i

[ |k⊥
p |2

2kp
− |k⊥

s |2
2ks

− |k⊥
i |2

2ki

]
z

)
; (11)

|k⊥
a |2 = k2

a,x + k2
a,y . We note that the average value of the phase mismatch determined along the crystal of length L occurs in

formula (11).

These correlations are conveniently expressed using dual
orthonormal transverse modes of the signal and idler fields.
These modes are revealed by the Schmidt decomposition
of the normalized function T n

L , TL = t⊥T n
L and t⊥2 =∫

dk⊥
s

∫
dk⊥

i |TL(k⊥
s ,k⊥

i )|2. As we are interested in the radially
symmetric geometry, the use of radial variables k⊥

a and ϕa

is convenient [k⊥
a = (k⊥

a cos(ϕa),k⊥
a sin(ϕa))]. We note that

the considered radial symmetry is broken for narrow pump
beams owing to the crystal anisotropy [54–56]. In the radially
symmetric geometry, the normalized function T n

L can be
rewritten in the form

T n
L (k⊥

s ,k⊥
i ) = 1

2π

∞∑
m=−∞

TL,m(k⊥
s ,k⊥

i ) exp[im(ϕs − ϕi)]. (12)

The functions TL,m introduced in Eq. (12) and defined as

TL,m(k⊥
s ,k⊥

i ) =
∫ 2π

0
d(ϕs − ϕi) T n

L (k⊥
s ,k⊥

i ) exp[−im(ϕs − ϕi)]

(13)

can be decomposed as follows:

√
k⊥

s k⊥
i TL,m(k⊥

s ,k⊥
i ) =

∞∑
l=0

λ⊥
mlus,ml(k

⊥
s )ui,ml(k

⊥
i ). (14)

The eigenfunctions us,ml and ui,ml form the orthonormal
dual bases and λ⊥

ml denote the corresponding eigenvalues.
Substituting Eq. (14) into Eq. (12), we reveal the Schmidt
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decomposition of the normalized function T n
L :√

k⊥
s k⊥

i T n
L (k⊥

s ,ϕs,k
⊥
i ,ϕi)

=
∞∑

m=−∞

∞∑
l=0

λ⊥
mlts,ml(k

⊥
s ,ϕs)ti,ml(k

⊥
i ,ϕi). (15)

The transverse-mode functions ts,ml and ti,ml occurring in
Eq. (15) take the forms

ts,ml(k
⊥
s ,ϕs) = us,ml(k⊥

s ) exp(imϕs)√
2π

,

(16)

ti,ml(k
⊥
i ,ϕi) = ui,ml(k⊥

i ) exp(−imϕi)√
2π

.

The introduction of field operators âa,ml(ωa,z) related to
the transverse-mode functions ta,ml ,

âa,ml(ωa,z) =
∫ ∞

0
dk⊥

a

∫ 2π

0
dϕa t∗a,ml(k

⊥
a ,ϕa)âa(k⊥

a ,ϕa,ωa,z),

a = s,i, (17)

allows rewriting the interaction momentum operator Ĝint in
Eq. (10) as follows:

Ĝint(z) = −2�deff t
⊥

√
2π

3
c2

∑
m,l

λ⊥
ml

∫ ∞

0
dωs

∫ ∞

0
dωi

ωsωi√
kski

×E‖
p(ωs + ωi) exp{i[kp(ωs + ωi) − ks(ωs)

− ki(ωi)]z}â†
s,ml(ωs,z)â†

i,ml(ωi,z) + H.c. (18)

If the nonlinear interaction is weak, we can obtain a perturba-
tion solution of the corresponding Schrödinger equation and
express the output state |ψ〉out in the form

|ψ〉out = − i

�

∫ L

0
dz Ĝint(z)|ψ〉in, (19)

where |ψ〉in is the input signal and idler state. Substitution of
Eq. (18) into Eq. (19) and consideration of the input vacuum
state |vac〉 result in the formula

|ψ〉out = t⊥
∑
m,l

λ⊥
ml

∫ ∞

0
dωs

∫ ∞

0
dωi FL(ωs,ωi)

×â
†
s,ml(ωs,0)â†

i,ml(ωi,0)|vac〉, (20)

where

FL(ωs,ωi) = 2ideff√
2π

3
c2

ωsωi√
kski

E‖
p(ωs + ωi)

×
∫ L

0
dz exp{i[kp(ωs + ωi) − ks(ωs) − ki(ωi)]z}.

(21)

We note that the vacuum state |vac〉 is omitted in the expression
for the output state |ψ〉out in Eq. (20).

Using eigenfunctions fs,q and fi,q and eigenvalues λ
‖
q of

the Schmidt decomposition of the normalized function Fn
L

[FL = f ‖Fn
L , f ‖2 = ∫

dωs
∫

dωi|FL(ωs,ωi)|2], we can rewrite

Eq. (21) as follows:

FL(ωs,ωi) = f ‖
∞∑

q=0

λ‖
qfs,q (ωs)fi,q(ωi). (22)

New field operators âa,mlq defined as

âa,mlq =
∫ ∞

0
dωa f ∗

a,q(ωa)âa,ml(ωa,0), a = s,i, (23)

provide a simple formula for the output state |ψ〉out:

|ψ〉out = t⊥f ‖ ∑
m,l,q

λ⊥
mlλ

‖
q â

†
s,mlq â

†
i,mlq |vac〉. (24)

According to Eq. (24) the output state |ψ〉out is composed of
photon pairs in independent paired modes numbered by indices
(m,l,q) with probability amplitudes t⊥f ‖λ⊥

mlλ
‖
q .

Using the paired modes revealed both in the transverse
wave-vector plane and in the spectrum we rewrite the “aver-
aged” momentum operator

∫ L

0 dzĜint(z)/L from Eq. (18) in
the form

Ĝav
int(z) = − i�t⊥f ‖

L

∞∑
m=−∞

∞∑
l,q=0

λ⊥
mlλ

‖
q â

†
s,mlq (z)â†

i,mlq(z) + H.c.

(25)

using the operators âa,mlq defined in Eq. (23). The crucial
advantage of the averaged momentum operator Ĝav

int is that it
diagonalizes the nonlinear interaction, leaving the separated
Heisenberg equations for each pair of modes. We note that
some of the paired modes are degenerate in certain symmetric
configurations (e.g., collinear spectrally degenerate emission)
in the sense that both the signal and idler photons are emitted
into the same spatiospectral mode [57]. However, we do not
consider such modes explicitly here. Considering an (m,l,q)th
mode, the Heisenberg equations are written as follows:

dâs,mlq (z)

dz
= Kmlq â

†
i,mlq (z),

(26)
dâi,mlq (z)

dz
= Kmlq â

†
s,mlq (z),

using effective nonlinear coupling constants Kmlq ,

Kmlq = t⊥f ‖

L
λ⊥

mlλ
‖
q . (27)

The solution of the linear equations (26) for an (m,l,q)th
mode and the crystal of length L takes a simple form:

âs,mlq (L) = cosh(KmlqL)âs,mlq(0) + sinh(KmlqL)â†
i,mlq(0),

âi,mlq (L) = cosh(KmlqL)âi,mlq(0) + sinh(KmlqL)â†
s,mlq(0).

(28)

The solution for a given transverse mode (m,l) can be
conveniently expressed in the matrix form

âs,ml(L) = Us,ml âs,ml(0) + Vml â
†
i,ml(0),

(29)
âi,ml(L) = Ui,ml âi,ml(0) + V†

ml â
†
s,ml(0).
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The matrices Us,ml , Ui,ml , and Vml introduced in Eq. (29) are
written in their singular-valued decompositions as follows:

Ua,ml = Fa,ml�
U
mlF

T
a,ml, a = s,i,

(30)
Vml = Fs,ml�

V
mlF

†
i,ml .

The columns of the matrices Fs,ml (Fi,ml) in Eq. (30) are given
by the eigenmodes fs,q (fi,q) of the Schmidt decomposition
written in Eq. (22). Elements of the diagonal matrices �U

ml and
�V

ml are derived from the solution given in Eq. (28),

�U
ml,qq = Umlq = cosh(KmlqL),

(31)
�V

ml,qq = Vmlq = sinh(KmlqL).

The solution (28) allows derivation of the mean values of
experimental physical quantities. Spectral and temporal quan-
tities are determined in Sec. III below. Spatial quantities are
defined in the Appendix. The numbers of modes constituting
the twin beam are described in Sec. IV.

We note that the numerical results obtained in Ref. [34]
show that mild broadening of the modes determined from the
perturbation solution of the Schrödinger equation occurs for
strong pumping of the nonlinear process. We also note that,
in the considered radially symmetric noncollinear geometry
with the pump field at normal incidence, the signal and idler
fields propagate along the radial emission angles ϑs and ϑi,
respectively. The central radial emission angles ϑ0

s and ϑ0
i

corresponding to the central frequencies ω0
s and ω0

i are given
by the conservation of energy and transverse wave vectors:

ω0
s = ω0

p − ω0
i , k0

s sin
(
ϑ0

s

) = k0
i sin

(
ϑ0

i

)
, (32)

k0
a = ka(ω0

a). The central transverse wave vectors k⊥0
a are then

given as k⊥0
a = k0

a cos(ϑ0
a ), a = s,i. Paraxial approximation

along the radial emission angle ϑ0
a provides the following

formula for the wave vector ka (a = s,i):

ka =
([

k⊥0
a + δka

]
cos(ϕa),

[
k⊥0
a + δka

]
sin(ϕa),

[
ka − δk2

a cos
(
ϑ0

s

)2

2ka

]
cos

(
ϑ0

s

))
, (33)

where δka gives the declination of the transverse wave vector of
field a. The derived formulas valid for the close-to-collinear
geometry can be applied in general also in the noncollinear
case provided that the following formal substitution is used:

ka ←− ka cos
(
ϑ0

s

)
, δka ←− δka cos

(
ϑ0

s

)2
. (34)

III. SPECTRAL AND TEMPORAL PROPERTIES
OF TWIN BEAMS

We assume that the transverse profiles of twin beams are not
experimentally resolved and so the experimental mean values
are obtained by averaging over the transverse modes. Then the
signal-field intensity spectrum ns,ω is expressed as follows:

ns,ω(ωs) = 〈â†
s (ωs,L)âs(ωs,L)〉⊥

=
∑
ml

∑
q

|fs,q(ωs)|2V 2
mlq . (35)

The symbol 〈〉⊥ denotes quantum-mechanical averaging com-
bined with averaging in the transverse plane. The number Ns

of generated signal photons is determined from the formula

Ns =
∫ ∞

0
dωs ns,ω(ωs) =

∑
ml

∑
q

V 2
mlq . (36)

The averaged signal-field intensity spectral correlations are
characterized by the fourth-order correlation function As,ω,
given as

As,ω(ωs,ω
′
s) = 〈N : �[â†

s (ωs,L)âs(ωs,L)]

×�[â†
s (ω′

s,L)âs(ω
′
s,L)] :〉⊥

=
∑
ml

∣∣Aa
s,ml,ω(ωs,ω

′
s)
∣∣2

. (37)

The signal-field amplitude correlation function Aa
s,ml,ω belong-

ing to mode (m,l) is written in the form

Aa
s,ml,ω(ωs,ω

′
s) = 〈â†

s (ωs,L)âs(ω
′
s,L)〉⊥,ml

=
∑

q

f ∗
s,q(ωs)fs,q(ω′

s)V
2
mlq . (38)

Intensity spectral cross-correlations between the signal
and idler fields are quantified by the following fourth-order
correlation function:

Cω(ωs,ωi) = 〈N : �[â†
s (ωs,L)âs(ωs,L)]

×�[â†
i (ωi,L)âi(ωi,L)] :〉⊥

=
∑
ml

∣∣∣∣∣
∑

q

fs,q(ωs)fi,q(ωi)UmlqVmlq

∣∣∣∣∣
2

. (39)

Temporal electric-field amplitude and intensity correlations
in the twin beams outside the nonlinear crystal can be
expressed, like their spectral correlations, in terms of temporal
eigenfunctions f̃a,q(ta) determined by the Fourier transform

f̃a,q(ta) =
√

�

2π

∫
dωa

√
ωafa,q(ωa) exp(−iωata). (40)

The averaged signal-field photon flux Is,t is then derived in
terms of functions f̃s,q ,

Is,t (ts) = 2ε0c〈Ê(−)
s (r⊥

s ,L,ts)Ê
(+)
s (r⊥

s ,L,ts)〉⊥
=

∑
ml

∑
q

|f̃s,q(ts)|2V 2
mlq . (41)

The averaged signal-field intensity temporal correlation func-
tion As,t is expressed in a similar way to the spectral correlation
function As,ω given in Eq. (37),

As,t (ts,t
′
s) = (2ε0c)2〈N : �[Ê(−)

s (r⊥
s ,L,ts)Ê

(+)
s (r⊥

s ,L,ts)]

×�[Ê(−)
s (r⊥

s ,L,t ′s)Ê
(+)
s (r⊥

s ,L,t ′s)] :〉⊥
=

∑
ml

∣∣Aa
s,ml,t (ts,t

′
s)
∣∣2

. (42)

The signal-field amplitude temporal correlation func-
tion Aa

s,ml,t of mode (m,l) is determined by the

013833-5
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formula

Aa
s,ml,t (ts,t

′
s) = 2ε0c〈Ê(−)

s (r⊥
s ,L,ts)Ê

(+)
s (r⊥

s ,L,t ′s)〉⊥,ml

=
∑

q

f̃ ∗
s,q(ts)f̃s,q(t ′s)V

2
mlq . (43)

Also the averaged intensity temporal cross-correlations be-
tween the signal and idler fields can be quantified in the same
vein as in Eq. (39):

Ct (ts,ti) = (2ε0c)2〈N : �[Ê(−)
s (r⊥

s ,L,ts)Ê
(+)
s (r⊥

s ,L,ts)]

×�[Ê(−)
i (r⊥

i ,L,ti)Ê
(+)
i (r⊥

i ,L,ti)] :〉⊥

=
∑
ml

∣∣∣∣∣
∑

q

f̃s,q(ts)f̃i,q(ti)UmlqVmlq

∣∣∣∣∣
2

. (44)

As the number of transverse modes is usually large, their
eigenvalues λ⊥

ml form a quasicontinuum. In this case, we may
introduce a suitable probability function �λ and make the
following replacement in the above formulas:

∑
ml

−→
∫ max(λ⊥)

0
dλ⊥�λ(λ⊥). (45)

This makes the numerical computations considerably faster.
The mode (m,l,q) = (0,0,0) having the largest value of the

product λ⊥λ‖ of the Schmidt eigenvalues becomes dominant in
the limit of large pump power (Pp → ∞) in the un-depleted
pump approximation used. The spectral characteristics ns,ω,
As,ω, and Cs,ω then attain the simple forms

ns,ω(ωs) = Ns|fs,0(ωs)|2,
As,ω(ωs,ω

′
s) = N2

s |fs,0(ωs)|2|fs,0(ω′
s)|2, (46)

Cω(ωs,ωi) = λ⊥2
00 U 2

00,0V
2

00,0|fs,0(ωs)|2|fi,0(ωi)|2,
where Ns = V 2

00,0 gives the number of emitted signal photons.
According to Eqs. (46), the twin beam is spectrally composed
of independent single-mode signal and idler fields in this high-
intensity (classical) limit. We note that one dominant paired
mode constitutes the twin beam also in the transverse wave-
vector plane and the crystal output plane. So the signal and idler
fields are spatially and spectrally independent but internally
fully spatially and spectrally coherent.

Similar quantities to those defined above in the spectral
and temporal domains are used for describing the twin beams
in their transverse wave-vector plane and crystal output plane.
Modes in the crystal output plane are determined from those of
the transverse wave-vector plane using the Fourier transform,
just as the temporal modes have been derived from the spectral
modes. The radial symmetry of twin beams results in harmonic
azimuthal modes in the crystal output plane. It also provides the
radial modes in the crystal output plane determined from those
of the transverse wave-vector plane using the transformation
based on the Bessel functions (for details, see the Appendix).

IV. DIMENSIONALITY OF THE TWIN BEAM

The dimensionality of a twin beam can be determined
using either its paired properties or properties of the individual
signal and idler fields. In the first case, the dimensionality of
entanglement is obtained. In the second case, the numbers

of independent modes constituting the signal (or idler) field
and defined in statistical optics are reached. Entanglement
dimensionality for a general noisy twin beam is quantified via
negativity [58]. Considering pure states of the noiseless twin
beams, the Schmidt number can be applied for quantifying
entanglement dimensionality as well [23,24]. This number
can even be reached without making the Schmidt decom-
position [59,60]. The general formulas can be recast into a
simple form for quasimonochromatic or quasihomogeneous
fields [61].

Compared to weak fields, the analysis of intense twin beams
is more difficult, as the decompositions not only in the spatial
and spectral domains but also in the Hilbert spaces of individ-
ual paired spatiospectral modes spanned by the Fock-number
states would be needed. That is why we apply here a simpler
approach for determining entanglement dimensionality based
upon defining creation operators for photon pairs (for details,
see [36]). The entanglement dimensionality K of the twin
beam is obtained in this approach as follows:

K =
(∑

mlq U 2
mlqV

2
mlq

)2∑
mlq U 4

mlqV
4
mlq

. (47)

We note that formula (47) reduces to the usually used Schmidt
number of spatiospectral modes for weak twin beams.

Formula (47) can also be applied to provide the average
number Kω of effectively populated paired spectral modes:

Kω =
∑
ml

p⊥
ml

(∑
q U 2

mlqV
2
mlq

)2∑
q U 4

mlqV
4
mlq

. (48)

In Eq. (47), p⊥
ml gives the probability of having a photon pair

in mode (m,l):

p⊥
ml =

∑
q V 2

mlq∑
mlq V 2

mlq

. (49)

As in the spectrum, the average number Kkϕ of effectively
populated modes in the transverse wave-vector plane is
obtained through the formula

Kkϕ =
∑

q

p‖
q

(∑
ml U

2
mlqV

2
mlq

)2∑
ml U

4
mlqV

4
mlq

, (50)

using the probability p
‖
ml of having a photon pair in mode q;

p‖
q =

∑
ml V

2
mlq∑

mlq V 2
mlq

. (51)

The numbers Kω and Kkϕ of paired modes in the spectrum and
transverse wave-vector plane, respectively, can alternatively be
determined as the ratio of the width �ns of, say, the signal-field
intensity profile and the width of the intensity cross-correlation
function �C in the appropriate variable. This ratio, known as
the Fedorov ratio [62], coincides with the number Kω of paired
modes given in Eq. (48) for weak twin beams with a Gaussian
two-photon amplitude [63]. It has been shown in Ref. [64] that
the two numbers are close to each other for general weak twin
beams.

Modes in the signal and idler fields are ideally paired, as
well as the signal and idler photons in individual spatiospectral
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modes for the considered noiseless twin beams. That is why the
dimensionality of the twin beam can also be determined from
the number of modes and their populations counted in either
the signal or idler field. Applying coherence theory [65], an
effective number of independent modes (degrees of freedom)
in the signal (or idler) field can be obtained from its
photon-number statistics. The resulting number Kn of modes
constituting, e.g., the signal field is given by the formula valid
for a multimode thermal field [66]:

Kn =
(∑

mlq〈n̂s,mlq〉
)2∑

mlq

(〈
N : n̂2

s,mlq :
〉 − 〈n̂s,mlq〉2

)
=

(∑
mlq V 2

mlq

)2∑
mlq V 4

mlq

; (52)

n̂s,mlq ≡ â
†
s,mlq(L)âs,mlq(L).

Also, the formula for the averaged number Kn
ω of spectral

modes can be written, in analogy with the derivation of Eq. (48)
from Eq. (47),

Kn
ω =

∑
ml

p⊥
mlK

n
ω,ml,

Kn
ω,ml =

(∑
q〈n̂s,mlq〉

)2∑
q

(〈
N : n̂2

s,mlq :
〉 − 〈n̂s,mlq〉2

) (53)

=
(∑

q V 2
mlq

)2∑
q V 4

mlq

.

The averaged number Kn
kϕ of modes in the transverse wave-

vector plane can be determined by a formula analogous to that
written in Eq. (53) [compare Eqs. (48) and (50)].

The ratio K�
s of the width �ns of a signal-field intensity

profile and the width �Aa
s of the appropriate signal-field

amplitude autocorrelation function,

K�
s = �ns

�Aa
s

, (54)

defined in any variable represents also a good quantifier of the
number of independent modes of a twin beam in this variable.
We compare different quantifiers of dimensionality of the twin
beam under real experimental conditions below.

V. SPECTRAL AND TEMPORAL PROPERTIES OF
INTENSE TWIN BEAMS

In the numerical analysis, we consider a β-barium borate
(BBO) crystal 8 mm long cut for a noncollinear type-I
process (eoo) for a spectrally degenerate interaction pumped
by a pulse at wavelength λp = 349 nm with spectral width
�λp = 0.1 nm, with transverse profile of radius wp = 1 mm
and repetition rate f = 400 s−1. This pulse is provided by the
third harmonics of the Nd:YLF laser at wavelength 1.047 μm.
Assuming the pump field at normal incidence, the signal
and idler fields at the central wavelengths λ0

s = λ0
i = 698 nm

(ϑBBO = 36.3◦) propagate outside the crystal under the radial
emission angles ϑ0

s = ϑ0
i = 8.45◦. As this configuration is

symmetric for the signal and idler fields, we further discuss
only the properties of the signal field. We assume that the

(b)(a)

FIG. 1. (a) Probability function �λ of eigenvalues λ⊥
ml in the

transverse wave-vector plane and (b) spectral eigenvalues λ‖
q ; wp =

1 × 10−3 m, �λp = 1 × 10−10 m.

conditions are such that the spectral and spatial properties of
the twin beam factorize.

The generated twin beam is composed of roughly 80 000
transverse modes at low intensity. It contains 34 modes in
the radial direction and 2350 modes in the azimuthal direction
(for more details, see [56]). As the number of transverse modes
is large, we can introduce the quasicontinuum of the Schmidt
eigenvalues with its probability function �λ defined in Eq. (45).
The probability function �λ is plotted in Fig. 1(a). It reflects
the fact that the smaller the eigenvalue the larger the number of
such eigenvalues. There occur around 80 independent spectral
modes in the low-intensity regime, as shown in Fig. 1(b).

The number Ns of emitted signal photons increases roughly
exponentially with the increasing pump power Pp for more
intense fields [44], as shown in Fig. 2. The curves in Fig. 2
giving the number of emitted signal photons per one mode
show that the probabilities of spontaneous and stimulated
emissions of a signal photon (together with its idler twin)
become comparable for pump powers Pp around 0.5 mW.
Exponential increase of the number Ns of emitted signal
photons occurs already for pump powers Pp one order of
magnitude lower. It is useful to define the gain g of the

FIG. 2. Number Ns of emitted signal photons (solid curve with
�), number Ns,Kn of emitted signal photons per mode defined by
photon-number statistics (solid curve with ∗), number Ns,K of emitted
signal photons per mode given by Eq. (54) (plain curve), and gain
g (dashed curve) as functions of pump power Pp; log denotes the
decimal logarithm; wp = 1 × 10−3 m, �λp = 1 × 10−10 m.
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FIG. 3. Spectral entanglement dimensionality Kω (plain solid
curve), number Kn

ω of modes determined from photon-number
statistics (solid curve with ∗), and number K�

s,ω (K�
s,t ) of spectral

(temporal) modes given by Eq. (54) [dashed curve (dashed curve
with �)] as functions of pump power Pp; wp = 1 × 10−3 m, �λp =
1 × 10−10 m.

nonlinear interaction and to use it instead of the pump
power Pp when comparing the theoretical quantities with their
experimental counterparts. The gain g arises from a simplified
model of the nonlinear interaction that assumes only one
effective mode and the initial vacuum state of the signal and
idler fields. Formulas (27), (28), and (35) of Sec. II provide in
this case the expression (λ⊥

00 = λ
‖
0 = 1)

Ns = sinh(t⊥f ‖√Pp)2. (55)

It suggests the following approximate formula for fitting the
experimental dependence of the number Ns of signal photons:

Ns = Ns,0 sinh(g)2, (56)

where g = g0
√

Pp and Ns,0 and g0 are suitable constants. The
values of gain g assigned to pump powers Pp are plotted
in Fig. 2. They show the advantage of this parametrization:
Stimulated emission of photon pairs begins to dominate over
spontaneous emission for values of the gain g around 1 and
the transition from quantum to classical regimes (mesoscopic
regime) occurs for values of g around 10.

The spectral entanglement dimensionality Kω determined
by formula (48) decreases with increasing values of pump
power Pp [45] (see Fig. 3). The number K�

s,ω of spectral signal-
field modes as well as the number K�

s,t of temporal signal-field
modes given in Eq. (54) by the ratios of appropriate widths
and plotted in Fig. 3 are lower than the spectral entanglement
dimensionality Kω. Comparison of the curves in Fig. 3 shows
that the experimentally available values of K�

s,ω and K�
s,t can

successfully be used for quantifying the dimensionality of
the twin beam, together with the theoretical entanglement
dimensionality Kω. The number of modes constituting the twin
beam can also be derived from the photon-number statistics
in the signal (or idler) field [50,67,68]. In this case, the
number Kn

ω of modes is given by formula (53). It provides
a systematically greater numbers of modes, as the curves in
Fig. 3 show. The values of the entanglement dimensionality
Kω and the number Kn

ω of modes nearly coincide in the low-
intensity regime. This immediately follows from comparison

(b)(a)

FIG. 4. (a) Width �ns,ω of the signal-field intensity spectrum (full
width at half maximum, FWHM) as a function of pump power Pp and
(b) spectrum ns,ω for Pp = 1 × 10−7 W (plain curve) and Pp = 2 ×
10−2 W (solid curve with ∗); wp = 1 × 10−3 m, �λp = 1 × 10−10 m.
The spectrum ns,ω is normalized according to

∫
dωsns,ω(ωs)/ω0

s = 1.

of Eqs. (48) and (53) in the limit Umlq ≈ 1. Also, the numbers
K�

s,ω, K�
s,t , and Kn

ω of modes are equal to the entanglement
dimensionality Kω in the high-intensity limit (Pp → ∞). This
occurs because the strongest mode completely dominates over
the other modes in this limit.

Decrease of the number K�
s,ω of signal-field modes with

increasing pump power Pp originates in the behavior of the
spectral widths �ns,ω and �Aa

s,ω. Whereas the spectral width
�ns,ω of the signal-field intensity profile decreases with the
increasing pump power Pp [see Fig. 4(a)], the width �Aa

s,ω of
the signal-field amplitude autocorrelation function increases
[for the width �As,ω of the intensity autocorrelation function,
see Fig. 5(a)]. This occurs because the spectral modes with
greater eigenvalues λ

‖
q become more and more important

with increasing pump power Pp. Hand in hand, the role of
modes with small eigenvalues λ

‖
q is suppressed. As the modes

with large eigenvalues λ
‖
q are localized more in the middle

of the spectrum (for more details, see, e.g., [25]), narrowing
of the signal-field intensity spectrum is naturally observed.

(b)(a)

FIG. 5. (a) Widths �As,ω of the signal-field intensity autocor-
relation function (FWHM, solid curve) and �Cs,ω of the intensity
cross-correlation function (FWHM, dashed curve) as functions
of pump power Pp. In (b), the intensity autocorrelation function
Ar

s,ω(ωs) ≡ As,ω(ωs,ω
0
s )/As,ω(ω0

s ,ω
0
s ) and cross-correlation function

Cr
s,ω(ωs) ≡ Cs,ω(ωs,ω

0
i )/Cs,ω(ω0

s ,ω
0
i ) are plotted for Pp = 1 × 10−7

W (plain curves) and Pp = 2 × 10−2 W (nearly coinciding curves
with ∗); wp = 1 × 10−3 m, �λp = 1 × 10−10 m.
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(b)(a)

FIG. 6. (a) Width �Is,t of signal-field photon flux (FWHM) as a
function of pump power Pp and (b) photon flux Is,t for Pp = 1 × 10−7

W (plain curve) and Pp = 2 × 10−2 W (solid curve with ∗); wp =
1 × 10−3 m, �λp = 1 × 10−10 m. The curves in (b) are normalized
such that

∫
dtsIs,t (ts) = 1.

This is accompanied by reshaping of the spectrum ns,ω

which loses small oscillating tails present in the low-intensity
regime [see Fig. 4(b)]. As the generation of photons by
stimulated emission increases with increasing pump power
Pp, coherence in the twin beam increases. This leads to
broadening of the widths �As,ω and �Cs,ω of the intensity
auto- and cross-correlation functions [45]. As the curves in
Fig. 5(b) drawn for two different pump powers Pp show,
the intensity autocorrelation function As,ω is wider than its
cross-correlation counterpart Cs,ω in the low-intensity regime
(for the explanation, see [56]). When stimulated emission
begins to dominate over spontaneous emission [see Fig. 5(a)],
the autocorrelation and cross-correlation functions approach
each other. In the high-intensity limit Pp → ∞, the signal and
idler fields are single mode and so they are spectrally coherent.

The signal field is emitted in the form of a short pulse. It is
composed of the temporal modes f̃s,q given in Eq. (40). These
modes behave similarly to their spectral counterparts [30].
Thus, the qth mode has q maxima and q − 1 zeros in its
intensity temporal profile. Also, the greater the number q,
the wider the mode. The field transition to the high-intensity
regime looks as follows. The signal pulse is in general longer
than the pump pulse in the low-intensity regime [14]. However,
as shown in Fig. 6(a) the signal pulse shortens with increasing
pump power Pp due to the nonlinear interaction described in
the momentum operator Ĝint written in Eq. (1). The signal
pulse is also delayed with respect to the pump pulse [see
Fig. 6(b)] as a consequence of the different group velocities
of the two pulses inside the crystal [19]. The coherence in
the signal field as well as the coherence between the signal
and idler fields increase with increasing pump power Pp

due to stimulated emission, as documented in Fig. 7(a). The
intensity autocorrelation function As,t is narrower than the
intensity cross-correlation function Cs,t in the time domain
and low-intensity regime [see Fig. 7(b)]. This is opposed to
the behavior of spectral correlation functions. It originates in
properties of the Fourier transform. The cross-correlation and
autocorrelation functions are close to each other for greater
values of the pump power Pp, as shown in Fig. 7(b). In the
high-intensity limit Pp → ∞, the twin beam is found in a
separable temporally coherent state composed of the signal-
and idler-field temporal modes f̃s,0 and f̃i,0 written in Eq. (40).

(b)(a)

FIG. 7. (a) Widths �As,t of the signal-field intensity autocor-
relation function (FWHM, solid curve) and �Cs,t of the intensity
cross-correlation function (FWHM, dashed curve) depending on
pump power Pp. In (b), the intensity autocorrelation function
Ar

s,t (ts) ≡ As,t (ts,tmax
s )/As,t (tmax

s ,tmax
s ) and cross-correlation function

Cr
s,t (ts) ≡ Cs,t (ts,tmax

i )/Cs,t (tmax
s ,tmax

i ) are plotted for Pp = 1 × 10−7

W (plain curves) and Pp = 2 × 10−2 W (nearly coinciding curves
with ∗); tmax

s and tmax
i give the times with maximal photon fluxes in

the signal and idler fields, respectively; wp = 1 × 10−3 m, �λp =
1 × 10−10 m.

VI. PROPERTIES OF INTENSE TWIN BEAMS IN THE
TRANSVERSE WAVE-VECTOR AND CRYSTAL

OUTPUT PLANES

We analyze properties of the twin beam in the wave-
vector transverse plane (far field) and the crystal output
plane (near field) assuming spectral (or temporal) averaging.
Entanglement dimensionality Kkϕ in the transverse plane
gives around 80 000 modes in the low-intensity regime. It
decreases with increasing pump power Pp (see Fig. 8) [44,45].
This behavior is similar to that found in the spectral and
temporal domains. It can be explained in the same way. The
entanglement dimensionality Kkϕ in the transverse plane and

FIG. 8. Entanglement dimensionality Kkϕ (plain solid curve),
number Kn

kϕ of signal-field modes determined from photon-number
statistics (solid curve with ∗), and number K�

s,kϕ (K̃�
s,rψ ) of

signal-field modes in the transverse wave-vector (crystal output)
plane given by Eq. (54) [plain dashed curve (dashed curve with
�)] as they depend on pump power Pp. The number K̃�

s,rψ

equals K̃�2
s,r given in Eq. (54) in which the width �Ãa

s,r =
2

∫ ∞
r ′
s

drs (rs − r ′
s)A

a
s,r (rs,r

′
s)/

∫ ∞
r ′
s

drs Aa
s,r (rs,r

′
s); wp = 1 × 10−3 m,

�λp = 1 × 10−10 m.
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(b)(a)

FIG. 9. (a) Width �ns,k of the radial signal-field intensity profile
(FWHM) as a function of pump power Pp and (b) the radial intensity
profile ns,k for Pp = 1 × 10−7 W (plain curve) and Pp = 2 × 10−2

W (solid curve with ∗); wp = 1 × 10−3 m, �λp = 1 × 10−10 m. The
intensity profile ns,k is normalized such that

∫
dksns,k(ks)/k0

s = 1.

number Kn
kϕ of signal-field transverse modes provided by the

photon-number statistics are close to each other, as shown
in Fig. 8. These numbers can alternatively be experimentally
estimated using the product K�

k K�
ϕ of the ratios of intensity

widths and widths of the amplitude autocorrelation functions
in both radial and azimuthal transverse wave-vector directions
applying formula (54). Factorization of the number of modes
into its radial and azimuthal contributions is valid in our
geometry in which the photons are emitted into a narrow ring
in the wave-vector transverse plane. In the low-intensity limit,
there are around 34 (2350) modes in the radial (azimuthal)
wave-vector direction. Around 10 (1000) modes are found
in the radial (azimuthal) wave-vector direction for the pump
power Pp = 50 mW. On the other hand, the signal and idler
photons form a disk centered around x = y = 0 m in the
crystal output plane. As the correlated areas in the crystal
output plane are radially symmetric and almost do not change
with intensity (see below), we can estimate the number of
transverse modes also by the squared ratio K�2

r determined
from the appropriate widths in the radial direction. As the
curves in Fig. 8 confirm, all these quantities give reasonable
numbers of modes of the analyzed twin beam close to the
entanglement dimensionality Kkϕ .

In the wave-vector transverse plane, decrease of entan-
glement dimensionality Kkϕ with increasing pump power
Pp is explained by decrease of the width �ns,k of the
intensity profile in the radial wave-vector direction (see Fig. 9)
accompanied by increase of the widths �Aa

s,k and �Aa
s,ϕ

of the amplitude autocorrelation functions in the radial and
azimuthal wave-vector directions, respectively [44,45,69]. The
ring in the transverse wave-vector plane formed by the signal
photons [22] thus becomes narrower with increasing pump
power Pp, as confirmed by the radial signal-field intensity
profiles ns,k plotted in Fig. 9(b). The behavior of the intensity
profile ns,k and intensity auto- (As,k) and cross-correlation
(Cs,k) functions in the radial wave-vector direction (see Fig. 10)
resembles that found in the frequency domain. Here also
the autocorrelation functions As,k are broader than their
cross-correlation counterparts Cs,k for low intensities, but they
approach each other for more intense twin beams (see Fig. 10).
This behavior follows from the qualitative similarity of mode

(a) (b)

FIG. 10. (a) Widths �As,k of the signal-field intensity au-
tocorrelation function (FWHM, solid curve) and �Cs,k of the
intensity cross-correlation function (FWHM, dashed curve) in
the radial wave-vector direction as they depend on pump power
Pp. In (b), the signal-field intensity autocorrelation function
Ar

s,k(δks) ≡ As,k(k0
s + δks,k

0
s )/As,k(k0

s ,k
0
s ) and cross-correlation func-

tion Cr
s,k(δks) ≡ Cs,k(k0

s + δks,k
0
i )/Cs,k(k0

s ,k
0
i ) are plotted for Pp =

1 × 10−7 W (plain curves) and Pp = 2 × 10−2 W (nearly coinciding
curves with ∗); wp = 1 × 10−3 m, �λp = 1 × 10−10 m.

profiles in the two variables. We recall that the lth mode
in the radial wave-vector direction has l maxima and l − 1
zeros in its intensity profile. The behavior of auto- (As,ϕ) and
cross-correlation (Cs,ϕ) functions in the azimuthal wave-vector
direction is similar to that found in the radial wave-vector
direction (see Fig. 11).

In contrast to the transverse wave-vector plane, decrease
of entanglement dimensionality Krψ with increasing pump
power Pp manifests itself solely by a decrease of the width
�ns,r of the radial signal-field intensity profile in the crystal
output plane (see Fig. 12). Whereas the width �ns,r of the
radial signal-field intensity profile coincides with the width
of the pump beam for low-intensity twin beams [20], it is
narrower for more intense twin beams. This is explained by

(a) (b)

FIG. 11. (a) Widths �As,ϕ of the signal-field intensity autocor-
relation function (FWHM, solid curve) and �Cs,ϕ of the intensity
cross-correlation function (FWHM, dashed curve) in the azimuthal
wave-vector direction in dependence on pump power Pp. In (b), the
signal-field intensity autocorrelation function Ar

s,ϕ(δϕs) ≡ As,ϕ(ϕ0
s +

δϕs,ϕ
0
s )/As,ϕ(ϕ0

s ,ϕ
0
s ) valid for an arbitrary ϕ0

s and cross-correlation
function Cr

s,ϕ(δϕ) ≡ Cs,ϕ(ϕ0
s + δϕ,ϕ0

i )/Cs,ϕ(ϕ0
s ,ϕ

0
i ) given for an ar-

bitrary ϕ0
i = ϕ0

s + π are shown for Pp = 1 × 10−7 W (plain curves)
and Pp = 2 × 10−2 W (nearly coinciding curves with ∗); wp = 1 ×
10−3 m, �λp = 1 × 10−10 m.
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(a) (b)

FIG. 12. (a) Width �ns,r of the radial signal-field intensity profile
(FWHM) in the crystal output plane as a function of pump power
Pp and (b) radial intensity profile ns,r for Pp = 1 × 10−7 W (plain
curve) and Pp = 2 × 10−2 W (solid curve with ∗); wp = 1 × 10−3

m, �λp = 1 × 10−10 m. The intensity profile ns,r is normalized such
that

∫ ∞
0 drsrsns,r (rs) = 1/2.

more intense amplification of the modes localized close to the
pump-beam center relative to those occurring at the tails of
the beam. The widths of the auto- (�As,r and �As,ψ ) and
cross-correlation (�Cs,r and �Cs,ψ ) functions as well as their
shapes are nearly identical in the crystal output plane, as shown
in Fig. 13. Moreover, they do not depend much on the pump
power Pp.

Whereas both auto- and cross-correlation functions in the
frequency, time, and transverse wave-vector domains have
compact shapes, long tails and oscillations are characteristic
for the correlation functions in the crystal output plane (see
Fig. 13) [20]. This stems from a different mode structure
found in this case and discussed below. The analysis has shown
that the correlation functions As,rψ and Cs,rψ are rotationally
symmetric and more or less independent of the position
inside the emission disk. This originates in the experimental
configuration used, in which �Cs,k/k⊥0

s ≈ 0.01. This value
is so low that it does not allow development of variations
with varying position in the crystal output plane. We note

(a) (b)

FIG. 13. (a) [(b)] Signal-field intensity autocorrelation function
Ar

s,r [Ar
s,ψ ] (solid curve) and cross-correlation function Cr

s,r [Cr
s,ψ ]

(dashed curve) are shown for Pp = 1 × 10−7 W (the two curves
nearly coincide); Ar

s,r (rs) ≡ As,r (rs,r
0
s )/As,r (r0

s ,r0
s ), Cr

s,r (rs) ≡
Cs,r (rs,r

0
i )/Cs,r (r0

s ,r0
i ), Ar

s,ψ (δψs) ≡ As,ψ (ψ0
s + δψs,ψ

0
s ; r0

s )/As,ψ

(ψ0
s ,ψ0

s ; r0
s ), Cr

s,ψ (δψ) ≡ Cs,ψ (ψ0
s + δψ,ψ0

i ; r0
s ,r0

i )/Cs,ψ (ψ0
s ,ψ0

i ; r0
s ,

r0
i ); r0

s = r0
i = 1.006 × 10−3 m; ψ0

s = ψ0
i ; wp = 1 × 10−3 m,

�λp = 1 × 10−10 m.

(a) (b)

FIG. 14. Intensity profiles |ũs,ml |2 of the signal-field radial modes
in the crystal output plane for l = 0 (curve with �), 1 (∗), and
2 (◦), assuming (a) m = 0 and (b) m = 1. The modes ũs,ml are
normalized such that

∫ ∞
0 drsrs|ũs,ml(rs)|2 = 1; wp = 1 × 10−3 m,

�λp = 1 × 10−10 m.

that photon pairs emitted at the crystal end contribute to
the center of correlation functions, whereas photon pairs
generated at the beginning of the crystal are observed at
the tails of the correlation functions. Thus, the width �Aa

s,r
of the radial signal-field amplitude autocorrelation function
is sufficient for the characterization of coherence properties
(�Aa

s,r = 2.297 × 10−6 m). We note that the width �Aa
s,ψ in

the azimuthal direction depends on the distance rs from the disk
center. It attains its maximal value (�As,ψ = 2π ) for rs = 0 m
and then monotonically decreases with increasing distance
rs, in accord with the polar geometry. However, the presence
of oscillations in the correlation functions shown in Fig. 13
disqualifies the width �Aa

s,r (FWHM) as a suitable quantifier
of the extension of the field’s correlations. The width �Ãa

s,r
determined from the first moments of the position and defined
in the caption to Fig. 8 has been found suitable in this case. It
has also been used in the determination of the number K̃rψ of
signal-field modes in the crystal output plane plotted in Fig. 8
(K̃a

s,r ≈ 3.17Ka
s,r ).

The oscillatory behavior of the correlation functions and
their independence of the pump power Pp originate in the
form of radial modes ũs,ml(rs) and ũi,ml(ri) given by the
transformation from the wave-vector transverse plane based
on the Bessel functions [see Eq. (A9) in the Appendix].
There exist two types of modes. Modes obtained for the
azimuthal number m = 0 have their maximum at r = 0 m
[see Fig. 14(a)]. They are indispensable for describing the
central part of the emission disk. On the other hand, modes
with m �= 0 have zero intensity for r = 0 m and attain their
maximal values for rs,max > 0 [for m = 1, see Fig. 14(b)]. The
larger the azimuthal number m, the greater the value of rs,max.
Fixing the azimuthal number m, all radial modes with different
radial numbers l have zeros in their intensity profiles at the
same positions. This property leads to practical independence
of the correlation functions on pump power Pp. As the graphs in
Fig. 14 indicate, the modes ũs,ml with odd radial numbers l have
small intensities compared to those with even radial numbers
l. So the modes with odd numbers l have to be very delocalized
in the radial direction r and their influence on the properties
of twin beams is practically negligible. This behavior has its
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origin in the shapes of modes us,ml in the radial wave-vector
direction that are close to odd functions in δk⊥.

VII. CONCLUSIONS

We have analyzed the properties of general spatiospectral
twin beams in the paraxial and parametric approximations.
Considering their spatial and spectral degrees of freedom
in their common evolution during the nonlinear interaction,
we have investigated the properties of the twin beams as
they depend on the pump intensity. We have determined the
auto- and cross-correlation functions of a twin beam in the
spectral and temporal domains as well as the transverse wave-
vector and crystal output planes in terms of the appropriate
paired Schmidt modes. We have mutually compared their
behavior. Whereas the spectral and temporal coherence and the
coherence in the transverse wave-vector plane increase with
increasing pump intensity, the coherence in the crystal output
plane is almost independent of the pump intensity. Whereas
the spectral and transverse wave-vector autocorrelation func-
tions are broader than their cross-correlation counterparts for
lower pump intensities, the opposite is true for the temporal
correlation functions. However, the auto- and cross-correlation
functions approach each other for higher pump intensities.

The entanglement dimensionality of a twin beam as a
function of the pump intensity has been determined and
compared with the numbers of modes derived from solely
the signal field using either its photon-number statistics or the
widths of appropriate autocorrelation functions. The numbers
of signal-field modes have been confirmed as good quantifiers
of the entanglement dimensionality of the twin beam.

The independence in practice of the auto- and cross-
correlation functions from the pump intensity in the crystal
output plane has been explained by the special structure of
paired modes in this plane, which is qualitatively different
from the common one occurring, e.g., in the spectral or
temporal domains. Moreover, only every second paired mode
contributes significantly to the structure of a twin beam for
noncollinear geometries.

We believe that this comprehensive analysis of intense twin
beams will stimulate further experimental investigations of
them. Moreover, as all spatiospectral modes of a twin beam
are taken into account, the model allows for its extension to
pump intensities at which pump depletion is observed [44,45].
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APPENDIX: PROPERTIES OF TWIN BEAMS IN THE
TRANSVERSE WAVE-VECTOR AND CRYSTAL

OUTPUT PLANES

In Appendix, we define quantities in the transverse wave-
vector space determined by spectral averaging as well as
quantities in the crystal output plane obtained after temporal

averaging. This averaging provides transverse intensity pro-
files as well as intensity auto- and cross-correlation functions.

The signal-field intensity profile ns,kϕ in the transverse
wave-vector plane is obtained as follows:

ns,kϕ(k⊥
s ,ϕs) = 〈â†

s (k⊥
s ,ϕs,ωs,L)âs(k

⊥
s ,ϕs,ωs,L)〉‖

=
∑

q

∑
ml

|ts,ml(k
⊥
s ,ϕs)|2V 2

mlq . (A1)

In Eq. (A1), symbol 〈〉‖ means spectral averaging. The radial
signal-field intensity profile ns,k is then gives by a cut from the
intensity profile ns,kϕ :

ns,k(k⊥
s ) = ns,kϕ

(
k⊥

s ,ϕ0
s = 0

)
. (A2)

Averaged signal-field intensity correlations in the trans-
verse wave-vector plane are described by the following fourth-
order auto-correlation function As,kϕ :

As,kϕ(k⊥
s ,ϕs,k

′⊥
s ,ϕ′

s) = 〈N : �[â†
s (k⊥

s ,ϕs,ωs,L)

×âs(k
⊥
s ,ϕs,ωs,L)]�[â†

s (k′⊥
s ,ϕ′

s,ω
′
s,L)

×âs(k
′⊥
s ,ϕ′

s,ω
′
s,L)] :〉‖

=
∑

q

∣∣Aa
s,q,kϕ(k⊥

s ,ϕs,k
′⊥
s ,ϕ′

s)
∣∣2

. (A3)

The signal-field amplitude auto-correlation function Aa
s,q,kϕ of

mode q is determined as follows:

Aa
s,q,kϕ(k⊥

s ,ϕs,k
′⊥
s ,ϕ′

s) = 〈â†
s (k⊥

s ,ϕs,ωs,L)âs(k
′⊥
s ,ϕ′

s,ω
′
s ,L)〉‖,q

=
∑
ml

t∗s,ml(k
⊥
s ,ϕs)ts,ml(k

′⊥
s ,ϕ′

s)V
2
mlq .

(A4)

Radial (As,k) and azimuthal (As,ϕ) signal-field intensity corre-
lation functions are derived from Eq. (A4) along the relations:

As,k(k⊥
s ,k′⊥

s ) = As,kϕ

(
k⊥

s ,ϕ0
s = 0,k′

s
⊥,ϕ′

s
0 = 0

)
,

(A5)
As,ϕ(ϕs,ϕ

′
s) = As,kϕ

(
k⊥0

s ,ϕs,k
⊥0
s ,ϕ′

s

)
.

Similarly, intensity cross-correlations in the wave-vector
signal and idler transverse planes are quantified by the fourth-
order correlation function Ckϕ :

Ckϕ(k⊥
s ,ϕs,k

⊥
i ,ϕi)

= 〈N : �[â†
s (k⊥

s ,ϕs,ωs,L)âs(k
⊥
s ,ϕs,ωs,L)]

×�[â†
i (k⊥

i ,ϕi,ωi,L)âi(k
⊥
i ,ϕi,ωi,L)] :〉‖

=
∑

q

∣∣∣∣∣
∑
ml

ts,ml(k
⊥
s ,ϕs)ti,ml(k

⊥
i ,ϕi)UmlqVmlq

∣∣∣∣∣
2

. (A6)

Radial (Cs,k) and azimuthal (Cs,ϕ) intensity cross-correlation
functions are easily determined from the cross-correlation
function Ckϕ :

Cs,k(k⊥
s ,k⊥

i ) = Cs,kϕ

(
k⊥

s ,ϕ0
s = 0,k⊥

i ,ϕ0
i = π

)
,

(A7)
Cs,ϕ(ϕs,ϕi) = Cs,kϕ

(
k⊥0

s ,ϕs,k
⊥0
i ,ϕi

)
.

On the other hand, properties of the twin beams at the crystal
output plane (near field) are described by the two-dimensional
Fourier transform of eigenmodes t written in Eq. (16) and
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defined in the transverse wave-vector plane. This transform
applied to the radially symmetric geometry leaves us with
eigenmodes t̃a [xa = ra cos(ψa), ya = ra sin(ψa)],

t̃s,ml(rs,ψs) = ũs,ml(rs) exp(imψs)√
2π

,

(A8)
t̃i,ml(ri,ψi) = ũi,ml(ri) exp(−imψi)√

2π
,

where

ũa,ml(ra) = im
∫ ∞

0
dk⊥

a

√
k⊥
a ua,ml(k

⊥
a )Jm(k⊥

a ra),
(A9)

a = s,i

and Jm stands for the Bessel function of mth order.
Using eigenmodes t̃s,ml defined in Eq. (A8), the averaged

signal-field photon flux Is,rϕ in the crystal output plane is
expressed as:

Is,rψ (rs,ψs) = 2ε0c〈Ê(−)
s (rs,ψs,L,ts)Ê

(+)
s (rs,ψs,L,t ′s)〉‖

=
∑

q

∑
ml

|t̃s,ml(rs,ψs)|2V 2
mlq . (A10)

The corresponding radial signal-field intensity profile Is,r is
determined as:

Is,r (rs) = Is,rψ
(
rs,ψ

0
s = 0

)
. (A11)

The averaged signal-field intensity auto-correlation func-
tion As,rψ in the crystal output plane is obtained by the formula
analogous to that written in Eq. (A3),

As,rψ (rs,ψs,r
′
s,ψ

′
s) = (2ε0c)2〈N : �[Ê(−)

s (rs,ψs,L,ts)

×Ê(+)
s (rs,ψs,L,ts)]�[Ê(−)

s (r ′
s,ψ

′
s,L,t ′s)

×Ê(+)
s (r ′

s,ψ
′
s,L,t ′s)] :〉‖

=
∑

q

∣∣Aa
s,q,rψ (rs,ψs,r

′
s,ψ

′
s)
∣∣2

. (A12)

In Eq. (A12), the signal-field amplitude auto-correlation
function Aa

s,q,rψ characterizing mode q is determined as:

Aa
s,q,rψ (rs,ψs,r

′
s,ψ

′
s)

= 2ε0c〈Ê(−)
s (rs,ψs,L,ts)Ê

(+)
s (r ′

s,ψ
′
s,L,t ′s)〉‖,q

=
∑
ml

t̃∗s,ml(rs,ψs)t̃s,ml(r
′
s,ψ

′
s)V

2
mlq . (A13)

The radial (As,r ) and azimuthal (As,ψ ) signal-field intensity
auto-correlation functions are easily derived as follows:

As,r (rs,r
′
s) = As,rψ

(
rs,ψ

0
s = 0,r ′

s,ψ
0
s = 0

)
,

(A14)
As,ψ (ψs,ψ

′
s) = As,rψ

(
r0

s ,ψs,r
0
s ,ψ ′

s

)
.

Finally, averaged intensity cross-correlations between the
signal and idler fields are described by the following fourth-
order cross-correlation function:

Crψ (rs,ψs,ri,ψi)

= (2ε0c)2〈N : �[Ê(−)
s (rs,ψs,L,ts)Ê

(+)
s (rs,ψs,L,ts)]

×�[Ê(−)
i (ri,ψi,L,ti)Ê

(+)
i (ri,ψi,L,ti)] :〉‖

=
∑

q

∣∣∣∣∣
∑
ml

t̃s,q(rs,ψs)t̃i,q(ri,ψi)UmlqVmlq

∣∣∣∣∣
2

. (A15)

The corresponding radial (Cs,r ) and azimuthal (Cs,ψ ) intensity
cross-correlation functions are defined as

Cs,r (rs,ri) = Cs,rψ
(
rs,ψ

0
s = 0,ri,ψ

0
i = 0

)
,

(A16)
Cs,ψ (ψs,ψi) = Cs,rψ (r0,ψs,r

0,ψi).
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37, 2475 (2012).
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