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Theory of quantum imaging with undetected photons
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A novel quantum imaging technique has recently been demonstrated in an experiment, where the photon used
for illuminating an object is not detected; the image is obtained by interfering two beams, none of which ever
interacts with the object. Here we present a detailed theoretical analysis of the experiment. We show that the
object information is present only in the interference term and not in the individual intensities of the interfering
beams. We also theoretically establish that the magnification of the imaging system depends on two wavelengths:
the average wavelength of the photon that illuminates the object and the average wavelength of the photon that is
detected. Our analysis affirms that the imaging process is based on the principle that quantum interference occurs
when interferometric path information is unavailable.
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I. INTRODUCTION

According to Bohr, comprehending the nature of a quantum
system requires “a combined use of the contrasting pictures”
of a classical particle and a classical wave [1]. Bohr’s com-
plementarity principle [2] implies that the complete particle
behavior and the complete wave behavior of a quantum system
or entity are mutually exclusive. In other words, if a quantum
entity behaves completely like a particle (wave) under certain
experimental conditions, it does not display its wave (particle)
behavior under the same conditions. To avoid confusion, we
do not refer to a quantum entity as either particle or wave;
instead, we use the term quanton (see, for example, [3]).

The wave-particle duality can be illustrated by a lowest-
order [4] interference experiment (e.g., Young’s double-slit
experiment, Mach-Zehnder interferometer, etc.), in which a
single quanton (e.g., photon, electron, etc.) is sent into a
two-way interferometer (see, for example, [5]). If the quanton
behaves completely like a particle, no interference can be
observed at the output of the interferometer. It turns out that in
this case it is possible to determine with complete certainty
which path the quanton has traversed. On the other hand,
when there is absolutely no information on the path traversed
by the quanton, perfect interference occurs—a behavior that
characterizes waves. The relationship between interference
and path information (wave-particle duality) has drawn the
attention of several researchers (see, for example, [6–10]).

The imaging process [11] of our interest is related to the
wave-particle duality of photons. Let us consider two spatially
separated identical light sources, 1 and 2, each of which has
the ability of producing a pair of photons at a time. These
two photons are, in general, not identical with each other
and we label them by a and b. Suppose now that we select
the a photons from the both sources and send them into a
two-arm interferometer under the following conditions: (1)
photons from a particular source can travel through only one
of the arms; (2) the sources emit at the same rate but in such
a way that there is never more than one photon present in the

*mayukh.lahiri@univie.ac.at

interferometer at a time. In this case, although the a photons are
identical with each other, one can partially or fully extract the
interferometric path information by interacting with a b photon
that is not sent into the interferometer. In such a situation, it is,
therefore, possible to control the interference of a photon sent
into the interferometer by using a photon that is not sent into
the interferometer. This phenomenon has been experimentally
demonstrated and discussed in Refs. [12,13] and is often
referred to as “induced coherence without induced emission.”

The essence of our imaging technique [11] lies in the fact
that the effect of interaction with b photons is observed in
the first-order interference fringe pattern produced by the a

photons. As for sources, we use two identical nonlinear crystals
which generate photons by parametric down-conversion. In
Sec. II, we briefly recapitulate some basic results relating to
the theory of spontaneous parametric down-conversion. In Sec.
III, we then present a detailed analysis of the imaging method.
Finally, we summarize our results in Sec. IV.

II. ELEMENTS OF THE THEORY OF SPONTANEOUS
PARAMETRIC DOWN-CONVERSION

We mostly follow the theory of the process of spontaneous
parametric down-conversion developed by Hong and Mandel
[14]. In this process a nonlinear crystal converts a photon
(pump) into two photons (signal and idler) each of which
has energy lower than that of the pump photon. The combined
energy of the signal and the idler photons is equal to the energy
of the pump photon. When the pump beam is highly coherent
and the down-conversion does not bring any observable change
in the pump intensity, one can represent the pump by a classical
electric field EP (r,t). In this case, the interaction Hamiltonian
associated with the process of parametric down-conversion
can be expressed in the interaction picture as (cf. [13,14])

Ĥin(t)

=
∫

D

d3r χ̃ lmqEP l(r,t)Ê
(−)
Sm (r,t)Ê(−)

Iq (r,t) + H.c., (1)

where χ̃χχ represents the nonlinear electric susceptibility tensor
of the crystal, Ê(−)

S (r,t) and Ê(−)
I (r,t) are the negative frequency
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parts of the quantized electric fields associated with the signal
and idler, respectively, D is the volume of the crystal, H.c.
implies Hermitian conjugation, and there is summation over
the repeated indices l, m, q which label three mutually
orthogonal directions in space.

The pump, the signal, and the idler fields may oscillate at
different optical frequencies. In general, the susceptibility of
the crystal depends on these frequencies. The Hamiltonian in
Eq. (1) is therefore often expressed by decomposing the optical
fields into several modes (see, for example, [14]). The positive
frequency part of a quantized electric field inside the crystal
can be represented by the expression [15]

Ê(+)(r,t) =
∑
k,σ

α(k,σ ) exp [i(k · r − ωt)]ek,σ â(k,σ ), (2)

where σ = 1,2 labels two directions of polarization, ω is
the frequency, k is the wave vector, ek,σ represents two
generally complex, mutually orthogonal unit vectors such
that ek,σ · k = 0, α(k,σ ) = i

√
�ω/(2ε0n2(k,σ )L3), ε0 is the

electric permittivity of free space, n(k,σ ) is the refractive index
of the anisotropic, nonlinear crystal, L3 is the quantization
volume, and â(k,σ ) is the photon annihilation operator for the
mode labeled by (k,σ ). Let us also decompose the pump field
inside the crystal into plane wave modes and express it in the
form

EP (r,t) =
∑

kP ,σP

VP (kP ,σP ) exp [i(kP · r − ωP t)]ekP ,σP
. (3)

The Hamiltonian, given by Eq. (1), now takes the form (cf.
[16])

Ĥin(t)

=
∫

D

d3r
∑

kP ,σP

∑
kS ,σS

∑
kI ,σI

{
χlmq(ωP ,ωS,ωI )VP (kP ,σP )

× (ekP ,σP
)l(e∗

kS ,σS
)m(e∗

kI ,σI
)qα

∗(kS,σS)α∗(kI ,σI )

× exp[i(ωS + ωI − ωP )t] exp[i(kP − kS − kI ) · r]

× â
†
S(kS,σS )̂a†

I (kI ,σI )
}

+ H.c., (4)

where the subscripts P , S, and I refer to pump, signal, and
idler, respectively. The quantum state of light generated by
down-conversion at the crystal is given by the well known
formula ∣∣ψ(t ′)

〉 = exp

[
1

i�

∫ t ′

0
dt Ĥin(t)

]
|vac〉, (5)

where |vac〉 is the vacuum state and t ′ is the interaction time.
By expanding the exponential, Eq. (5) can be expressed in the
form∣∣ψ(t ′)

〉 = |vac〉 +
[

1

i�

∫ t ′

0
dt Ĥin(t)

]
|vac〉 + · · · . (6)

III. IMAGING

Let us consider a situation in which two identical nonlinear
crystals NL1 and NL2 are pumped by optical beams P1

and P2, respectively, generated by the same laser source

(Fig. 1). Suppose that the pump fields at the two crystals
are given by the complex electric field vectors EP1 (r1,t2) and
EP2 (r2,t2), expanded in the form given by Eq. (3). From Eqs.
(2), (3), (4), and (6) it follows that the quantum state of light
generated by each individual crystal is given by the formula
(cf. [17])

|ψj (t ′)〉

= |vac〉 + t ′D
i�

∑
kPj

,σPj

∑
kSj

,σSj

∑
kIj

,σIj

[
χlmq(ωPj

; ωSj
,ωIj

)

× VPj
(kPj

,σPj
)α∗(kSj

,σSj
)α∗(kIj

,σIj
)(ekPj

,σPj
)l

× (e∗
kSj

,σSj
)m(e∗

kIj
,σIj

)q exp[i(ωSj
+ ωIj

− ωPj
)t ′/2]

× sinc[(ωSj
+ ωIj

− ωPj
)t ′/2]

× exp[i(kPj
− kSj

− kIj
) · r0j

]

×
{

3∏
n=1

sinc[(kPj
− kSj

− kIj
)nln/2]

}

× ∣∣kSj
,σSj

〉
Sj

∣∣kIj
,σIj

〉
Ij

]
+ · · · , (7)

where j = 1,2 labels the two crystals, |kSj
,σSj

〉
Sj

=
â
†
Sj

(kSj
,σSj

)|vac〉, |kIj
,σIj

〉
Ij

= â†(kIj
,σIj

)|vac〉, the volume
integration has been carried out assuming the crystal to be
a rectangular parallelepiped [19] of sides l1, l2, l3 with its
center located at the point r0j

, and sinc[x] = sin x/x; the sinc
terms lead to the two well-known phase-matching conditions
associated with the process of spontaneous parametric down-
conversion.

A. Alignment of idler beams

The idler beam, I1, generated by NL1 is transmitted through
NL2 and is aligned with the idler beam, I2, generated by NL2
[18]. If the beam I1 is perfectly aligned with the beam I2, for

FIG. 1. (Color online) Illustrating the principle of the experi-
ment. A laser beam (solid line) is split into two beams P1 and
P2 which pump the nonlinear crystals NL1 and NL2. The crystals
produce signal (dotted line) and idler (dashed line) beams. The idler
beam I1 is aligned with the idler beam I2. The signal beams S1 and
S2 are superposed by the beam splitter BS and one of the outputs of
BS is detected by a camera. D1, D2, D3 are dichroic mirrors.
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FIG. 2. (Color online) Schematics of the imaging experiment.
Positive lenses L1 and L2 (both of focal length fI ), placed in the
path of I1, form a 4f system that images NL1 on NL2. An identical
4f system, consisting of positive lenses L3 and L4, is placed in the
path of S1. A thin object is placed on a plane which is the back focal
plane of L1 and the front focal plane of L2. One of the outputs of BS
is focused by a positive lens L0 of focal length f0 into a camera. NL2
and the back focal plane, �, of L4 are located at the front focal plane
of L0. The lenses are assumed to be thin and ideal. The superposed
signal beam is passed through a narrow-band filter, F, before entering
the camera.

each mode present in the quantized field Ê(+)
I1

of I1 there exists

an equally populated mode in the quantized field Ê(+)
I2

of I2.
The perfect alignment of the idler beams can, therefore, be
analytically expressed by the following formula:

âI2 (kI ,σI ) = âI1 (̃kI ,̃σI ) exp[iφI (̃kI ,̃σI )], (8)

where the mode (̃kI ,̃σI ) is generated at NL1 and is aligned
with the mode (kI ,σI ) that is generated at NL2; φI (̃kI ,̃σI ) is a
phase factor which can be interpreted as the phase gained by
the mode (̃kI ,̃σI ) due to propagation from NL1 to NL2.

The Hamiltonian given by Eq. (4) and, consequently, the
state in Eq. (7) are expressed in quite general forms. We now
simplify them using certain assumptions which are appropriate
to our experiment. Let us assume that the signal and the idler
can be treated as beams with uniform linear polarization both
inside and outside of the crystals. In such a situation, we can
drop the summation over the polarization indices σPj

, σSj
, σIj

and can also write

α(kSj
,σSj

) � αS(ωSj
), α(kIj

,σIj
) � αI (ωIj

), (9)

One can now replace the annihilation operator â(k,σ ) with
â(k), the number state |k,σ 〉 with |k〉, and the susceptibility
tensor χlmq with a scalar quantity χ . Furthermore, the
alignment condition given by Eq. (8) reduces to the form

âI2 (kI ) = âI1 (̃kI ) exp[iφI (̃kI )]. (10)

It is to be noted that the relationship between k̃I and kI depends
on the optical system used for aligning the idler beams.

In the experiment the two idler beams are aligned by the
use of a 4f lens system [20] that images a central plane of
NL1 onto a central plane of NL2 (Fig. 2). We assume the idler
beam axis to be along the optical axis of the lens system. A
thin object which is intended to be imaged is placed at the back
focal plane of the first positive lens, L1, of the 4f system; this
plane is also the front focal plane of the second positive lens,

FIG. 3. (Color online) Illustrating notations. (a) ρρρ k̃I
is a two-

dimensional position vector lying on the object plane. The origin
is chosen at the point O where the optical axis z meets the object
plane. We neglect the limits due to diffraction. (b) The wave vectors
k̃I and kI are mirror images of each other with respect to the optical
axis z. θI is the absolute value of the angle they make with the optical
axis.

L2, of the same 4f system. Clearly, the object is illuminated
only by the idler beam that is generated by the first crystal.

If a plane wave characterized by the wave vector k̃I is
incident on L1, it gets converted into a spherical wave that
converges to a point ρρρ k̃I

, say, on the back focal plane of L1
[Fig. 3(a)]. It then reemerges from this point as a diverging
spherical wave. The amplitude of the diverging spherical wave
can be determined from the amplitude of the incident wave
and the complex transmission coefficient T (ρρρ k̃I

) of the object
at point ρρρ k̃I

. The diverging spherical wave gets reconverted
into a plane wave by the positive lens L2. This plane wave
is characterized by a wave vector kI which is different from
k̃I , unless k̃I is along the optical axis z of the lens system. If
one neglects the limits due to diffraction, one can say that a
plane wave emerging from L2 contains information about one
specific point of the object.

Although the discussion of the previous paragraph is
applicable to a classical field, it provides a guideline for
treating the problem quantum mechanically. Since a quantized
field is represented by decomposing it into several plane wave
modes, one can say that one point on the object can transmit
and reflect only one specific mode of the quantized idler field.
Hence a single point on the object acts as a beam splitter only
on one particular idler mode. Using the quantum mechanical
treatment of a beam splitter ([21], Sec. 12.12), one can now
write the alignment condition [Eq. (10)] in the following form:

âI2 (kI ) =[
T (ρρρ k̃I

)̂aI1 (̃kI ) + R ′(ρρρ k̃I
)̂a0(̃kI )

]
× exp[iφI (̃kI )], (11)

where T (ρρρ k̃I
) is the transmission coefficient of the object at the

pointρρρkI
, R ′(ρρρ k̃I

) is the reflection coefficient at the same point
when illuminated from the opposite direction, â0 represents the
vacuum field at the unused port of the beam splitter (a point
on the object), φI (̃kI ) is the phase term mentioned earlier, and
|T |2 + |R ′|2 = 1. It is evident that in absence of the object,
i.e., when T = 1 and R ′ = 0, Eq. (11) reduces to Eq. (10).

If one neglects the limits due to diffraction, there is a one-to-
one correspondence between kI and k̃I , i.e., for every choice
of kI there is one and only one k̃I . When the focal lengths of
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FIG. 4. (Color online) Illustrating notations relating to the detec-
tion system. ρρρkS

is a two-dimensional position vector lying on the
image plane (camera screen). The origin is chosen at the point O ′

where the optical axis (also the beam axis) z′ meets the image plane.
The wave vector kS makes an angle θS with the optical axis.

L1 and L2 are equal, kI and k̃I are mirror images of each other
with respect to the optical axis z [see Fig. 3(b)].

B. Detection system

Let us now consider the detection system used in the
experimental setup. The signal beams generated by the two
crystals are superposed by a 50 : 50 beam splitter (BS) and one
of the outputs of the beam splitter is focused on an EMCCD
camera by a positive lens L0 (Fig. 2). A filter, F, is placed in
front of the camera so that the light entering the camera has a
narrow frequency band of mean frequency ω̄S .

In absence of limits due to diffraction, L0 would focus a
plane wave with wave vector kS at a point ρρρkS

, say, on the
camera screen (Fig. 4). Hence the positive frequency part of
the quantized field at the camera can be expressed as [22]

Ê
(+)
S (ρρρkS

,t)

∝ exp

[
−iω̄S

(
t − L1(kS)

c

)]̂
aS1 (kS)

+ i exp

[
ikS · r0 − iω̄S

(
t − L2(kS)

c

)]̂
aS2 (kS), (12)

where Lj (kS) is the optical path traveled by the mode labeled
by kS from the nonlinear crystal j to the camera (propagation
inside the crystals has been neglected), |kS | = ω̄S/c, and we
have chosen r01 = 0, r02 − r01 = r0.

C. Formation of an image

For the sake of simplicity, we assume that the pump beams
are well collimated, uniformly polarized, and narrow band
with mean frequency ω̄P . In this case, the pump field at the
crystal j can be represented by VPj

exp[i(kP · r − ω̄P t)]. We
choose the direction of kP to be along the direction of the
optical axis. Using Eqs. (6), (9), and (11) one can show (see
the Appendix) that the quantum state of the field in this system

can be approximated by

|�〉

≈ |vac〉 + t ′D
i�

∑
kS1

∑
kI1

[
g(ωS1 ,ωI1 )VP1

×
{

3∏
n=1

sinc[(kP − kS1 − kI1 )nln/2]

}

× sinc[(ωS1 + ωI1 − ω̄P )t ′/2]
∣∣kS1

〉
S1

∣∣kI1

〉
I1
|0〉S2

|0〉0

]

+ t ′D
i�

∑
kS2

∑
kI2

[
g(ωS2 ,ωI2 )VP2 exp

[
i(kP − kS2 − kI2 ) · r0

]
× exp[−iφI (̃kI2 )]sinc[(ωS2 + ωI2 − ω̄P )t ′/2]

×
{

3∏
n=1

sinc[(kP − kS2 − kI2 )nln/2]

}

×
(
T ∗(ρρρ k̃I2

)|0〉S1

∣∣̃kI2

〉
I1

∣∣kS2

〉
S2

|0〉0

+R
′∗(ρρρ k̃I2

)|0〉S1 |0〉I1

∣∣kS2

〉
S2

∣∣̃kI2

〉
0

)]
, (13)

where

g(ωSj
,ωIj

) = χ (ωSj
,ωIj

)α∗
S(ωSj

)α∗
I (ωIj

)

× exp[i(ωSj
+ ωIj

− ω̄P )t ′/2],

k̃I2 is the mirror image of kI2 with respect to the optical
axis (beam axis) of the 4f system, r0 = r02 − r01 , |̃kI2〉0 =
â
†
0(̃kI2 )|vac〉, and we have suppressed the normalization co-

efficients. In the experiment, we choose crystals whose sides
are approximately 10−3 m of length; since the wave vectors
are characterized by corresponding optical wavelengths, the
terms sinc[(kPj

− kSj
− kIj

)nln/2] in Eq. (7) contribute only
when kPj

− kSj
− kIj

≈ 0. This implies that the spatial phase-
matching condition kPj

≈ kSj
+ kIj

holds to a very good
accuracy. Furthermore, the term sinc[(ωSj

+ ωIj
− ω̄P )t ′/2]

leads to the temporal phase-matching condition ω̄P ≈ ωSj
+

ωIj
.
The photon counting rate [23] at a point ρρρkS

in the camera
is given by

R(ρρρkS
) ∝ 〈�|Ê(−)

S (ρρρkS
,t)Ê(+)

S (ρρρkS
,t)|�〉, (14)

where |�〉 is given by Eq. (13) and the quantized field is
given by Eq. (12). It follows from a long but straightforward
calculation that apart from a proportionality constant R(ρρρkS

)
is given by

R(ρρρkS
) ≈|VP1 |2 + |VP2 |2

+ 2|VP1 ||VP2 ||T (ρρρ k̃I
)|

× cos
[
φS2 (kS) − φS1 (kS) − φI (̃kI )

− arg[T (ρρρ k̃I
)] + φP + kS · r0 + C0

]
, (15)
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where k̃I denotes a wave vector that is the mirror image of
the wave vector kI = kP − kS with respect to the optical
axis [Fig. 3(b)], |kP | = ω̄P /c, |kS | = ω̄S/c, |kI | = ω̄I /c,
ρρρ k̃I

is the point on the object that is illuminated by the
idler mode k̃I , φSj

(kS) = ω̄SLj (kS)/c, φP = arg[VP2 ] −
arg[VP1 ], and C0 includes all other phase terms. Equation (15)
is the key equation of the theory of imaging.

Let us first consider the situation in which no object is
placed in the idler’s path, i.e., when |T | = 1 and arg[T ] = 0.
We have already mentioned in Sec. III B that a point on the
image plane (camera) has contribution only from one signal
mode kS . Since the diameter of the signal beam cross section
in the camera is much smaller in dimension than the optical
paths Lj (kS) and the distance |r0| between the two crystals,
the terms kS · r0 and φSj (kS) can be treated as slowly varying
functions of kS . Similarly, since the diameter of the first idler
beam inside NL2 is much smaller than the distance between
the two crystals, one can also neglect the k̃I dependence of
φI (̃kI ). These allow us to write φS2 (kS) − φS1 (kS) ≈ S0,
φI (̃kI ) ≈ φI0, and kS · r0 + C0 ≈ C ′

0, where S0, φI0, and
C ′

0 are constants. Equation (15) now reduces to

R(ρρρkS
) ≈|VP1 |2 + |VP2 |2

+ 2|VP1 ||VP2 | cos[S0 − φI0 + φP + C ′
0]. (16)

Since the right-hand side of Eq. (16) does not have any kS

dependence, it is clear that an almost uniformly illuminated
beam cross section would be observed in the camera. The phase
term φP can be controlled in the experiment and by doing so
one can modulate the intensity of the beam spot. It is evident
from Eq. (16) that by changing the value of φP , one can achieve
conditions both of constructive and of destructive interference,
which are given by the following equations, respectively:

S0 − φI0 + φPC + C ′
0 = 2Nπ, (17a)

S0 − φI0 + φPD + C ′
0 = (2N + 1)π, (17b)

where φPC and φPD are values of φP for constructive and
destructive interferences [24], respectively, and N is an integer.
Thus we have established the relations

φS2 (kS) − φS1 (kS) − φI (̃kI ) + φPC + C ′
0 ≈ 2Nπ, (18a)

φS2 (kS) − φS1 (kS) − φI (̃kI ) + φPD + C ′
0 ≈ (2N + 1)π.

(18b)

When the object is inserted in the idler’s path, it follows
from Eqs. (15) and (18) that the photon counting rates at a
point in the camera under the conditions of constructive and
destructive interference are, respectively, given by the formulas

RC(ρρρkS
) ≈ |VP1 |2 + |VP2 |2

+2|VP1 ||VP2 ||T (ρρρ k̃I
)| cos(arg[T (ρρρ k̃I

)]), (19a)

RD(ρρρkS
) ≈ |VP1 |2 + |VP2 |2

−2|VP1 ||VP2 ||T (ρρρ k̃I
)| cos(arg[T (ρρρ k̃I

)]). (19b)

Equations (19) imply that an image of an absorptive ob-
ject [arg[T (ρρρkI

)] = 0] and as well as of a phase object
[|T (ρρρkI

)| = 1] would appear in the camera for both con-
structive and destructive interferences [see [11], Fig. 3(a)]. It
further follows from Eqs. (19) that apart from a proportionality

constant

RC(ρρρkS
) − RD(ρρρkS

) ≈ |T (ρρρ k̃I
)| cos(arg[T (ρρρ k̃I

)]), (20)

implying the background effect due to presence of the terms
|VP1 |2 and |VP2 |2 can be eliminated by subtracting the photon
counting rate obtained with destructive interference from that
obtained with constructive interference [see [11], Fig. 3(d)]. It
also follows from Eqs. (19) that

RC(ρρρkS
) + RD(ρρρkS

) ≈ 2(|VP1 |2 + |VP2 |2). (21)

This means that summing up the photon counting rates
obtained by constructive and destructive interferences removes
the image [see [11], Fig. 3(c)]. Clearly, even if one uses an
absorptive object that completely blocks the beam I1, the
summation of the photon counting rates does not change.
The fact that the information of the object appears only in
the interference term shows that the imaging process is purely
quantum mechanical in nature; this point is discussed later in
further details.

It is clear from the preceding discussion that a point ρρρ k̃I
in

the object plane is imaged at the point ρρρkS
in the image plane,

where ρρρ k̃I
is the point at which a classical plane wave with

wave vector k̃I would be focused by the lens L1 [see Fig. 3(a)]
and ρρρkS

is the point where the plane wave characterized by kS

would be focused by L0. Since k̃I is the mirror image of the
wave vector kI with respect to the optical axis [see Fig. 3(b)]
and kI is related to kS by the phase-matching condition
kI ≈ kP − kS , the image that appears on the camera is not
inverted [25].

D. Image magnification

So far we have neglected the effect of refraction at the crys-
tal surface. However, one needs to consider this effect in order
to obtain a correct value of the magnification. The wave vectors
kS and k̃I used thus far represent plane waves outside the
crystals. The mirror image of k̃I with respect to the optical
axis z is kI [Fig. 3(b)]. Suppose that the plane waves with
wave vectors kS and kI are represented inside the crystal by
k′′

S and k′′
I , respectively. The phase-matching condition can

now be expressed as

k′′
S + k′′

I ≈ k′′
P , (22)

where k′′
P is the wave vector of the pump field inside the

crystal. If k′′
S and k′′

I make angles θ ′′
S and θ ′′

I , respectively, with
k′′

P which is along the optical axis, it follows from Eq. (22)
that

ω̄SnS | sin θ ′′
S | ≈ ω̄I nI | sin θ ′′

I |, (23)

where nS and nI are refractive indices of the crystal at
frequencies ω̄S and ω̄I , respectively.

Let us choose two points on the object which are represented
by two-dimensional position vectors ρρρ k̃I

and ρρρ ′
k̃′

I

. Suppose

that their images at the camera are represented by the two-
dimensional position vectors ρρρkS

and ρρρ ′
k′

S
, respectively. The

magnification is defined by the well-known formula

M =
|ρρρkS

− ρρρ ′
k′

S
|

|ρρρ k̃I
− ρρρ ′

k̃′
I

| , (24)
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where its positive sign implies that the image is not inverted.
As already mentioned, the origins in the object and the
image planes are chosen at the points O and O ′ where the
corresponding optical axes (beam axes) meet the respective
planes [see Figs. 3(a) and 4]. It readily follows from the theory
presented in Sec. III C that O ′ is the image of O. By choosing
the points ρρρ ′

k̃′
I

and ρρρ ′
k′

S
at O and O ′, respectively, we reduce

Eq. (24) to the simplified form

M = |ρρρkS
|

|ρρρ k̃I
| . (25)

If the signal plane wave kS , which is focused by the lens L0 at
the pointρρρkS

, makes an angle θS with the optical axis z′ (Fig. 4),
one has in the small-angle approximation |ρρρkS

| = |f0 tan θS | ≈
f0|θS |. Similarly, one can show that |ρρρ k̃I

| ≈ fI |θI |, where θI

is the angle made by the wave vector k̃I with the optical axis
[Fig. 3(a)]. It now follows from Eq. (25) that

M = f0|θS |
fI |θI | . (26)

Since kS and kI are related to k′′
S and k′′

I , respectively, by
refraction at the crystal surface, using Snell’s law one obtains

nS sin θ ′′
S = n0 sin θS, nI sin θ ′′

I = n0 sin θI , (27)

where we have used the fact that kI and k̃I make the same angle
with the optical axis [Fig. 3(b)] and the refractive index of air
(n0) has practically the same value for signal and idler. From
Eqs. (23) and (27), it immediately follows that ω̄S | sin θS | ≈
ω̄I | sin θI |. In the small-angle limit, we thus obtain

ω̄S |θS | ≈ ω̄I |θI |. (28)

From Eqs. (26) and (28) one finds that

M = f0ω̄I

fI ω̄S

= f0λ̄S

fI λ̄I

. (29)

Clearly, magnification of the imaging system depends on the
ratio of the average wavelength of the signal to that of the idler.
The dependence of the magnification on both wavelengths,
which was observed experimentally [11], is a remarkable
feature of our imaging process.

IV. CONCLUSION

We have theoretically analyzed a recently demonstrated
[11] quantum imaging technique. Although the experimental
setup resembles an ordinary two-arm interferometer, the
principle behind the imaging is purely quantum mechanical.
If one imagines a classical two-arm interferometer in one
of whose arms an absorptive object is placed, both the
interference term and the intensity contribution from the arm
containing the object would depend on the transmissivity of
the object. In our experiment, on the other hand, the intensity
contribution from any of the crystals does not depend on the
transmittance of the object. It is evident from Eqs. (19) that
the information of the object is present only in the interference
term. This also shows that the interference of signal beams is
not due to the effect of stimulated emission (see also [12,26]).
This interference can only be explained by indistinguishability
of the signal photon paths and hence the imaging process is
directly related to wave-particle duality of photons.

In this context, let us also have a close look at Eq. (13),
which provides us with an expression for the quantum state
|�〉 that has been used for explaining the imaging process.
Since the pump source used in the experiment is a laser, this
state is obtained (see the Appendix) by neglecting the second
and higher order terms of a more general expression. However,
it can be readily verified from Eq. (7) that when the higher-
order terms present in |ψ1〉 and |ψ2〉 can be neglected, the
state |�〉 becomes practically identical with a state obtained
by linear superposition of |ψ1〉 and |ψ2〉 under the alignment
condition imposed by Eq. (11). Since such a superposition is
only allowed when there is no effect of stimulated emission,
it is clear that photons generated by spontaneous parametric
down-conversion play the key role in our imaging process [27].

Finally, although it is obvious, we would like to point
out that the principle of our imaging also works if an
entirely different lens system is used in the experiment.
Equation (29) shows that this magnification is equal to the
product of two ratios: the ratio of focal lengths (f0/fI ) and
the ratio of wavelengths (λ̄S/λ̄I ). The most remarkable feature
of this result is the presence of two mean wavelengths in
the formula of magnification. This is a consequence of (a)
the fact that the object is illuminated by photons of one
mean wavelength while the camera detects photons of the
other wavelength and (b) the phase-matching condition [see
Eq. (23)]. The use of a different lens system in the setup might
lead to a different expression for the image magnification;
however, a dependence on two average wavelengths would, in
general, be present.
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APPENDIX

In this Appendix, we illustrate the procedure used for
obtaining Eq. (13). We present a single-mode analysis, because
the procedure does not change when all the modes present
in the quantized fields are considered. The single-mode and
scalar version of Eq. (6) can be represented in the form (note
that the terms involving photon-annihilation operators do not
contribute in our case)

|ψj 〉 = (1 + Gj â
†
Sj

â
†
Ij

+ . . .)|ψj0〉 ≡ Ĥj |ψj0〉, (A1)

where j labels the crystals, 1 is the identity operator, |ψj0〉
is the state before down-conversion, the time dependence is
suppressed, the coefficients are collectively denoted by Gj , and
the dots represent higher-order terms containing higher powers
of Gj . Since both crystals are pumped by beams generated by
a laser source, it follows from Eq. (A1) that the quantum state
of light in the system is given by

|�〉 = Ĥ2Ĥ1|vac〉. (A2)
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The single-mode version of Eq. (11) is given by

âI2 = [T âI1 + R ′̂a0]eiφI . (A3)

Now from Eqs. (A2) and (A3), it readily follows that

|�〉 = |vac〉 + G1|1〉S1 |1〉I1 |0〉S2 |0〉0

+ G2e
−iφI [T ∗|0〉S1 |1〉I1 |1〉S2 |0〉0

+ R ′∗|0〉S1 |0〉I1 |1〉S2 |1〉0]

+ higher-order terms, (A4)

where the higher-order terms contains second or higher powers
of the coefficients G. Since the rate of down-conversion
is very small, these higher-order terms can be neglected.
Hence the state |�〉 can be approximated by (neglecting the
normalization coefficients)

|�〉 ≈ |vac〉 + G1|1〉S1 |1〉I1 |0〉S2 |0〉0

+G2e
−iφI [T ∗|0〉S1 |1〉I1 |1〉S2 |0〉0

+R ′∗|0〉S1 |0〉I1 |1〉S2 |1〉0]. (A5)

Equation (13) is the multimode version of Eq. (A5).
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