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Mirrorless lasing from light emitters in percolating clusters
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We describe the lasing effect in the three-dimensional percolation system, where the percolating cluster is
filled by active media composed by light emitters excited noncoherently. We show that, due to the presence of a
topologically nontrivial photonic structure, the stimulated emission is modified with respect to both conventional
and random lasers. The time dynamics and spectra of the lasing output are studied numerically with finite-
difference time-domain approach. The Fermat principle and Monte Carlo approach are applied to characterize
the optimal optical path and interconnection between the radiating emitters. The spatial structure of the laser
mode is found by a long-time FDTD simulation.
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I. INTRODUCTION

Recent development of micro- and nanophotonics demon-
strated how intrinsic disorder in photonic materials can be
exploited to create useful optical structures. One example is
the random laser structures [1,2], in which the laser action
is obtained in disordered media such as powders and porous
glasses. The optical emitters (e.g., quantum dots) in inhomoge-
neous structures are interconnected radiatively which results in
the field correlations and leads to various collective phenomena
(see, e.g., [3,4] and references therein). The importance of
interplay between light diffusion in random media and light
amplification was demonstrated by Letokhov [5], and the inter-
esting properties of mirrorless laser systems are widely studied
since then, both experimentally [6–10] and theoretically
[11–14] (see also the review [15]). In most random lasing
materials, the intensity is spread throughout the sample and, in
general, there are several lasing modes. In certain cases inter-
ference of different modes can lead to light localization [16–
18], which is the optical counterpart of Anderson localization
for electrons in disordered conductors. This can be understood
in terms of the formation of randomly shaped nonoverlapping
modes with exponentially large lifetimes [15]. Random lasing
is also observed in photonic crystals with structural disorder,
where the photonic band gap is progressively filled by the tails
of resonances at its edges. There are experimental evidences of
three-dimensional (3D) Anderson localization of light inside
the gap [19].

The drawback of random lasers is that a great part
of the excitation power is wasted, and lasing is addition-
ally distributed among several lasing modes having distinct
frequencies, placed in different parts of the sample, and
shining light in different directions. One possibility to obtain
better control on the laser emission is to achieve mirrorless
lasing effect in some specially prepared irregular medium.
A promising candidate of such a system is light emitters
incorporated into 3D percolating clusters in solids [20–22]
(see [23,24] for a review of percolation phenomena). At a small
concentration of voids in such a system the number of clusters
is insignificant. However, if the concentration of voids exceeds
a certain threshold value, then a spanning (infinite) cluster
is formed, and it penetrates the entire volume. This cluster
produces global percolation in the system and qualitatively
changes its properties. In particular, the laser effect in a

percolating medium is expected to be noticeably different from
the random laser phenomenon in conventional (“uniformly
porous”) materials. In the simplest way, it can be argued
that already in a vicinity of the percolating phase transition
the fractal dimension of the system DH � 2.54 considerably
differs from the dimension of the embedded space D = 3.
One of the important questions here is whether the mirrorless
lasing effect can still be observed for a noninteger dimension
case with a fractal (Hausdorff) dimension of DH < 3, where
one expects strong randomness of the properties of the
system.

First we indicate the fundamental difference of lasing in
percolating medium, as compared to the random lasing in
conventional configuration. In the case of the standard random
laser, the randomly distributed emitters are incorporated
homogeneously in entire medium (see [15,19] and references
therein). In contrast, in the system considered in this paper
the emitters are integrated only into the percolating cluster
having random complicated shape with noninteger fractal
dimension. As a result, this system is strongly spatially
nonuniform, and this leads to considerable multiply scattering
and amplification of optical waves from the inhomogeneous
random cluster structure. It is important to note that the
diffusion approach is oversimplified to correctly describe the
light amplification in the case of photon propagation in a
scattering medium with nonuniformly distributed gain [25].
Therefore, we use the full-vectorial Maxwell-Bloch equations
based on finite-difference time-domain (FDTD) technique
instead of the diffusion approach.

To address these questions we study the spanning cluster
in 3D embedded percolation environment as an object with
a fractional dimension. Already the presence of incipient
spanning cluster makes the system anisotropic and provides the
connection between the input (on the high porosity side) and
output (on the low porosity side); see Fig. 1. This also makes
feasible the incorporation of emitters inside the cluster. Forcing
the emitters ensemble through such a percolation medium
allows creating a network of emitters, leaving other parts of
the system unchanged. Here we investigate the lasing effect
in this percolating spanning cluster, assuming the emitters are
uniformly incorporated in it. Thus in this paper we describe a
different type of mirrorless lasing, percolating lasing, that is a
logical extension of previous works for case of random lasing
that cannot be simplified to the standard laser case.
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FIG. 1. (Color online) Typical spatial structure of the incipient
percolating cluster near the percolation threshold at p = 0.32 in the
cube l0 × l0 × l0, where l0 = 10−4 m. The cluster is shown for 75 ×
75 × 75 numerical grid. Only sites coupled to the spanning cluster
are shown, while all the internal sites unconnected to the entry side
are not displayed. In this configuration a considerable quantity of
the emitters are incorporated closely to the entry side (indicated by
incoming arrow) of the crystal. The solid line connects the nodes
joined with the use of the variational Fermat principle (see Sec. IV
for details).

The paper is organized as follows. In Sec. II we formulate
the main equations. In Sec. III we present the numerical
results on the lasing emission from the emitters in percolating
medium. Section IV contains the application of the Fermat
principle to find the spatial interconnection between the
emitters in this percolating system, and the last section contains
conclusions.

II. BASIC EQUATIONS

We are interested in integral emission of electromagnetic
energy from a cubical sample (x,y,z) ∈ [0,l0]. The output flux
of energy can be written as

I =
∮

S

(K · n)dS = Ix + Iy + Iz, (1)

where K is the Pointing vector, n is the normal unit vector to
the surface S of the cube, and Ix,y,z indicate the fluxes from
two faces of the cube perpendicular to a particular direction.

To find the emission from the system we solve numerically
the equation coupling the polarization density P, the electric
field E, and the occupations of the levels of emitters. In the
case of uncoupled emitters this equation is [26]

∂2P
∂t2

+ �ωa

∂P
∂t

+ ω2
aP = 6πε0c

3

τ21ω2
a

(N1 − N2)E. (2)

Here �ωa = τ−1
21 + 2T −1

2 , where T2 is the mean time between
dephasing events, τ21 is the decay time from the second atomic
level to the first one, and ωa is the frequency of radiation.
The electric and magnetic fields, E and H, and the current
j = ∂P/∂t are found from the Maxwell equations, together
with the equations for the densities Ni(r,t) of atoms residing
in the ith level. In the case of four level laser, i = 0,1,2,3 and
these rate equations read (see [27] and references therein)

∂N3

∂t
= ArN0 − N3

τ32
, (3a)

∂N2

∂t
= N3(t)

τ32
+ (j · E)

�ωa

− N2

τ21
, (3b)

∂N1

∂t
= N2(t)

τ21
− (j · E)

�ωa

− N1

τ10
, (3c)

∂N0

∂t
= N1

τ10
− ArN0. (3d)

An external source excites emitters from the ground level
(i = 0) to third level at a certain rate Ar , which is proportional
to the pumping intensity in experiments. After a short lifetime
τ32, the emitters transfer nonradiatively to the second level.
The second level and the first level are the upper and the
lower lasing levels, respectively. Emitters can decay from the
upper to the lower level by both spontaneous and stimulated
emission, and (j · E)/�ωa is the stimulated radiation rate.
Finally, emitters can decay nonradiatively from the first level
back to the ground level. The lifetimes and energies of upper
and lower lasing levels are τ21, E2, and τ10, E1, respectively.
The individual frequency of the radiation of each emitter is
then ωa = (E2 − E1)/�.

To simulate the laser medium we consider the situation
when the incipient percolating cluster is completely filled with
light sources. Such a percolating cluster is shown in Fig. 1,
where all internal uncoupled sites have been omitted. We
indicate that the percolation cluster in Fig. 1 has a typical
dendrite shape that, however, depends on the actual random
sampling. Rerunning the simulation with another random seed
value will lead to a percolation cluster with somewhat different
geometry, which will also have a similar sponge structure.
The cluster is grown in the x direction indicated by the
arrow in Fig. 1, which provides a substantially asymmetric
structure. Equations (1)–(3) are solved with initial conditions
that correspond to inversion of occupations of the emitters
levels and some random seed for the electromagnetic field that
simulates the noise in the system [26,28].

III. NUMERICAL CALCULATIONS

The theory of lasing from disordered three-dimensional
(3D) active media relies strongly on the huge amount of
computational resources needed when dealing with 3D prob-
lems. The simpler, low-dimensional models (1D and 2D) are
quite unsatisfactory for many important reasons, including the
critical nature of the random lasing in three dimensions [19].
Since the classical diffusion model does not correctly describe
the propagation of photons in a scattering medium with
nonuniformly distributed gain or loss [25], we apply the FDTD
technique for our numerical simulations. Briefly, the strategy
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FIG. 2. (Color online) Showing the formation of laser genera-
tion. Panels (a) and (b) demonstrate the flux Ix in the x direction of
the system; see (1). Panels (c) and (d) show the polarization Px(t)
of the deepest emitting node in the cluster. In panels (a) and (c)
the numerical grid with L = 75 has been used, while L = 100 in
panels (b) and (d). The lasing start times are ts = 12l0/c = 4 ps and
ts = 28l0/c = 9.3 ps for L = 75 and 100, respectively.

of our simulations consists in the following: (i) calculating the
geometry of the spanning percolating cluster, (ii) calculating
the photon field E generated by emitters incorporated in
spanning cluster with the use of FDTD technique [20,29],
and (iii) solution of nonlinear dynamic coupled equations for
field, polarization P, and the occupation numbers Ni for all the
emitters in the 3D system. The Runge-Kutta algorithm with
automatic control of the time stepping has been applied for the
latter.

In calculations we considered the gain medium with
parameters close to GaN powder, similar to Ref. [6]. The
lasing frequency ωa is 2π × 3 × 1013 Hz, the lifetimes are
τ32 = 0.3 ps, τ10 = 1.6 ps, τ21 = 16.6 ps, and the dephasing
time is T2 = 0.0218 ps. The percolating cluster has been
generated inside the cube of the l0 = 1 μm edge having
L3 nodes, with L = 75 and L = 100 that was sufficient
to simulate the percolating structure [20,21]. Each node is
supposed to indicate the position of many emitters, with the
total concentration of emitters inside the percolation cluster
being Nt = N0 + N1 + N2 + N3 = 3.3 × 1024 m−3. The ini-
tial (at t = 0) values of densities N0(0) = 0.001Nt , N1(0) =
0.002Nt , N1(0) = 0.002Nt , and N3(0) = 0.995Nt are used.
The refractive index of a host material is n = 2.2 that is
close to the typical values for ceramics Lu3Al5O12, SrTiO3,
ZrO2; see review [30]. The results of simulations shown in
Figs. 2–7 are obtained for cw pumping given by Ar = 107 s−1.
At this pumping all the simulations show the formation of a
well-defined lasing for t > ts , and we refer to ts as the lasing
start time in what follows. To simulate the noise in our system
the initial seed for the electromagnetic field has been created
with random phases at each node.

Figure 2 displays the dynamics of field and polarization as
functions of time for emitters incorporated in a percolating
cluster with occupation probability p = 0.32 in a simple
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FIG. 3. (Color online) The spectral structure of field shown in
Fig. 2. Panels (a) and (b) show the amplitudes of emission spectra for
cases L = 75 and L = 100, respectively; panels (c) and (d) display the
phases. An overall narrowing of the frequency spectrum is observed.

cubic lattice, which is close to the critical percolation value
pc ≈ 0.3116 (see Ref. [31]). Panels (a) and (b) show the flux
of energy Ix in the growth direction [see Eq. (1)], while panels
(c) and (d) display the polarizations Px(t) corresponding to
the deepest (with respect of the entry surface) emitter in the
percolating cluster. Comparing Figs. 2(a) and 2(b) we observe
that the lasing start time ts increases with the system size (L3),
or more precisely with the number of emitters incorporated
in the cluster. This is due to the fact that an increase of the
system size increases the volume of the phase synchronization
(number of emitters) in a percolating medium. Figure 2 shows
that the lasing begins with the spiking oscillations having
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FIG. 4. (Color online) (a),(b) Dynamics of population numbers
Ni (i = 0,1,2,3), where N1,2 correspond to the lasing levels. The
times t1,2 of minima of the field output in Fig. 2(a) correspond to the
intersections of lasing levels. (c),(d) Integrated over the observation
time t intensities Īx,y,z of radiation emitted along corresponding
directions. See details in text.
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FIG. 5. (Color online) Finite-difference time-domain calculation
of the spatial distribution of the field intensity (in central intersection
of sample) in 3D percolating cluster for different system sizes with
(a) L = 75, (b) L = 83, (c) L = 82, and (d) L = 80.

strongly modulated shape, but after some time the amplitude
of oscillations decreases. Note that the phenomenon of “laser
spiking” shown in Fig. 2 has being observed at fast turn-on
of some lasers [32]. Normally such oscillations occur when
the gain changes rapidly due to the fluctuations of pumping.
In our case, however, such oscillations appear due to the
considerably inhomogeneous distribution of emitters in the
percolating medium. The other important feature of lasing
from the percolating media is that the energy flux at output
side Ix(L) it is about twice more than the flux at input side
Ix(0) indicated by the incoming arrow in Fig. 1. The total
emission along the growth direction is also more than twice
stronger than the emission from the lateral sides. The presence
of considerable directionality emission is presumably due to
the substantial anisotropy of the incipient percolation cluster
seen in Fig. 1.

To study the details of this lasing we investigated the
spectra of the field output. Figure 3 displays the spectral
structure of the output shown in Fig. 2 in panels (a) and
(b) for L = 75 and L = 100, respectively. From Fig. 3 we
observe that the spectrum has a rather indented shape beyond
the central line. Note that this line is placed closely to the
single emitter frequency ωa but does not coincide with it
exactly, and it shows substantial narrowing of the emission
spectrum. The shift in the emission frequency appears because
the surrounding media, in which the percolating cluster resides,
serves as an effective cavity helping to keep the radiation
inside the cluster and to form the lasing effect. As a result,
at larger times after the excitation start, t � ts , a great
number of emitters become synchronized to contribute to
the stimulating radiation. Contrary to the distributed random
lasers, we observe that only one mode dominates at large times
and this mode extends through the whole light emitted media,
while all other modes are suppressed.

Figures 4(a) and 4(b) exhibit the dynamics of population
numbers Ni (for the deepest emitter), where the levels 1 and 2

FIG. 6. (Color online) The FDTD simulations of 3D spatial
structure of the field amplitude |Ex |, generated by emitters incor-
porated in percolating cluster (a) below the lasing regime, (b) at the
lasing start time ts , and (c) for well-developed lasing.

correspond to the laser levels. The emission intensity averaged
over the total observation time, Īi(t) = t−1

∫ t

0 Ii(τ )dτ , is
shown in Figs. 4(c) and 4(d), again for the cases L = 75
and L = 100, respectively. The fluxes of the emission energy
through the growth direction Īx and the lateral sides Īy,z

demonstrate considerably anisotropic emission at least in the
considered case of the incipient percolating cluster.

Figure 5 shows the details of the finite-difference time-
domain (FDTD) calculation of the distribution of the field
intensity in the central intersection of the 3D sample in a
spanning percolating cluster for systems of different sizes.
One can observe fluctuating, nonuniform, and likely speckle
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FIG. 7. (Color online) Dominant laser mode that is formed in
the system with a long-time FDTD simulation. Comparison the
shape of this mode to the Fermat optical path displayed in Fig. 1
shows reasonably good agreement of Fermat path with the spatial
distribution of the lasing mode, in spite of both distributions being
obtained by means of the different approaches (FDTD and Monte
Carlo techniques).

patterns. They are characterized by the presence of “hot spots”
of typical submicron sizes. We note that such patterns are a
generic near-field imaging feature for various 2D systems near
percolation [33,34].

Figures 6(a)–6(c) display the complete FDTD simulations
of the 3D spatial structure of the field amplitude Ex generated
by emitters incorporated in a percolating cluster at different
times after the pumping start. Initially, before the lasing start
time ts = 4 ps, the emission appears from small-scaled un-
coupled domains which give rise to weak incoherent radiation
with random phases; see Fig. 6(a). Subsequently, however,
radiation from the nearest patterns is being synchronized that
leads to the formation of macroscopically large areas (patterns)
of field.

In every cluster the partial lasing state will be established
and this leads to an overall increase of coherent emission. For
longer times, the other behavior of the field is observed. From
Fig. 6(b) one can see that the lasing modes are confined to 3D
areas around the localization centers. Each mode has its own
specific frequency and corresponds to a peak in the radiated
spectrum inside the system (see Fig. 3). From Fig. 6(b) we
observe the random field structure where the coupled coherent
field patterns have arisen.

As a result of nonlinear dynamical evolution, the areas with
strong field are extended due to the merging of small-scaled
structures and reconnecting of the field patterns. A coherent
lasing occurs in this percolating system. Once the lasing has
started, the gain no longer depends on the pumping rate but is
controlled by the losses in the system. From Fig. 6(c) we
observe that the field is concentrated in a number of 3D
spatially interconnected spots which mainly are located in the
central part of the percolating medium.

One can see from Figs. 6(a)–6(c) that all optical 3D modes
are strongly mixed and it is difficult to separate a dominated
mode among others. To get insight into the structure of the

lasing mode, in the next section we will apply the Fermat
variation principle that allows us to find the interconnecting
trajectories between the emitters.

IV. SPATIAL DISTRIBUTION OF THE FIELD EMITTERS

In this section we study how the optical communications be-
tween the emitters establish the field correlations and collective
interactions in the inhomogeneous distributed nanostructures.
Also the spatial structure of the localized laser modes is
discussed. The structure can be composed by optical emitters,
quantum dots, or other light emitting objects; see Refs. [3,4]
and references therein. No analytical solution is known for
the field mode in the considered 3D percolating nonlinear
system, and numerical methods have to be used. We start
from the simple approach allowing to obtain the “geometrical”
characteristics or trajectory of such mode in the geometrical
optics approximation.

As we observe from Fig. 6(c) corresponding to the advanced
laser generation, the lasing mode acquires a complicated 3D
spatial structure, different from the geometry of the emitter
distribution. The dominant lasing mode joins all the emitters
and results in rapid phase synchronization. Such a mode can
be imagined as a trajectory that passes once on each emitter
and it does not have closed small-scale loops. This dominant
trajectory possesses the optimal path (the minimum spatial
length in our case) in comparison to other modes.

In general, the definition of this optimal path is an advanced
problem for the structures with a large number of randomly
placed emitters. The well-known principle of Fermat [35]
asserts that the optimal optical path S between any two points
r0 and r1 is defined by minimization of

S =
∫ r1

r0

nrds = min , (4)

where nr is the refractive index of the media. For such a
variational problem different approaches have been offered.
We refer here the traveling salesman problem (TSP) as one
of the best studied optimization approaches [36]. The TSP
is to find the shortest path starting from an initial point r0,
visiting a given number of points, and ending in the point
r1. The path S obviously depends on the order in which the
emitters are visited. Here we apply the TSP approach based
on the adaptive simulated annealing algorithm [36] to search
for the minimal optical path S joining the emitters integrated
in a percolating spanning cluster.

Figure 1 shows the light emitters incorporated in the
cluster ordered by the Fermat principle with applying the
Monte Carlo technique. The definition of the optimal optical
path S, that defines the dominate lasing mode, leads to the
ordination of nearest-neighbor emitters and allows studying of
the general collective properties of field. Indeed, such a TSP
trajectory visits and synchronizes all the emitters and therefore
corresponds to a closed dominant mode. Because of the
condition to visit all the emitters, the leakage from the system is
suppressed and this mode has the largest semiclassical lifetime.
The emitters coupled in this way trap the light and produce the
lasing effects.

To obtain more support to the semiclassical calculation
using the Fermat principle and to get additional insight into
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FIG. 8. (Color online) The structure of the percolating cluster
as function of the system size (the numerical grid L in FDTD
simulations) at the probability population of percolating cluster near
pc ≈ 0.325. (a) Number of emitters in a percolating cluster N and the
length of Fermat optimal path S; see Eq. 4. (b) The fractal (Hausdorff)
dimension DH of the path S. The standard deviation σ ≈ N−1/2 for
N in panel (a) is less than 10−2.

the structure of the lasing mode, we have performed a complete
long-time (t � ts) FDTD simulation to study the result of laser
mode competition. The latter allows studying the formation
of the laser field structure having longest lifetime. The other
modes are dynamically decayed due to the leakage out of the
system. After that we can compare the spatial distribution of
found dominant lasing mode with the Fermat optical path.
Figure 7 shows the result of this long-time FDTD simulation
performed for the same parameters as in Fig. 1. From a
comparison of Figs. 7 and 1 we observe that, surprisingly,
both distributions show reasonably good correlations, despite
that they have been calculated on the basis of very different
frameworks (FDTD and Monte Carlo). This justifies the
usability of the Fermat trajectory approach to study the lasing
in percolating structures.

To quantify the characteristic spacial features of lasing field
E shown in Fig. 7 we calculate the inverse participation ratio
defined as

I = l3
0

∫ |E|4d3r

(
∫ |E|2d3r)2

=
(

l0

ξ

)3

. (5)

While this quantity does not reflect the essential anisotropy
of the lasing mode seen in Fig. 7, it allows us to estimate
the typical size of the mode ξ . For the percolating cluster
with concentration pc = 0.32 we obtain ξ/ l0 = 0.71, which
indicates the extension of the mode over a great part of the
system volume. This parameter is an increasing function of
the concentration of the light emitting cluster. In particular,
we have found that ξ/ l0 = 0.67 for p = 0.2, ξ/ l0 = 0.72 for
p = 0.35, and ξ/ l0 = 0.77 for p = 0.8.

Figure 8 shows the number of emitters N and the length
of the Fermat optimal path S [panel (a)] and the fractal
(Hausdorff) dimension DH [panel (b)] as a function of the
system size (numerical grid L in FDTD simulations) at the
probability population of a percolating cluster slightly above

the percolation threshold. We observe that while both the
number of emitters N in the cluster and the path S grow
exponentially with the system size, the fractal dimension DH

of the Fermat path S weakly depends on L. Notably, it has a
value close to the well-known fractal dimension of the incipient
percolating cluster DH ≈ 2.52 [23,24,31]. To calculate DH the
box counting approach [37] elaborated for our purposes [38]
has been used.

The complicated shape of the optical path S leads to
considerable interference of field waves in the system shown
in Fig. 1. Owing to random interferences, multiple-scattering
processes will occur in such a percolating medium. At a large
number of random emitters the optical Anderson localization
can occur as well.

In Fig. 1 the light rays that penetrate the percolating mate-
rials are scattered many times in a random fashion before they
leave the sample. Such interference in the multiple-scattering
process determines the mode structure of the laser shown in
Fig. 7. This process takes place without an optical cavity
and can therefore occur even in completely transparent active
materials where rays propagate freely. Thus, in a disordered
percolating system, the effect of the scattering enhances the
length of the light paths before photons escape from the
system. As a result, the stimulated emission is “improved” by
randomness as compared to a homogeneous active medium.

We note that lasing in the percolating system appears due to
the joint action of two factors: multiple scattering of emitted
light and the gain inside the percolating cluster. Both these
effects have a strong random component in the 3D system. We
have found that for the samples of small size (tens of microns),
the coherent lasing is well established (synchronized) and
starts typically for the time of about tens of picoseconds. In real
systems one expects to have strong fluctuations of properties
near the percolation threshold. As a result, the lasing start
time can be very sensitive to the position inside the large
samples and this would complicate the description of lasing
from macroscopic percolating systems. In particular, while the
lasing mode extends to the whole sample size in our case, we
do not know the details of spatial structure of lasing modes in
macroscopically sized percolating systems.

V. CONCLUSIONS

We have demonstrated that a 3D percolating cluster filled
with light emitters can serve as a lasing structure. The
time dynamics and spectra of the lasing output are studied
numerically with the finite-difference time-domain method.
We have demonstrated that lasing from this system can be
originated without an optical cavity and can therefore occur
even in transparent active materials. Similarly to random lasers
the appearance of coherent emission is related to the substantial
increase of the optical path for the escaping radiation. The
optimal optical path for communication between the radiated
emitters can be found by applying the Fermat principle
together with the Monte Carlo approach. The lasing mode is
found by a long-time FDTD simulation that allowed studying
the formation of spatial field structures in a nonlinear regime.
Both FDTD and Monte Carlo approaches reveal reasonably
good correlations. We have shown that in distinction to the
random lasing structures, the directivity of the percolation
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cluster closely to the percolating transition leads to a significant
anisotropy of emission from this mirrorless system, with a
substantial part of lasing coming out along the direction of
percolation.
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