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Experimental exploration of the optomechanical attractor diagram and its dynamics
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We demonstrate experimental exploration of the attractor diagram of an optomechanical system where the
optical forces compensate for the mechanical losses. In this case stable self-induced oscillations occur but only
for specific mirror amplitudes and laser detunings. We demonstrate that we can amplify the mechanical mode to
an amplitude 500 times larger than the thermal amplitude at 300 K. The lack of unstable or chaotic motion allows
us to manipulate our system into a nontrivial steady state and explore the dynamics of self-induced oscillations
in great detail.
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I. INTRODUCTION

Laser or microwave cooling of a mechanical degree of
freedom has led several groups to come close to or even
reach the quantum-mechanical ground state of a macroscopic
harmonic oscillator [1–3]. This has opened up many new
research avenues to investigate the foundations of quantum
mechanics [4], novel decoherence mechanisms [5–7], and
strong photon-phonon coupling [8–10]. Besides cooling, heat-
ing of the mechanical degree of freedom is possible, leading
to parametric instabilities, self-induced oscillations, and even
chaos. Braginsky et al. have derived the condition for achieving
parametric instability in a Fabry-Pérot interferometer, such as
the Laser Interferometer Gravitational Wave Observatory [11],
which is still a topic of interest [12]. The theoretical framework
has been expanded by Marquardt et al. [13] and Ludwig et al.
[14] with the introduction of an attractor diagram and an
expression for the optomechanical gain. From an experimental
point of view Carmon et al. [15] and Kippenberg et al. [16]
showed how self-induced oscillations of the mechanical mode
are imprinted on the cavity output field. Finally the transition
from self-induced oscillation to chaos has been investigated
with some interesting prospects for observing the quantum to
classical transition [17,18].

The dynamics of self-induced oscillations are best un-
derstood using an attractor diagram. So far only a small
part of this diagram has been explored experimentally by
Metzger et al. with the photothermal effect as the driving force
[19]. Little effort has been made to investigate the attractor
diagram experimentally using radiation pressure force. It has
therefore been to date an open problem to explore the full
attractor diagram experimentally [20]. One reason for this
is that a transition from self-induced oscillations to chaotic
mirror motion can occur due to second-order effects, such as
absorption-induced heating of the optical components [15,17].
This restricts the exploration of the attractor diagram to small
values of the mirror amplitude.

Here we demonstrate an optomechanical setup, consisting
of a Fabry-Pérot cavity with a trampoline resonator that does
not suffer from optical absorption in the mirrors. Not only does
this enable us to explore a large part of the attractor diagram in a
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controlled fashion, but also we find surprisingly rich dynamics
and nontrivial steady states of our optomechanical system.

II. THEORETICAL MODEL

Our optomechanical system is described by two coupled
equations of motion,
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= −κ

2
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in which α is the cavity field and x is the mirror displacement.
The parameters in Eqs. (1) and (2) are defined as follows: αin

is the laser field, κ is the overall cavity decay rate, κex is the
cavity entrance loss rate, � = ωL − ωcav is the laser detuning
defined as the difference between cavity and laser frequencies,
the optical frequency shift per displacement G = ωcav/L with
L being the length of the cavity, �m as the fundamental mode
frequency of the mechanical oscillator, �m as the mechanical
damping rate, and m as the mode mass of the harmonic
oscillator. Thermal and mechanical noise sources have been
neglected; an important assumption that will be justified for
our optomechanical system by the results below.

The optomechanical attractor diagram displays the optome-
chanical gain ζopt, the ratio of the radiative force Prad, and
frictional losses Pfric as a function of laser detuning � and
mirror amplitude A. From Eqs. (1) and (2) an expression for
ζopt can be derived [13],
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with

αn = Jn(−GA/�m)

κ/2 − i�̃ + in�m

, (4)

in which αn is the nth harmonic (or sideband) in the optical
field created by the mirror motion, Jn is the Bessel function of
the first kind, and �̃ is the effective laser detuning defined as
�̃ = ωL − ωcav + Gx̄, where x̄ is the static displacement of
the mirror due to the radiation pressure. For most situations,
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including ours, the static displacement is negligible and � ≈
�̃. Stable self-induced oscillations occur when ζopt(�,A) = 1,
whereas amplification (attenuation) of the mechanical mode
occurs when ζopt(�,A) > 1 (ζopt(�,A) < 0).

One way to map out the attractor diagram ζopt(�,A) is to
measure the mirror amplitude while varying the laser detuning.
Such measurement schemes have already successfully been
used for demonstrating optical cooling. With optical cooling,
the change in cavity resonance frequency due to the motion of
the mirror is usually much smaller than the linewidth of the
cavity resonance, i.e., GA � κ . In the optical field only the
first sideband is visible, and the magnitude of this sideband is
linear with mirror amplitude. For optical excitation, however,
the change in cavity resonance frequency can be much larger
than the cavity linewidth, i.e., GA � κ , resulting in multiple
sidebands present in the optical field. The linear relation
between the first sideband and the mirror amplitude no longer
holds. Now the mirror amplitude can only be obtained by
taking into account all optical sidebands.

III. EXPERIMENTAL SETUP

To map out the attractor diagram we make use of a
5-cm-long Fabry-Pérot cavity operating around 1064 nm with
a trampoline resonator as one of the end mirrors [21]. By using
a multilayer Bragg stack on both cavity mirrors, absorption
losses are minimized to about 1 ppm. The system is placed
inside a vacuum chamber with a vibration isolation system
containing several eddy-current dampers. All measurements
are performed at room temperature. A schematic of the setup
is given in Fig. 1. We use a piezotunable cw Nd:YAG laser and
control it with a typical scan speed of dωL

dt
= 100–400 MHz/s,

which is slow compared to the cavity buildup time, i.e., dωL

dt
�

κ/τ with κ as the cavity linewidth and τ as the cavity lifetime.
An EOM at 9.5 MHz is used to calibrate the laser detuning.
The mechanical properties of the trampoline resonator are
characterized by measuring the thermal noise spectrum and
the optical properties by performing an optical ring-down

Nd:YAG
1064 nm EOMOI

+ +
Vacuum chamber

R

T

300 μm 

trampoline resonator

FIG. 1. (Color online) Schematic of the setup. A piezotunable
cw Nd:YAG (yttrium aluminum garnet) laser is passed through an
optical isolator (OI) and a 9.5-MHz electro-optical modulator (EOM)
before it enters a fiber circulator that is fed into a vacuum chamber
that contains a 5-cm Fabry-Pérot cavity. Both the transmitted and
the reflected intensities are recorded with photodetectors. The inset
shows an optical image of the trampoline resonator.

measurement [21]. Both transmitted and reflected cavity light
are detected using photodetectors, and the data acquisition
is performed using a digital storage scope. For our system
only the fundamental mechanical mode and fundamental
optical mode (TEM00) are relevant. The parameters for our
system are the following: κ = 175 × 103 × 2π, κex = 50 ×
103 × 2π, �m = 343 × 103 × 2π, �m = 1.7 × 2π rad/s at a
pressure of 10−6 mbar, and m = 110 × 10−12 kg. To achieve
a sufficiently large optomechanical gain, the input laser power
should also be sufficiently large. A typical laser input power
of 50–100 μW is used, corresponding to an intracavity photon
number of 2.8–5.6 × 108.

IV. RESULTS

Figure 2(a) shows the optical intensity transmitted by the
cavity when the laser is scanned back and forth across
the cavity resonance. Several peaks are visible not only at the
cavity resonance �/�m = 0, but also at multiples of �/�m.
The appearance of sidebands can be explained as follows.
Suppose the laser frequency is at ωL = ωcav + �m and the
amplitude of the mirror is small such that only the first sideband
is created by the moving mirror at frequencies ω = ωL ± �m.
Only the Stokes sideband at ω = ωcav is resonant with the
cavity and enhanced, whereas the anti-Stokes sideband at
ω = ωcav + 2�m is suppressed. So the interaction of the
blue-detuned laser field with the resonator leads to a resonant
field in the cavity. The nonlinear interaction of the resonant
cavity field plus the incoming laser field with the mirror lead
to a resonant driving force. By creating sidebands, the mirror
generates its own driving force, which increases the mirror
amplitude. The increased mirror amplitude leads to a stronger
modulation of the cavity field, and this process repeats until
the gain is reduced to ζopt = 1 (limit cycle behavior). When
the laser detuning is slowly increased further, the process
repeats whereby the ever-increasing mechanical motion allows
sideband generation to drive the mirror to larger amplitudes.
This process continues until the laser is swept back rapidly to
�/�m = −30. At first the laser detuning and mirror amplitude
do not match to produce an optical force that influences the
mirror motion. The mirror amplitude decreases only due to the
intrinsic mechanical damping. As the laser detuning is slowly
increased towards zero detuning at some point, in this case at
�/�m = −12, the laser detuning and mirror amplitude are
such that sidebands created by the mirror motion result in an
optical force. However the sign of the optical force has changed
compared to the situation with positive detuning. Instead of
parametric amplification, now parametric attenuation occurs,
resulting in a decrease in mirror amplitude. The interaction of
the laser field with the resonator again leads to a resonant cavity
field, resulting in peaks at multiples of �/�m also for negative
laser detunings. This is only visible when the mirror amplitude
was driven to large values previously. Driven oscillations at
negative laser detunings reveal therefore something about the
state and history of the system and are nontrivial.

To compare the experimental result of Fig. 2(a) with theory,
a numerical simulation is performed with the same experi-
mental parameters. For this we solve numerically Eqs. (1) and
(2) using the following initial conditions: α(0) = 0, α′(0) =
0, x(0) = x0, and x ′(0) = 0, where x0 denotes the initial
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FIG. 2. (Color) A closed cycle across the attractor diagram.
(a) Intensity transmitted by the cavity for two consecutive periods of
a controlled laser detuning sweep. (b) Simulation based on Eqs. (1)
and (2). (c) Attractor diagram corresponding to our experimental
parameters. The path followed in the experiment is indicated by the
arrows.

mirror amplitude. The value for x0 is chosen to correspond
to the thermal mirror amplitude at 300 K: x0 = √

kbT /m�2
m.

Although no mechanical and thermal noises are required to
reproduce the experimental results, an initial mirror amplitude
is needed to start the parametric process.

The results of the simulation, depicted in Fig. 2(b), are in
good agreement with the experimental results of Fig. 2(a). This
indicates that our earlier assumption not to include thermal and
mechanical noises in Eqs. (1) and (2) is justified. Furthermore,
we do not need to include any second-order effects, such as

heating of the mirror substrates due to absorption. Although
from the experimental data the mirror amplitude is not obtained
directly, the numerical simulations do contain the mirror
amplitude. By plotting the attractor diagram according to
Eq. (4) together with the mirror amplitude obtained from the
simulations, we can visualize the traversed path across the
attractor diagram.

In Fig. 2(c) the attractor diagram is displayed together
with the evolution of the mirror amplitude (indicated by
the arrows). The amplitude follows a deterministic path
through the diagram. Along this path the optomechanical gain
varies. When the gain is large, the path closely follows the
ζopt = 1 contour, whereas in the regions with moderate gain
the changing laser detuning prevents the mirror amplitude
from reaching the ζopt = 1 contour as closely. Specifically,
for positive laser detunings ζopt � 1 and for negative laser
detunings ζopt � 1. It is also worthwhile to emphasize that the
mirror amplitude changes on the time scale of the laser scan
speed, much slower than the oscillation frequency of the mirror
or the cavity lifetime. So far we have thus been discussing
the dynamics of a driven quasistatic system. However, also
interesting dynamics occur on the time scale of the mechanical
resonator.

Theoretically the increase in the mirror amplitude, as shown
in Fig. 2(c), should be visible as an increase in the number of
harmonics present in the output field [13]. This is verified by
analyzing the fast modulation present in the reflected intensity
for several different detunings corresponding to the white dots
in Fig. 2(c). We have analyzed the reflected intensity as it
is picked up by a faster photodetector in our experimental
configuration. However the same features should also be
visible in the transmitted intensity.

In Fig. 3 we compare experimental and numerical results for
these fast modulations. For clarity an offset is removed, and the
figures are rescaled. The excellent agreement between theory
and experiment confirms once more that we have explored
in detail the boundary (lowest branch where ζopt = 1) of the
attractor diagram and that this method is suited for further
exploration of the attractor diagram. Furthermore, we have
significantly amplified the motion of our mechanical resonator
using large intracavity power without any sign of unstable or
chaotic behavior.

To demonstrate that we have full control over our system,
we change the starting conditions of our laser frequency
sweep after performing a cycle similar to the one displayed in
Fig. 2. When the mirror amplitude is large, changing the laser
detuning slightly makes it possible to skip from the boundary
branch to another branch. In this way different branches in the
attractor diagram can be explored.

Figure 4(a) shows the results of two cycles across the at-
tractor diagram along a different branch. The scale for the
transmitted intensity is the same as in Fig. 2(a). Although the
experimental conditions have only changed a little, the result is
quite different from Fig. 2(a). Still multiple peaks at �/�m are
visible, but the main cavity resonance at �/�m = 0 is reduced
significantly compared to these sidebands. Also a distinctive
dip is visible, indicated with “*’s.” To verify that the features
of Fig. 4(a) are captured by the theoretical model of Eqs. (1)
and (2), a numerical simulation is performed with the same
experimental parameters. The qualitative agreement between
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FIG. 3. Detailed time traces of the reflected cavity intensity for
different laser detunings. The left column shows the measurements,
and the right column shows numerical solutions to Eqs. (1) and (2).
(a)–(d) correspond to specific detunings indicated with white dots in
Fig. 2(c).

experiment and simulation shows that the model is still valid
for our system. Furthermore, from the simulation we can again
extract the mirror amplitude and use this together with the
attractor diagram to explain the features of Fig. 4(a).

Figure 4(c) shows this attractor diagram. The black dashed
line shows the initialization, which is similar to the cycle
performed in Fig. 2, but now the laser detuning is set back
to just �/�m = −5 to reach a different branch. Note that
the initialization is not shown in Figs. 4(a) and 4(b). The
solid black line shows the evolution of the mirror amplitude
during one cycle. The largest mirror amplitude achieved in
this experiment is roughly 1600 pm, more than 500 times the
amplitude at 300 K without any sign of chaotic or unstable
behavior.

For the steady-state cycles of Fig. 4(a) the reduction in the
transmitted intensity at the cavity resonance (�/�m = 0) is
now readily explained: The large mirror amplitude reduces
the time the cavity is resonant with the input field, therefore
less intracavity field is built up, resulting in a reduction in
transmitted intensity.

The inset of Fig. 4(c) shows the region where a change from
one stable branch to another occurs. This transition occurs

FIG. 4. (Color) Exploring a higher branch in the attractor dia-
gram. (a) Intensity transmitted by the cavity for two consecutive
periods of a controlled laser detuning sweep. The scale for the
transmitted intensity is the same as in Fig. 2(a). (b) Simulation based
on Eqs. (1) and (2). (c) Attractor diagram together with the path
followed in the experiment. Before switching to a higher branch, the
system is initialized (dashed line) using a similar detuning sweep as
in Fig. 2(c). Inset: Zoom of region around zero detuning.

at {�/�m = 1.5, A ≈ 510 pm}. At this point the mirror
amplitude stays constant along a contour where ζopt = 1.
This point coincides with the distinctive dip in Fig. 4(a).
When the mirror amplitude does not change, no optical
driving force occurs, and no sideband is visible in the optical
output. Even more interesting is the surrounding area of
the attractor diagram. At {�/�m = 1.5, A ≈ 510 pm} any
small change in mirror amplitude is significantly amplified:
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If the mirror amplitude increases slightly, ζopt � 1, and the
mirror amplitude will increase significantly. Similarly, if the
mirror amplitude decreases slightly, ζopt � 1, and the mirror
amplitude will decrease significantly. The inset therefore
highlights a bistability: A small perturbation of the mirror
motion will result in a large change in the mirror amplitude.
However, our results show that in a clean system such as ours,
we can “walk” through such unstable regions on a well-defined
path.

V. CONCLUSION

With the absence of any chaotic or unstable behavior our
optomechanical system is only described by two equations
[Eqs. (1) and (2)]. This has allowed us to explore in detail the
optomechanical attractor diagram and the dynamics of self-
induced oscillations. By performing a laser frequency sweep,

multiple stable branches in the attractor diagram are explored.
Furthermore, we have demonstrated nontrivial dynamics, such
as driven oscillations for negative laser detunings and the
presence of a bistability.
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