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Radio-frequency-assisted electromagnetically induced transparency
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A near-resonant rf field pumping the hyperfine transition between the two ground states of a �-shaped dark
resonance leads to a resonance tripling, each component displaying electromagnetically induced transparency
(EIT). We investigate the three resonances under high spectral and temporal resolution. The triplet formation is
analogous to that of the Mollow triplet but distinct in that the role played by the spontaneous emission rate is now
taken by the one-photon scattering rate of the optical Raman transition. Complex phase relations exist between
the three em fields under EIT conditions. We explain our observations using numerical solutions of the quantum
master equation as well as a simple analytical dressed-state model.
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I. INTRODUCTION

Radio-frequency control of electromagnetically induced
transparency (EIT) [1] is envisioned in several quantum
optics applications ranging from creating artificial selection
rules for frequency-selective quantum operations [2–5], to
controlled anticrossings by symmetry breaking in circuit
quantum electrodynamics [6], to rf-driven EIT for generation
of phase gratings for optical switching [7–9]. Theory has
predicted new narrow resonances, limited in width only by the
ground-state decoherence, with the prospect of engineering
both the position and width of the narrow resonances by
rf amplitude, frequency and phase, thus promising intimate
control over dispersion and group velocity [2,10–12].

Radio-frequency control is, for example, accomplished by
rf fields whose frequency is near resonant with the difference
frequency of the optical fields which establish a Raman con-
nection in a � system between two ground states. In resonant
Raman interaction of two hyperfine states |1〉 and |2〉, atoms
are optically pumped into a so-called dark state [1], which
is transparent (dark) to the optical fields that connect the two
states to a common excited level |3〉. For long interaction times,
the ground states form the dark nonstationary superposition

|ψD(z,t)〉 = 1√
2

(|1〉 − ei(ωhf t+kz−φ)|2〉). (1)

Here we assume, for simplicity, equal Rabi frequencies
g1 = g2 = g of the two optical fields with wave-vector
difference k = k2 − k1 and phase difference φ = φ2 − φ1.
State |2〉 lies higher in energy by ωhf , the hyperfine splitting.

The presence of a radio-frequency field which connects |1〉
and |2〉 in a magnetic dipole transition can modify condition
(1), as shown in the rf pulse-area dependence of the Ramsey
fringe patterns reported by Shahriar et al. [13]. Li et al. [14]
demonstrated that the optical fields establish a spatial pattern of
the relative phase kz of the dark state which can be constructive
or destructive to rf excitation. Wilson et al. [15] studied spin
transitions of the nitrogen-vacancy center in diamond and
observed tripling of the EIT resonance when the rf frequency
ωrf matched the hyperfine splitting. In the experiments [13,14],
rf signals at frequency ωrf were employed and were also used to
generate the optical frequency difference �ωL = ωL1 − ωL2.
As a consequence, the three-photon resonance condition was
automatically enforced.

In the work presented here we use two independent optical
fields which are phase locked with respect to each other. A
separate tunable and phase-shiftable rf signal is used which is
phase referenced to the laser frequency difference. This allows
us to study the interplay between the detunings �ωL,φ,and φrf

and the rf detuning from resonance, δrf = ωhf − ωrf , in
stationary and time-dependent fashion. We show that the
full spectrum includes nonlinear resonances, analogous to the
sidebands in the Mollow triplet [16], and explain the sidebands
with a dressed state model for the rf coupled dark state. We
also confirm the predicted resonance narrowing [10].

II. THEORY

Among the many EIT resonances which can be constructed
in rubidium, three belonging to the lowest energy D1 transition
in 87Rb are degenerate in first-order at low magnetic field.
Under high resolution they separate into the R0, R+, and R−
dark resonance spectrum of Fig. 1.

At low laser intensity and small dephasing rate the three res-
onances are spectrally well separated. The optical two-photon
detuning δ measures the detuning of the optical frequency
difference and the hyperfine splitting δ = �ωL − ωhf .

The R0 resonance involves two Zeeman levels in the ground
state and two Zeeman levels in the excited state. To simplify
the description we neglect the small Zeeman splitting in the
excited state and treat the R0 resonance as a three-level system,
the two ground states at energies ω1 and ω2 and one excited
state at ω3. To simplify notation we absorb the small quadratic
Zeeman level shift (2 kHz at 3 G) into the hyperfine splitting
ωhf . In order to describe the absorption of lasers 1 and 2 in
the presence of the rf field we introduce levels dressed by rf
photons with N counting the number of rf photons as shown
in Fig. 2.

In a frame rotating with the frequencies of the fields we
write for the state vector

|�̃〉 = ψ̃2,N−1|2,N − 1〉 + ψ̃1,N |1,N〉 + ψ̃2,N |2,N〉
+ ψ̃1,N+1|1,N + 1〉 + ψ3,N |3,N〉. (2)

Setting the energy of the excited state as zero and with the field
phases φ1,φ2,φrf the amplitudes in (2) are

ψ̃2,N−1 = e−i(φ2+φrf ) e−i(ωL2+ωrf )t ψ2,N−1, (3)
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FIG. 1. (Color online) (a) Zeeman splitting of D1 transition levels
of 87Rb. (b) EIT resonances observed at 3.2 G. The transmission is
normalized to the R0 resonance. The full line shows the fit of the
gray data points by three Lorentzians [full width at half maximum
(FWHM) of 850 ± 50 Hz].

ψ̃1,N = e−iφ1 e−iωL1t ψ1,N , (4)

ψ̃2,N = e−iφ2 e−iωL2t ψ2,N , (5)

ψ̃1,N+1 = e−i(φ1−φrf ) e−i(ωL1−ωrf )t ψ1,N+1. (6)

In a second step we dress the lower ground-state pair
(|2N − 1〉,|1N〉) with optical photons of laser 1 and the upper
ground-state pair (|2N〉,|1N + 1〉) with photons of laser 2.
With the detunings �1 = ωL1 − (ω3 − ω1) and �2 = ωL2 −
(ω3 − ω2), assuming equal Rabi frequencies g1 = g2 = g for
the two optical fields and the rf Rabi frequency G we obtain
for the Hamiltonian

H̃ = 1

2

⎛
⎜⎜⎜⎜⎜⎝

2(�1 − δrf) G 0 0 0
G 2�1 0 0 g

0 0 2�2 G g

0 0 G 2(�2 + δrf) 0
0 g g 0 0

⎞
⎟⎟⎟⎟⎟⎠

.

(7)
With this Hamiltonian the quantum master equation

∂ρ

∂t
= − i

�
[H̃,ρ] + L̃1ρ + L̃2ρ (8)

can be solved numerically. We give explicit expressions for
the Liouvillian terms L̃ in the Appendix. Typical steady-state

FIG. 2. (Color online) Five-level system of dressed atom ground-
state pair and excited state. N signifies the number of rf photons.

FIG. 3. (Color online) Simulation of transmission as a function
of rf detuning δrf with g = 2π × 300 kHz, � = 2π × 190 MHz, and
γ = 2π × 20 Hz for two rf Rabi frequencies G.

solutions for the optical absorption measure Im[ρ15 + ρ25 +
ρ35 + ρ45] are shown in Fig. 3.

The EIT resonances R+ and R− were added to this
numerical result; they remain unaffected by the rf field over
the detuning range used here. Numerical solutions for the
time-dependent master equation (8) are discussed in Sec. V C.

A. Analytical model

A simple model can be derived from diagonalization of (7)
in the limit g → 0. The interacting dressed-state eigenvectors
which result are explicitly quoted in Fig. 4 along the respective
rf Stark shifted energy levels. The letters C and S abbreviate
cos β and sin β where the mixing angle β describes the
microwave interaction,

β = 1

2
arctan

G
δrf

. (9)

In the limit of weak optical fields these levels participate
in two classes of EIT, a linear and a nonlinear resonance. Two
linear resonances appear at the two-photon detuning δ = δrf ,
marked by the respective Raman transitions in Fig. 4. They
involve the superposition of two pairs of eigenvectors of equal
rf photon number N ,

FIG. 4. (Color online) The origin of rf-assisted EIT resonances
in the model of interacting dressed states are the coherent Raman
transitions between manifolds E(N ) and E(N − 1).
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{ + cos β |1,N〉, + sin β |2,N〉}, (10)

{ − sin β |1,N〉, + cos β |2,N〉}. (11)

Equivalent resonances of identical property appear with eigen-
vectors of other rf photon numbers when using the manifolds
E(N − 1), E(N + 1), . . . etc.

The strength of the linear EIT resonance is controlled by the
sum of the squared products of the |1,N〉 and |2,N〉 amplitudes
in (10) and (11), weighted by the respective reduced population
�i in the bare dressed state,

(sin β cos β)2 �1 and (− sin β cos β)2 �2 . (12)

In our experiment g � G and hence the populations �i are
controlled by the optical fields. For g1 = g2 = g the three-level
model [1] predicts for the dark state �1 = �2 = 1

2 . With this
the sum of contributions (12) to the linear resonance predicts
for the optical transmission

Tlin = 1

2
sin (2β)2 = 1

2

G2

G2 + δ2
rf

, (13)

a Lorentzian distribution around δrf = 0 which we multiplied
by a factor of 2 for reasons of normalization. We see that the
spectral width of transmission along the axis of detuning is
controlled by the rf intensity.

The two nonlinear EIT resonances in Fig. 4 appear at the
two-photon detunings

δ± = δrf ∓
√
G2 + δ2

rf . (14)

They involve opposing levels of neighboring manifolds,

{−sin β|1,N〉,+ sin β|2,N〉}, (A) (15)

{+ cos β|1,N〉,+ cos β|2,N〉}, (B) (16)

and they merge with the EIT dip of R0 at large rf detuning.
Their transmission is (again we multiply by a factor of 2 for
reasons of normalization)

T
(A)

nl = sin4 β and T
(B)

nl = cos4 β . (17)

The sum Tlin + T
(A)

nl + T
(B)

nl is 1, independent of detuning
and rf intensity, normalized to the intensity of the unperturbed
R0 resonance. In the limit of large positive detuning δrf ,
we have β → 0 and T

(B)
nl → 1, the transmission of the

unperturbed R0 resonance. On the other hand, in the limit of
large negative detuning δrf , we have β → π/2 and T

(A)
nl → 1.

At δrf = δ = 0 the transmission at the linear resonance is
Tlin = 1/2, while T

(A)
nl and T

(B)
nl are each 1/4. The predictions

Eqs. (13) and (17) are in quantitative agreement with the spec-
tra obtained numerically from the master equation in Fig. 3.

III. EXPERIMENT

The experimental setup has been described previously [17].
We use a neon-buffered Rb gas cell containing isotopically
pure 87Rb at a neon pressure of 20 Torr kept at 25 °C. The cell
is mounted in an rf cavity. Coils in Helmholtz configuration
ensure a homogeneous magnetic field along the direction of
laser beam propagation. The two lasers are locked via an
optical phase lock loop (OPLL) [18]. One of the lasers is

kept at the D1 line of 87Rb using frequency modulation (FM)
spectroscopy. The laser beams are merged in an optical fiber
and expanded to a diameter of 15 mm before entering the Rb
cell. An rf synthesizer (Hittite HMC C070) provides an output
power of 20 dBm for driving the ground-state transition. We
use fixed attenuators and feed the signal into the resonator
by a magnetic coupling loop. Phase stability is guaranteed
by referencing the rf generator and the OPLL controls to
a GPS-based frequency standard. Phase changes in the rf
signal are realized by changing the GPS reference signal
line to the synthesizer using a voltage-controlled phaseshifter
(MiniCircuits JHPHS-12).

The 40.2-mm-long and 46.8-mm-diameter rf cavity is made
of aluminum; it supports the TE011 mode near the resonance
frequency ωhf . Following the concepts of Godone et al. [19],
we first estimated the shift due to insertion of the Rb cell
using the unperturbed field eigenvectors to derive resonator
dimensions. These were refined in CST MICROWAVE STUDIO

simulations using actual dimensions, including laser ports,
coupling loop, and the empty Rb cell to match the pressure-
shifted hyperfine splitting [20]. The Rb glass cell has a long
glass stem which ensures condensation of the Rb outside the
cavity, thus minimizing the rf-sensitive load. The cell interior
length and diameter are 22 and 21 mm, respectively. The length
is chosen to be one-half of the wavelength corresponding to the
hyperfine frequency. Fine tuning of the cavity is accomplished
by length adjustment using a low-pitch screwable lid.

Figure 5 shows the inhomogeneity of the magnetic ampli-
tude component |Hz| over the cross section of the cell. The
loaded Q factor of the resonator is measured to be 1350 at
ω = ωhf with a full width at half maximum of 5 MHz; see the
reflected power at resonance in Fig. 5.

�4 �2 0 2 4

�10

�5

0

5

10

15

Δ rf �MHz�

re
fle
ct
ed
po
w
er
�d
B
m
�

(b)

(c)

(a)

FIG. 5. (Color online) (a) z component of magnetic field ampli-
tude in the observation volume, normalized to the mean value; the
contours mark 5% levels. (b) measured reflected power as a function
of rf detuning from 6.8569 GHz. (c) Three-dimensional (3D) view of
cavity and cell. Magnetic field vectors with magnitude greater than
30% of the peak value are shown in the plane of cut.
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IV. RESULTS

Sample scans of EIT spectra are presented in Fig. 6 as a
function of rf detuning for different rf powers.

The linear dependence δ = δrf for the linear resonance is
apparent from the figures. We find quantitative agreement of
the transmitted optical intensity along the diagonal δ = δrf

with the simple model (13).
Figure 7, right, shows the optical transmission at the linear

resonance, relative to the transparency of the R0 resonance
at large detuning. The full lines represent fits of Eq. (13).
They provide absolute values for the mean rf Rabi frequencies
in the observation volume. We obtain Gexpt = 2.8 ± 0.2, 9 ±
0.5, and 25 ± 5 kHz for the powers −20, −10, and 0 dBm,
respectively. This is in agreement with the expected square-
root scaling with rf power,

G = �g μB |Bz|/�, (18)

where μB is Bohr’s magneton and �g = (gF=2 − gF=1) is the
difference in g factors of the ground hyperfine states F = 2
and F = 1 and in agreement with the anticipated separation of

FIG. 6. (Color online) Experimental two-photon absorption
spectra recorded at cavity power imputs of −20, −10, and 0 dBm.
The color scale ranges from normal (1) to minimal absorption (0)
in each figure. The respective mean magnetic Rabi frequencies are
measured to be G/2π ≈ 3, 9, and 25 kHz; see Fig. 7(b).

FIG. 7. (Color online) (a) resonance tripling of R0 at δrf = 0,
recorded at −20 dBm. The width of the linear resonance is 630 ±
50 Hz, of the nonlinear resonance ≈ 2 kHz. (b) Transmission at linear
resonance along the diagonal δ = δrf , relative to that of R0 at large
detuning. Full curves represent fit of Eq. (13).

resonances A and B, 2G at δrf = 0. Maximizing the frequency
separation between these resonances serves as a precise
indicator in fine-tuning the cavity. The measured transmission
at δrf = 0 demonstrates the agreement between experiment and
the prediction of the simple model for the resonance intensities;
see Fig. 7(b). Equations (13) and (17) predict T

(A)
nl : Tlin :

T
(B)

nl = 1
4 : 1

2 : 1
4 relative to that at the R0 resonance position

at large detuning. The observed nonlinear peaks are somewhat
lower, 1

5 : 1
2 : 1

5 , a consequence of inhomogeneous broadening;
see Sec. V B.

The color (gray-scale) coding in Fig. 6 serves to emphasize
the additivity of transparency. At low rf power the R0

resonance shows the highest transparency. At higher powers
this transparency splits over the linear and two nonlinear
resonances, and we notice enhanced transparency when linear
and nonlinear resonances cross the R+ and R− positions in
the 0 dBm measurement. This additivity is a consequence of
the fact that R+,R0, and R− involve independent ground-state
Zeeman levels.

General agreement is obtained in comparison with the
simulations shown in Fig. 3 with exception for the width of
the nonlinear resonances near |δrf| = 0. They are much wider
in the experiment. We attribute this to the inhomogeneity of
the rf amplitude in the observation volume. This feature and
the observed response of the resonances to sudden frequency
or phase switching will be treated in the Discussion.

V. DISCUSSION

A. Mollow-type triplet

The observed tripling of an EIT resonance in the presence
of a near-resonant rf field is reminescent of the Mollow triplet
[16]. The role taken by the spontaneous emission rate � in the
Mollow triplet is here taken by the generalized scattering rate
of optical photons by the EIT ground-state levels [20],

�′ = g2/� + γ. (19)

Here we assumed equal optical Rabi frequencies g1 = g2 = g,
while γ is the ground-state dephasing rate due to collisions
and diffusive loss from the observation volume. The coherent
two-photon connection between the ground states |1〉 and |2〉
as indicated by the optical Raman transitions in Fig. 4 is
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FIG. 8. (Color online) Resonance tripling of R0 at δrf = 11 kHz,
recorded at −10 dBm. The width of the linear resonance is 650 ±
50 Hz, and of the nonlinear resonance B is ≈5 kHz. Resonance A is
exceedingly weak and outside the scan widow. Data points represent
experimental results, the full line a fit of Lorentzians.

interrupted at the rate (19) and thus is the origin for broadening
of the EIT resonance, the quantity 2�′ being a measure for the
FWHM of the R0 resonance [20]. �′ should also be influential
for the rf-induced resonances. We were unable to deduce
analytical expressions for their widths but we note that the
observations and the numerical predictions reveal substantial
narrowing of the linear resonance see Fig. 7 at resonance, but
also, for detuned rf fields, see Fig. 8.

The numerical simulations predict even narrower widths for
the nonlinear resonance A when δrf > 0 and for resonance B
when δrf < 0; see Fig. 3. The experimental widths for nonlinear
resonances are however substantially wider, a consequence of
the inhomogeneity of the microwave field, which we discuss
next.

B. Inhomogeneity of the rf field

To demonstrate the effect of rf-field inhomogeneity we
consider the field profile in the observation volume (Fig. 5)
and evaluate at a fixed value of δrf the contributions of the three
rf-induced resonances separately for each volume element
and sum the contributions. Such a simulation is shown for
G/2π = 25 kHz and a homogeneous 12-mm-diameter laser
beam in Fig. 9.

The linear resonance is narrow as its spectral position
is independent of the rf power; however the widths of the
nonlinear resonances broaden substantially, similarly to what
is observed in our experiment. This broadening represents an
inhomogeneous width.

The homogeneous width of an EIT resonance is controlled
by the scattering rate �′ in Eq. (19). The quantities g and
� are identical for the linear and nonlinear resonances. The
diffusive loss rate of atoms from the observation volume is
included in γ and this rate is different for linear and nonlinear
resonances due to the effective size of the volume: For the
linear resonance the cylindrical observation volume is given by
the size of the laser beams. This large volume yields γ ≈ 2π ×
20 Hz.

On the other hand the effective volume for the nonlinear
resonance is defined by lengths beyond which the frequency

FIG. 9. (Color online) Simulation of 0 dBm spectrum of Fig. 6,
accounting for the magnetic field inhomogeneity in the observation
volume. The EIT resonances R+ and R− were added to this
simulation; they remain unaffected by the rf field.

position of the resonance changes by the homogeneous width
of a stationary atom. To estimate this volume we consider a
distance measure for diffusive loss over which the resonance
position shifts by �′ ≈ 2π × 1 kHz. The CST simulations in
Fig. 5 show that the magnetic field amplitude changes by this
amount over distances d ≈ 2 mm. Since γ scales with d−2 [see
Eq. (43) of [20]] we estimate that the diffusive contribution to
γ /2π for the nonlinear resonance is in the kilohertz range. The
enhanced diffusive loss from the small effective observation
volume explains the anomalous widths of the nonlinear
resonances in the experimental results in Figs. 7 and 8.

C. Response to optical frequency and phase jumps

The difference in rates �′ for the linear and nonlinear
resonances is also observable in the rate at which the optical
transparency of the EIT medium responds to departures from
a resonantly balanced electromagnetic field term ei(ωhf t+kz−φ)

FIG. 10. (Color online) Photodiode signal showing the increase
in absorption following a frequency jump away from resonance at
t = 0, (a) for the linear resonance and (c) for resonance B. Returning
to resonance (at t = 4 μs) EIT conditions are reached again in an
exponential fashion. This is also observed after a sudden jump of the
optical phase difference by π (time period between 6.5 and 9.5 ms).
The bottom row gives the expected absorption strength in units of
brightness from numerical solution of (9) using the parameters in
Table I.
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TABLE I. Parameters used in numerical simulation (multiply all
rates by 2π , � = 190 MHz, G = 3.3 kHz, g = 300 kHz).

δrf γ �δ �φopt

(kHz) (Hz) (kHz) (kHz) �φrf Resonance

Fig. 10(b) 0 20 + 5.0 π Rlin

Fig. 10(d) 0 1000 + 1.5 π Rnl B

Fig. 11(b) 0, 3, 6 20 0.8π Rlin

Fig. 12(a) 0, 3, 6 20 Variable Rlin

Fig. 12(b) 1 1000 Variable Rnl B

Fig. 13(b) 1 1000 π/2 Rnl B

Fig. 13(b) 3,10 200 π/2 Rnl B

in (1). A sudden change in two-photon detuning by �δ

leads to temporal departure from the time-dependent coherent
superposition (1), manifested by Rabi oscillations at frequency
�δ. The oscillations are damped at the rate �′, upon which the
medium resorts to regular incoherent absorption.

The reverse process, sudden switching of the two-photon
detuning to zero, establishes the path to commensurate oscilla-
tions of the optical difference field and the state amplitudes at
the frequency ωhf in (1). EIT is then approached in exponential
fashion with time constant τ ∝ 1/�′, because �′ signifies the
effective scattering rate at which a decision to populate the
dark-state superposition (1) can occur [17]. This exponential
decay into EIT conditions is also observed following a sudden
change in the optical phase φ in (1).

As example we consider Rlin, prepared at t < 0 at resonance
δ = δrf = 0; see Figs. 10(a) and 10(b). To increase the
spectral separation between resonances we use here and in
the following a slightly higher magnetic field (4.8 G).

At t = 0 ms the two-photon detuning is switched from zero
to δ = 5 kHz and back to zero again at t = 4 ms. The slow
decay upon exiting EIT and the slow recovery when returning

to resonance are consistent with the small value of γ , as also
shown by the simulation. The simulation interprets this phase
response by the measure brightness, defined as the response
relative to that of a dark state to an optical phase shift of ±π/2;
see [17,21]. Likewise the response to an optical phase jump
by π observed is reproduced by the simulation using a small
value of γ . Parameters used in the simulations are collected in
Table I.

The response is very different for the nonlinear resonance;
see Figs. 10(c) and 10(d). Here we exit from resonance B by
a 1.5 kHz frequency jump at t = 0 and return to resonance at
t = 4 ms. The nonlinear resonance responds rapidly to changes
in frequency or phase, consistent with the higher rate γ .

D. Response to rf phase jumps

The response to sudden phase shifts of the rf field is different
from that for the optical field. At Rlin the optical and rf
detunings are equal, a condition straightforward to adjust in the
experiment at any detuning. In Fig. 11 we compare examples
of experimental scans at three values of the rf detuning with
simulations.

Here the phase of the rf signal is shifted by 3π/4 at 0.2 ms.
Short-duration (30 μs) optical phase shifts of ±π/2,π occur
at 4.2, 5, and 5.8 ms respectively and serve as a reference
for the response in absorption. Following the rf phase shift a
momentary increase in absorption is observed, which decays
back to EIT conditions at a rate commensurate with the small
value of γ . This exponential return to EIT is modulated
by oscillations, their frequency increasing with increased
detuning. Inspection of the experiment and the simulations
reveals that the oscillation occurs at the generalized rf Rabi
frequency,

� =
√
G2 + δ2

rf . (20)

FIG. 11. Effect of rf phase jump at Rlin at three values of rf detuning. The phase of the rf signal is shifted by 3π/4 at 0.2 ms. Short-duration
(30 μs) optical phase shifts by ±π/2,π at the end serve as reference. (a) Photodiode signal, and (b) simulation of the absorption signal in units
of brightness using the parameters in Table I.
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FIG. 12. (Color online) Examples of rf phase-jump-induced ab-
sorption, (a) for the linear and (b) for the nonlinear resonance, are
shown as points. Simulation results (full lines) are scaled by a factor
of 0.85 in (a) and of 6 in (b).

Figure 12 compares observations and simulations of the
dependence on the magnitude of the rf phase jump �φrf .

Most striking is the periodicity by π for δrf = 0 and its
continuous change to a periodicity of 2π as the detuning
increases. Parallel to this, the amplitude of absorption fol-
lowing an optical phase jump decreases in comparison to the
amplitude following an rf phase jump (see Fig. 11), opposite
to what we observe for the nonlinear resonance, which we
discuss next.

Figure 13 gives examples for the response to rf phase
jumps by π/2 at the nonlinear resonance B. There is general
agreement between the observed brightness and the simulated
response; see Fig. 12(b). It is worthwhile to examine the
response to the optical phase shifts by ±π/2 and π at 4.8,
5.5, and 6.2 ms in Fig. 13. At low rf detuning the response
is oscillatory, just as we saw it in Fig. 10 for resonance B
at δrf = 0, but at larger rf detunings this response decays
in an exponential fashion, indicating the transition to the

unperturbed R0 resonance which must be described by the
lower value of γ .

By the same token the brightness response to a jump in the
rf phase diminishes at larger rf detuning, again indicative of the
transition to the unperturbed R0 resonance which is insensitive
to the rf field.

E. Simple models for rf phase sensitivity

While practically all observations are correctly reproduced
in simulations using the five-level master equation (see
Figs. 10–13), it is enlightening to find simple models for the rf
phase response. For this purpose we define the R0 dark state
at a fixed position z, in the absence of an rf field,

|ψD(t)〉 = 1√
2

(|1〉 − ei(ωhf t−φ)|2〉). (21)

The nonlinear resonance A in Fig. 6 develops into the form
(21) as δrf → +∞, where the mixing angle is β = 0. Hence
we require that the superposition (15) is, apart from an overall
phase,

∣∣ψ (A)
D (t)

〉 = cos β (|1,N〉 + ei[ωhf t−φrf (δrf )−φ] |2,N〉), (22)

and we demand for resonance A that φrf(+∞) = ±π . On the
other hand, we require that the superposition (16)

∣∣ψ (B)
D (t)

〉 = − sin β(|1,N〉 − ei[ωhf t−φrf (δrf )−φ] |2,N〉) (23)

develops into (21) at δrf → −∞; hence resonance B has
φrf(−∞) = 0. It is interesting that φrf(δrf) changes by π when
moving from resonance A to resonance B. We attribute this to
the presence of the linear resonance which is embedded in the
continuous variable δrf of the R0 quantum system.

For the linear resonance the role of the rf phase is more
intricate as the mixing angle changes with detuning and leads
to imbalance of amplitudes between states |1〉 and |2〉 in (10)

FIG. 13. The photodiode signals following an rf phase jump by π/2 at the nonlinear resonance B at three detunings are shown in (a).
Short-duration (30 μs) optical phase shifts by ±π/2,π at the end of the scan serve as reference. (b) Simulation of the absorption signal using
the parameters in Table I.
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and (11). For δrf = 0 the analysis is straightforward; we expect
for superposition (10)

∣∣ψ (1)
lin (t)

〉 = 1√
2

(|1,N〉 + ei[ωhf t−φrf (0)−φ] |2,N〉), (24)

a dark state when φrf(0) = ±π . On the other hand for the
superposition (11) we expect a dark state

∣∣ψ (2)
lin (t)

〉 = − 1√
2

(|1,N〉 − ei[ωhf t−φrf (0)−φ] |2,N〉), (25)

which requires φrf(0) = 0 in order to match (21). So it appears
that at rf resonance two classes of linear dark states are present,
half with rf phase of π and half with phase of 0. This doubling
of the linear resonance is in line with the expected intensities
and phases of the two nonlinear resonances in the limit of
small G near δrf = 0, when they should merge with the linear
resonance. The presence of two solutions for the rf phase for
the linear resonance is also borne out in the model of Luo et al.
[12].

The above predictions from the simple analytical model are
in full agreement with rf phase-switching phenomena observed
in the experiment. Specific observations at rf resonance δrf = 0
are that (1) no change in absorption occurs after a phase jump
by π at the linear resonance (see Fig. 12), (2) a phase jump
by π at either nonlinear resonance A or B leads to a jump
in brightness to 2 (experimental data not shown), and (3) a
frequency jump from the nonlinear resonance A to B or vice
versa leads to a jump in brightness to a level 2 (experimental
data not shown).

Predictions for δrf �= 0 are more cumbersome and not
pursued here. However, it is obvious that for large rf detuning
the sensitivity of the nonlinear resonance to the rf phase
must diminish. This is a consequence of the transition of the
nonlinear to the rf-insensitive R0 resonance. On the other hand,
we observe in both experiment and numerical simulation a loss
of sensitivity of the linear resonance to the optical phase when
δrf �= 0. We found no simple explanation for this behavior—as
we also have not been able to formulate a simple model for the
relationship between optical and rf phases.

VI. CONCLUSION

We show that near-resonant interaction of an rf field with the
ground states of a dark resonance leads to a resonance tripling,

reminiscent of an avoided crossing of a quantum continuum
with a discrete interloper state [22]. The nonlinear resonances
reported here display an avoided crossing in the continuous
variable of the rf detuning. The crossing is accompanied by
the characteristic phase jump by π and the interloper is the
linear resonance which is characterized by sub-EIT linewidth.

The appearance of the nonlinear resonances is of technical
interest in that balancing their appearance allows precise
adjustment of an rf cavity to resonance condition, e.g. for
use as vapor-cell frequency standard [23].

Complex phase relationships between rf and optical fields
appear for the three resonances. The experimental observa-
tions are confirmed by simulations using a five-level master
equation. At selected conditions the phase relationships can be
derived using the simple analytical model. A general analytical
relationship, however, remains elusive at this point. The many
instances in which rf-controlled EIT is envisioned in quantum
optics applications warrants further consideration of this topic.
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APPENDIX: LIOUVILLIAN

We label the density matrix elements by the
numbers 1–5 corresponding to the state labels
|2,N − 1〉,|1,N〉,|2,N〉,|1,N + 1〉,|3,N〉. Following [24]
we consider two terms for the Liouvillian. One accounts
for spontaneous emission of the excited state |3N〉 at the
rate �,

L̃1ρ = �

2

⎛
⎜⎜⎜⎝

0 0 0 0 −ρ1,5

0 ρ5,5 0 0 −ρ2,5

0 0 ρ5,5 0 −ρ3,5

0 0 0 0 −ρ4,5

−ρ5,1 −ρ5,2 −ρ5,3 −ρ5,4 −2ρ5,5

⎞
⎟⎟⎟⎠,

(A1)

and there is a second term for dephasing and hyperfine-
changing collisions in the ground states at the rate γ ,

L̃2ρ = −γ

2

⎛
⎜⎜⎜⎜⎜⎝

2(ρ11 − ρ44) 2ρ12 2ρ13 2ρ14 ρ15

2ρ21 2(ρ22 − ρ33) 2ρ23 2ρ24 ρ25

2ρ31 2ρ32 2(ρ33 − ρ22) 2ρ34 ρ35

2ρ41 2ρ42 2ρ43 2(ρ44 − ρ11) ρ45

ρ51 ρ52 ρ53 ρ54 0

⎞
⎟⎟⎟⎟⎟⎠

. (A2)

[1] M. Orszag, Quantum Optics (Springer, Berlin, 2000).
[2] Y.-x Liu, J. Q. You, L. F. Wei, C. P. Sun, and F. Nori, Phys. Rev.

Lett. 95, 087001 (2005).
[3] H. Ian, Y.-x Liu, and F. Nori, Phys. Rev. A 81, 063823 (2010).

[4] P. C. de Groot, J. Lisenfeld, R. N. Schouten, S. Ashhab, A.
Lupascu, C. J. P. M. Harmans and J. E. Mooij, Nat. Phys. 6, 763
(2010).

[5] J. Q. You and F. Nori, Nature (London) 474, 589 (2011).

013809-8

http://dx.doi.org/10.1103/PhysRevLett.95.087001
http://dx.doi.org/10.1103/PhysRevLett.95.087001
http://dx.doi.org/10.1103/PhysRevLett.95.087001
http://dx.doi.org/10.1103/PhysRevLett.95.087001
http://dx.doi.org/10.1103/PhysRevA.81.063823
http://dx.doi.org/10.1103/PhysRevA.81.063823
http://dx.doi.org/10.1103/PhysRevA.81.063823
http://dx.doi.org/10.1103/PhysRevA.81.063823
http://dx.doi.org/10.1038/nphys1733
http://dx.doi.org/10.1038/nphys1733
http://dx.doi.org/10.1038/nphys1733
http://dx.doi.org/10.1038/nphys1733
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1038/nature10122


RADIO-FREQUENCY-ASSISTED ELECTROMAGNETICALLY . . . PHYSICAL REVIEW A 92, 013809 (2015)

[6] F. Deppe, M. Mariantoni, E. P. Menzel, A. Marx, S. Saito,
K. Kakuyanagi, H. Tanaka, T. Meno, K. Semba, H. Takayanagi,
E. Solano, and R. Gross, Nat. Phys. 4, 686 (2008).

[7] A. Eilam, A. D. Wilson-Gordon, and H. Friedmann, Opt. Lett.
34, 1834 (2009).

[8] Z. H. Xiao, S. G. Shin, and K. Kim, J. Phys. B 43, 161004
(2010).

[9] R. Sadighi-Bonabi and T. Naseri, Appl. Opt. 54, 3484 (2015).
[10] J. O. Weatherall and C. P. Search, Phys. Rev. A 78, 053802

(2008).
[11] R. Yu, J. Li, P. Huang, A. Zheng, and X. Yang, Phys. Lett. A

373, 2992 (2009).
[12] B. Luo, H. Tang, and H. Guo, J. Phys. B 42, 235505 (2009).
[13] M. S. Shahriar and P. R. Hemmer, Phys. Rev. Lett. 65, 1865

(1990).
[14] H. Li, V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, P. R.

Hemmer, and M. O. Scully, Phys. Rev. A 80, 023820 (2009).
[15] E. A. Wilson, N. B. Manson, C. Wei, and L. Yang, Phys. Rev. A

72, 063813 (2005).

[16] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-
Photon Interactions (Wiley, New York, 1992), pp. 427–
443.

[17] C. Basler, K. Reininger, F. Meinert, P. N. Ghosh, and H. Helm,
Phys. Rev. A 87, 013430 (2013).

[18] J. Appel, A. MacRae, and A. I. Lvovsky, Meas. Sci. Technol.
20, 055302 (2009).

[19] A. Godone, S. Micalizio, F. Levi, and C. Calosso, Rev. Sci.
Instrum. 82, 074703 (2011).

[20] F. Meinert, C. Basler, A. Lambrecht, S. Welte, and H. Helm,
Phys. Rev. A 85, 013820 (2012).

[21] T. Abi-Salloum, J. P. Davis, C. Lehman, E. Elliott, and F. A.
Narducci, J. Mod. Opt. 54, 2459 (2007).

[22] M. Aymar, C. H. Greene, and E. Luc-Koenig, Rev. Mod. Phys.
68, 1015 (1996).

[23] A. Godone, F. Levi, and S. Micalizio, Phys. Rev. A 65, 033802
(2002).

[24] M. Roghani, H.-P. Breuer, and H. Helm, Phys. Rev. A 81, 033418
(2010).

013809-9

http://dx.doi.org/10.1038/nphys1016
http://dx.doi.org/10.1038/nphys1016
http://dx.doi.org/10.1038/nphys1016
http://dx.doi.org/10.1038/nphys1016
http://dx.doi.org/10.1364/OL.34.001834
http://dx.doi.org/10.1364/OL.34.001834
http://dx.doi.org/10.1364/OL.34.001834
http://dx.doi.org/10.1364/OL.34.001834
http://dx.doi.org/10.1088/0953-4075/43/16/161004
http://dx.doi.org/10.1088/0953-4075/43/16/161004
http://dx.doi.org/10.1088/0953-4075/43/16/161004
http://dx.doi.org/10.1088/0953-4075/43/16/161004
http://dx.doi.org/10.1364/AO.54.003484
http://dx.doi.org/10.1364/AO.54.003484
http://dx.doi.org/10.1364/AO.54.003484
http://dx.doi.org/10.1364/AO.54.003484
http://dx.doi.org/10.1103/PhysRevA.78.053802
http://dx.doi.org/10.1103/PhysRevA.78.053802
http://dx.doi.org/10.1103/PhysRevA.78.053802
http://dx.doi.org/10.1103/PhysRevA.78.053802
http://dx.doi.org/10.1016/j.physleta.2009.06.013
http://dx.doi.org/10.1016/j.physleta.2009.06.013
http://dx.doi.org/10.1016/j.physleta.2009.06.013
http://dx.doi.org/10.1016/j.physleta.2009.06.013
http://dx.doi.org/10.1088/0953-4075/42/23/235505
http://dx.doi.org/10.1088/0953-4075/42/23/235505
http://dx.doi.org/10.1088/0953-4075/42/23/235505
http://dx.doi.org/10.1088/0953-4075/42/23/235505
http://dx.doi.org/10.1103/PhysRevLett.65.1865
http://dx.doi.org/10.1103/PhysRevLett.65.1865
http://dx.doi.org/10.1103/PhysRevLett.65.1865
http://dx.doi.org/10.1103/PhysRevLett.65.1865
http://dx.doi.org/10.1103/PhysRevA.80.023820
http://dx.doi.org/10.1103/PhysRevA.80.023820
http://dx.doi.org/10.1103/PhysRevA.80.023820
http://dx.doi.org/10.1103/PhysRevA.80.023820
http://dx.doi.org/10.1103/PhysRevA.72.063813
http://dx.doi.org/10.1103/PhysRevA.72.063813
http://dx.doi.org/10.1103/PhysRevA.72.063813
http://dx.doi.org/10.1103/PhysRevA.72.063813
http://dx.doi.org/10.1103/PhysRevA.87.013430
http://dx.doi.org/10.1103/PhysRevA.87.013430
http://dx.doi.org/10.1103/PhysRevA.87.013430
http://dx.doi.org/10.1103/PhysRevA.87.013430
http://dx.doi.org/10.1088/0957-0233/20/5/055302
http://dx.doi.org/10.1088/0957-0233/20/5/055302
http://dx.doi.org/10.1088/0957-0233/20/5/055302
http://dx.doi.org/10.1088/0957-0233/20/5/055302
http://dx.doi.org/10.1063/1.3606641
http://dx.doi.org/10.1063/1.3606641
http://dx.doi.org/10.1063/1.3606641
http://dx.doi.org/10.1063/1.3606641
http://dx.doi.org/10.1103/PhysRevA.85.013820
http://dx.doi.org/10.1103/PhysRevA.85.013820
http://dx.doi.org/10.1103/PhysRevA.85.013820
http://dx.doi.org/10.1103/PhysRevA.85.013820
http://dx.doi.org/10.1080/09500340701742617
http://dx.doi.org/10.1080/09500340701742617
http://dx.doi.org/10.1080/09500340701742617
http://dx.doi.org/10.1080/09500340701742617
http://dx.doi.org/10.1103/RevModPhys.68.1015
http://dx.doi.org/10.1103/RevModPhys.68.1015
http://dx.doi.org/10.1103/RevModPhys.68.1015
http://dx.doi.org/10.1103/RevModPhys.68.1015
http://dx.doi.org/10.1103/PhysRevA.65.033802
http://dx.doi.org/10.1103/PhysRevA.65.033802
http://dx.doi.org/10.1103/PhysRevA.65.033802
http://dx.doi.org/10.1103/PhysRevA.65.033802
http://dx.doi.org/10.1103/PhysRevA.81.033418
http://dx.doi.org/10.1103/PhysRevA.81.033418
http://dx.doi.org/10.1103/PhysRevA.81.033418
http://dx.doi.org/10.1103/PhysRevA.81.033418



