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Three-photon coherence in a ladder-type atomic system
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We present a theoretical study of three-photon electromagnetically induced absorption for a ladder-type
three-level atomic system. A probe beam was tuned to the lower line and two counterpropagating, linearly
polarized coupling beams were tuned to the upper line. The system can be modeled with a three- (or five-) level
scheme when the polarization directions of the coupling beams are parallel (or perpendicular). By calculating the
absorption coefficients analytically for the two schemes, we found that the corresponding absorption coefficients
were identical except for different transition strengths, and that the primitive scheme embedded in those schemes
was a simple four-level scheme.
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I. INTRODUCTION

The atomic coherence generated between dipole-forbidden
states due to two laser beams plays an important role in the
abrupt enhancement of transmission or absorption. The effects
resulting from this coherence are called electromagnetically
induced transparency (EIT) [1,2] and absorption (EIA) [3–5],
and have drawn much interest for their potential application
to atomic and laser spectroscopies. Particular applications
include light storage [6], high-resolution spectroscopy [7],
nonlinear optics [8], and quantum information [9]. As in
traditional EIA, enhanced absorption is observed when a
third laser beam is introduced in a two-beam spectroscopy
setup, which displays EIT. In this spectroscopic setup, three-
photon atomic coherence results in enhanced absorption, rather
than the enhanced transmission that arises from two-photon
coherence. This enhanced absorption is known to result from
constructive interference [10,11]. It should be noted that
destructive interference with three laser beams can be observed
for different transition geometries [11,12].

Many studies on three-photon spectroscopy are reported in
the literature. A narrow resonance was observed in a four-level
atomic system [13]. Chanu et al. reported the conversion from
EIT to EIA by forming an N -type scheme [14], which was
subsequently explained theoretically by analyzing the exist-
ing subsystems [15]. Ben-Aroya also reported large-contrast
absorption resonances in an N -type scheme [16]. An optical
clock based on three-photon resonance was also reported [17].
Enhanced absorption with a standing-wave coupling field for
a �-type atomic system was observed [18,19]. Zhu et al.
examined bichromatic EIT and four-wave mixing in �-type
atomic systems [20,21].

Recently, Moon et al. reported three-photon electromag-
netically induced absorption (TPEIA) in a ladder-type atomic
system where a probe beam was tuned to the lower transition
line and two counterpropagating coupling beams were tuned
to the upper transition line [22]. Calculations within the simple
four-level model showed that this absorption phenomenon
was due to three-photon coherence. They also studied the
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relationship between two- and three-photon coherence [23].
As in previous studies [22,23], where the two coupling
beams were linearly polarized in perpendicular directions,
three-photon coherence was the main cause of the enhanced
absorption. However, when the two coupling beams were
polarized in the same direction, it was not obvious whether
or not three-photon coherence was established. Enhanced
absorption may also have been observed in this case. It should
be also noted that TPEIA is different from the conventional
EIA where the absorption results from the transfer of the
Zeeman coherence of the excited state [3–5]. The main cause
of the absorption in TPEIA is the three-photon coherence
generated between the ground and intermediate states.

We here present a theoretical and analytical study of TPEIA
for two schemes, where the coupling-beam polarizations are
either parallel or perpendicular to one another. To study TPEIA
analytically, these two schemes were modeled using three-
level and five-level schemes. After deriving the analytical
form of the absorption coefficients in the limit of weak probe
intensity, we studied the similarities and differences between
the two schemes. These are the new findings as compared
to the previous reports [22,23], as well as accurate analytical
solutions of the absorption coefficients. This paper is structured
as follows. Section II briefly describes the motivation and
experimental findings of our work. The theoretical method of
the calculation is presented in Sec. III. Section IV discusses
the absorption spectra averaged over the Doppler-broadened
atomic velocity distribution. Finally, we summarize the results.

II. MOTIVATION

The simplified schematic diagram and the energy-level
diagram for the experiment considered are shown in Fig. 1.
The probe beam is tuned to the 5S1/2(F = 2) − 5P3/2(F ′ = 3)
transition, and two counterpropagating coupling beams are
tuned to the 5P3/2(F ′ = 3) − 5D5/2(F ′′ = 4) transition. As
shown in Fig. 1(a), all the laser beams are linearly polarized,
but two polarization configurations are considered. In the first
(parallel) scheme, the polarization vectors of the probe, the
first, and second coupling beams are in the x, y, and y

directions, respectively. In the second (perpendicular) scheme,
the polarization vector of the second coupling beam is switched
to the x direction. In Fig. 1(a), the double-sided arrows and the
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FIG. 1. (Color online) (a) Simplified schematic diagram for the
TPEIA experiment. (b) Energy-level diagram for the 5S1/2 − 5P3/2 −
5D5/2 transition in 87Rb atoms. The two coupling beams are linearly
polarized in (c) parallel or (d) perpendicular direction.

dots denote the direction of the electric field of the laser beams.
Thus the polarizations of the coupling beams are parallel
(perpendicular) for the first (second) configuration. When the
polarization direction of the probe beam is chosen as the
quantization axis, the energy-level diagrams for the parallel
and perpendicular polarization schemes are those shown in
Figs. 1(c) and 1(d), respectively. The solid red, solid green,
and dotted green lines represent the probe, the first, and the
second coupling beams, respectively. As can be seen in these
figures, the transition schemes for the two configurations are
completely different. In the parallel configuration, the two
coupling beams are tuned to the same transition lines, whereas
those beams are tuned to the different transition lines in the
perpendicular configuration. The analytical calculation of the
absorption coefficients for the basic units of these two schemes
is discussed in the next section.

Figure 2 shows typical experimental results for EIT and
TPEIA. We refer to previous papers for the details of the
experimental setup [22,23]. The powers of the probe and of
the first and second coupling beams were 8 μW, 20 mW, and
20 mW, respectively. The diameter of the laser beams was
2 mm. In Fig. 2, we present two TPEIA spectra for the parallel
and perpendicular polarization configurations, and an EIT
spectrum obtained in the absence of the second coupling beam.
In Fig. 2, the frequency of the probe beam was tuned to the
resonant transition 5S1/2(F = 2) − 5P3/2(F ′ = 3), whereas
the frequencies of the coupling beams were scanned around the
transition 5P3/2(F ′ = 3) − 5D5/2(F ′′ = 2,3,4). As discussed
previously [22,23], the EIT signal transformed into the absorp-
tion signal when the second coupling beam was introduced. As
can be seen in Fig. 2 for the two polarization configurations,
the two TPEIA spectra for the 5S1/2(F = 2) − 5P3/2(F ′ =
3) − 5D5/2(F ′′ = 4) transition are very similar. As mentioned
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FIG. 2. (Color online) (i) An experimental EIT spectrum. Typical
experimental TPEIA spectra for (ii) the parallel and (iii) the
perpendicular polarization configurations.

above, the interaction energy-level diagrams for these two
schemes are very different. However, we observed very similar
TPEIA spectra for the two schemes, as can be seen in Fig. 2.
This is the motivation of our work.

III. THEORY

To study the similarities and differences between the results
of TPEIA for the two polarization configurations analytically,
we used the two simplified energy-level diagrams shown in
Fig. 3. The transitions (Rabi frequency) of the probe, and of the
first and second coupling beams, are denoted by solid red (�1),
solid green (�2), and dotted green lines (�3), respectively.
Figures 3(a) and 3(b) show the basic units of the diagrams
corresponding to the parallel and perpendicular polarization
configurations, respectively. In Fig. 3(b), �′

2 (�′
3) denotes the

Rabi frequency of the first (second) coupling beam for the other
transition line. Figure 3(c) shows the energy-level diagram
with multiple alternative interactions for the upper transition
line. This diagram was proved to be equivalent to the schemes
in Figs. 3(a) and 3(b) and will be discussed below in detail.
Figure 4(d) shows the four-level scheme, the simplest primitive
scheme for the two schemes in Figs. 3(a) and 3(b).

We calculated analytically the absorption coefficients of the
probe beam in the weak-probe-intensity limit, for an arbitrary
intensity of the coupling beams. We first considered the three-
level scheme shown in Fig. 3(a). The decay rates of the states
|1〉, |2〉, and |3〉 are �1, �2, and �3(= 0), and the decay rates
of the optical coherences between the states |μ〉 and |ν〉 are
γμν = �μ+�ν

2 with μ < ν. The wavelengths, wave vectors, and
detunings of the probe (coupling) beam are λ1, k1, and δp (λ2,
k2, and δc), respectively. The effective detunings (experienced
by an atom moving at velocity v) of the probe and of the first
and second coupling beams are δ1 = δp − k1v, δ2 = δc + k2v,
and δ3 = δc − k2v, respectively.

We considered the solutions up to the first order in the probe
Rabi frequency. In the energy-level diagram shown in Fig. 3(a),
the two coupling beams were tuned to the transition between
|1〉 and |2〉. Therefore the frequency mixing produced a
variety of oscillation frequencies for the optical coherences and
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FIG. 3. (Color online) Simple energy-level diagram for (a) three-level and (b) five-level schemes. (c) The energy-level diagram with
multiple alternative interactions for the upper transition line, equivalent to the three-level scheme. (d) Four-level scheme.

populations. Because of the weak probe intensity, the optical
coherence ρ12 can be neglected, and thus we need consider
only the optical coherences ρ23 and ρ13. In addition, all the
stationary and oscillating terms in the populations vanish
except for the stationary term of ρ33, which is unity in the limit
of weak probe intensity. If the probe beam is not quite weak,
the coherent population oscillation (CPO) in the populations
of the ground, intermediate, and excited states should be
considered [24,25]. In this case we would need a numerical
calculation instead of the analytical calculation. We refer to
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FIG. 4. (Color online) Calculated normalized absorptions for a
stationary atom at (a) N = 1,2, and 3 and (b) N = 1,4, and 12.

previous publications for the method of calculation of the
oscillation frequencies [26–28]. When N -photon interactions
are taken into account, the optical ρ23 and ρ13 are explicitly
given by

ρ23 = u1 + u3e
iδd t + v3e

−iδd t + u5e
2iδd t + v5e

−2iδd t

+ · · · + uNei N−1
2 δd t + vNe−i N−1

2 δd t , (1a)

ρ13 = u2 + v2e
−iδd t + u4e

iδd t + v4e
−2iδd t + · · ·

+uN−1e
i N−3

2 δd t + vN−1e
−i N−1

2 δd t , (1b)

where δd ≡ δ3 − δ2 = −2k2v and N is assumed to be an odd
integer. u and v in Eqs. (1a) and (1b) are Fourier components,
which should be obtained by solving the density matrix
equations, and the subscripts of u and v represent the number
of photon interactions. Thus, the Fourier components of ρ23

(ρ13) result from an odd (even) number of photon interactions.
From the density matrix equations, we obtained the differential
equations for the components of ρ23 and ρ13 as follows. The
lowest-order equation for u̇1 is given by

u̇1 = i
1u1 − i

2
�1 − i

2
�2u2 − i

2
�3v2. (2)

We can see that the equations for the u and v series can
be constructed separately. The equations for the u series are
given by

u̇2 = i
2u2 − ip1u1 − ip2u3,

u̇3 = i
3u3 − ip2u2 − ip3u4,

· · ·
u̇n = i
nun − ipn−1un−1 − ipnun+1, (3)

· · · ,

and those for the v series by

v̇2 = i
′
2v2 − iq1u1 − iq2v3,

v̇3 = i
′
3v3 − iq2v2 − iq3v4,

(4)
· · ·

v̇n = i
′
nvn − iqn−1vn−1 − iqnvn+1,

· · · ,
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where v1 = u1, and

pn(qn) =
{

�2
2

(
�3
2

)
, for n = 1,3,5, . . .

�3
2

(
�2
2

)
, for n = 2,4,6, . . . .

(5)

The effective detunings are given by


2n = δ1 + nδ2 − (n − 1)δ3 + iγ13,


2n+1 = δ1 + nδ2 − nδ3 + iγ23,


′
2n = δ1 + nδ3 − (n − 1)δ2 + iγ13,


′
2n+1 = δ1 + nδ3 − nδ2 + iγ23.

Equations (2)–(4) can be described graphically as in Fig. 3(c).
As we discuss below, the results for the schemes in Figs. 3(a)
and 3(b) are equivalent to the energy-level diagram in Fig. 3(c).
The right and left branches denote the equations for the u and
v series, respectively. Since these equations are equivalent
under exchange of �2(δ2) and �3(δ3), we need only solve the
solutions for either the u or v series. Here, we solve the former.

We assumed the following relation:

un = pn−1

An

un−1. (6)

If we insert Eq. (6) into Eq. (3) by replacing n with n + 1, i.e.,
un+1 = pn

An+1
un, we obtain

un = pn−1


n − p2
n

An+1

un−1. (7)

Comparison of Eqs. (6) and (7) yields the following recursion
relation:

An = 
n − p2
n

An+1
. (8)

Because the maximum value of n is N , AN = 
N and An = 0
when n > N .

Using Eqs. (5), (6), and (8), we can express u2 in terms of
u1 as

u2 = u1
�2

2

⎡
⎢⎢⎣
2 − �2

3/4


3 − �2
2/4


4− �2
3/4


5 ...

⎤
⎥⎥⎦

−1

. (9)

Similarly for v2,

v2 = u1
�3

2

⎡
⎢⎢⎢⎣
′

2 − �2
2/4


′
3 − �2

3/4


′
4−

�2
2/4


′
5 ...

⎤
⎥⎥⎥⎦

−1

. (10)

Inserting Eqs. (9) and (10) into Eq. (2), we obtain the final
result for u1:

u‖ = �1

2

×

⎡
⎢⎢⎢⎢⎢⎣
1 − �2

2/4


2 − �2
3/4


3− �2
2/4


4− �2
3/4


5 ...

− �2
3/4


′
2 − �2

2/4


′
3−

�2
3/4


′
4− �2

2/4


′
5 ...

⎤
⎥⎥⎥⎥⎥⎦

−1

(11)

where u1 for the parallel polarization configuration is denoted
u‖. We notice that the terms associated with 
3 and 
′

3
are responsible for TPEIA and result from the three-photon
coherences u3 and v3 in Eq. (1a), respectively. As shown in
the next section, when thermal averaging is considered, the
contribution of u3 is much larger than that of v3 owing to
the Doppler-free characteristics. It should be noted also that
the term u3 in Eq. (1a), responsible for the four-wave mixing
signal, is given by

u3 = �2�3

4

u‖


2

(

3 − �2

2/4


4− �2
3/4


5 ···

)
− �2

3
4

. (12)

We performed the calculation for the five-level model in
Fig. 3(b), the basic unit for the energy-level diagram for the
perpendicular polarization configuration. As in the three-level
scheme, we considered the solutions up to the first order in
the probe Rabi frequency. Thus, we need only consider the
elements ρ35, ρ45, ρ15, ρ25, and ρ55(� 1) while neglecting all
the other elements. From the calculation of the oscillation
frequencies, these density-matrix elements can be expanded
as follows:

ρ35 = u1 + u5e
2iδd t + v5e

−2iδd t

+u9e
4iδd t + v9e

−4iδd t + · · · , (13a)

ρ45 = u3e
iδd t + v3e

−iδd t

+u7e
3iδd t + v7e

−3iδd t + · · · , (13b)

ρ25 = u2 + v4e
−2iδd t

+u6e
2iδd t + v8e

−4iδd t + · · · , (13c)

ρ15 = v2e
−iδd t + u4e

iδd t

+ v6e
−3iδd t + u8e

3iδd t + · · · . (13d)

Comparing Eqs. (13a)–(13d) with Eqs. (1a) and (1b), it is
easy to recognize that the terms in ρ35 and ρ45 are the same as
those in ρ23 in Eq. (1a). In addition, the terms in ρ25 and ρ15 are
the same as those in ρ13 in Eq. (1b). Thus the structures of the
density matrix elements of the three- and five-level schemes
are identical.

When we solve the density-matrix equations using the
expanded elements in Eqs. (13a)–(13d), we obtain equations
identical to those shown above in the discussion of the
three-level scheme. The only difference is in the definitions
of pn and qn because of the different Rabi frequencies that are
due to the different transition strengths. In this case, pn and qn

are defined as

pn(qn) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�2
2

(�′
3

2

)
, for n = 1,5,9, . . . ,

�3
2

(�′
2

2

)
, for n = 2,6,10, . . . ,

�′
2

2

(
�3
2

)
, for n = 3,7,11, . . . ,

�′
3

2

(
�2
2

)
, for n = 4,8,12, . . . .
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Then, the final value of u1 for the perpendicular configuration
is given by

u⊥ = �1

2

×

⎡
⎢⎢⎢⎢⎢⎣
1 − �2

2/4


2 − �2
3/4


3− �′2
2/4


4− �′2
3/4


5 ...

− �′2
3/4


′
2 − �′2

2/4


′
3−

�2
3/4


′
4− �2

2/4


′
5 ...

⎤
⎥⎥⎥⎥⎥⎦

−1

,

(14)

where u1 for the perpendicular polarization configuration is
denoted u⊥. Equation (14) is equivalent to Eq. (11), except for
the different values of the Rabi frequencies. It should be noted
that the three-photon coherence u3 in Eq. (13b) is responsible
for TPEIA.

As discussed in the next section, the terms of the v series
in Eqs. (11) and (14) are not Doppler free, so that the most
primitive scheme for the parallel and perpendicular schemes
is the simple four-level scheme shown in Fig. 3(d). The result
for this scheme is simply given by

u4L = �1

2

⎡
⎣
1 − �2

2/4


2 − �2
3

4
3

⎤
⎦

−1

, (15)

where u4L is u1 for the four-level scheme.
Finally, the absorption coefficient for each polarization

configuration averaged over the Doppler-broadened velocity
distribution is given by

αj = − 1√
πvmp

3λ2
1

2π

Nat�2

�1

∫ ∞

−∞
dv e−(v/vmp)2

Im(uj ), (16)

where j ∈ {‖,⊥, 4L}, vmp is the most probable speed, and Nat

is the atomic density in the vapor cell.

IV. RESULTS AND DISCUSSION

The calculated normalized absorptions for a stationary atom
in the parallel-polarization configuration with various values
of N are presented in Fig. 4. When N = 1, the absorption
is the background value in the absence of the two coupling
beams. We obtained an EIT spectrum for N = 2 where the
second coupling beam is absent and a TPEIA spectrum for
N = 3 in the presence of two coexisting coupling beams. In
Fig. 4, as N increases, the transmittance and absorption vary
in an alternating fashion [15]. As will be seen later, there is a
big difference between the results for N = 2 and N = 3, but
no significant differences for the higher values of N .

In order to study the effect of thermal averaging, we present
the absorption coefficient for the four-level scheme depicted
in Fig. 3(d). We used this scheme because this is the most
primitive in the exact energy-level diagrams of the parallel and
perpendicular configurations. In addition, it can simplify the
occurrence of absorption resonances. The four-level scheme
corresponds to N = 3 where only the u branch exists. This
choice will be validated soon. Figure 5 plots the normalized
absorptions for the velocities v = 0, ±5, and ±10 m/s, and the
thermal-averaged absorption. The resonances occur at δp =
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FIG. 5. (Color online) Calculated absorptions for an atom with
the four-level scheme, moving at velocity v = 0, ±5, or ±10 m/s.
The bottom curve refers to the thermal-averaged absorption spectrum.

0 and ±(1/2)
√

�2
2 + �2

3 when v = 0, from a dressed-state
analysis. As the magnitude of the velocity increases, the two
side resonances shift far away from the origin, but the central
resonance remains almost stationary at the origin. Therefore,
after averaging over the velocity distribution, the central peak
survives, while the two side resonances cancel out. Although
the analysis was performed for the four-level scheme, this
analysis is valid for the other complicated diagrams in Fig. 3.

Figure 6 shows the series of averaged absorption spectra
for the analytical results in Eq. (16). Figure 6(a) shows the
absorption spectra for several values of the Rabi frequency
of the second coupling beam, where �1 = 2π × 1 MHz and
�2 = 2π × 10 MHz. As can be seen in Fig. 6(a), the EIT
spectrum at �3 = 0 transforms to the TPEIA spectrum as
�3 increases. Figure 6(b) shows three typical spectra for the
parallel-polarization configuration where �1 = 2π × 1 MHz,
�2 = �3 = 2π × 10 MHz, and the probe detuning was set to
zero. The black curve (A) denotes the exact result of Eqs. (11)
and (16). The red curve (B) denotes the spectrum where the
term of the v series was neglected. Clearly, the two spectra are
very similar. This means that the contribution of the v series
is much smaller than that of the u series. The u and v series
are represented graphically as the right and left branches in
Fig. 3(c). The reason for the weak contribution of the v series
is that it is not Doppler free. In Eq. (11), the two-photon
resonance terms for the u and v series are 
2 = δ1 + δ2 +
iγ13 and 
′

2 = δ1 + δ3 + iγ13, respectively. Because δ1 + δ2 =
δp + δc + (k2 − k1)v and δ1 + δ3 = δp + δc − (k2 + k1)v, the
term 
2 contributes much more than 
′

2 after averaging over
the velocity distribution. The blue curve (C) in Fig. 6(b) shows
the result for the four-level scheme depicted in Fig. 3(d). This
is very similar to the exact calculated spectra. As �2 and �3

decrease, the discrepancy between the four-level and exact
results decrease. Figure 6(c) shows the same spectra as in
Fig. 6(b), but with the probe detuning being scanned while
the coupling detuning is set to zero. The overall spectra in
Figs. 6(b) and 6(c) show very similar trends.

Finally, we consider the conditions for detunings of the two
coupling beams to create the TPEIA signal, which were set to
zero in the paper. Now we assume that the coupling detunings
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FIG. 6. (Color online) (a) TPEIA spectra for various �3 values.
TPEIA spectra obtained via three different calculating methods with
scanning of (b) coupling detuning and (c) probe detuning.

are arbitrary, and thus δ2 = δc1 + k2v and δ3 = δc2 − k2v,
where δc1 and δc2 are the detunings of the first and second
coupling beams. Equation (15) can be written as

u4L = �1

2
× 4
2
3 − �2

3

4
1
2
3 − (

3�

2
2 + 
1�

2
3

) . (17)

In Eq. (17), we have two conditions for the two-photon
Doppler-free characteristics such as 
2 = 0 and 
3�

2
2 +


1�
2
3 = 0. These conditions result in the requirements δ =

−δc1 and δc1 = −δc2 when k1 � k2 and �2 � �3. Therefore,
the frequencies of the first and second coupling beams should
be located at the symmetric positions relative to the upper
resonant transition line. In our case, because δc1 = δc2 = 0,
we see the TPEIA signal at the zero probe detuning as shown
in Fig. 5.

V. CONCLUSION

We have presented a theoretical study of three-photon
electromagnetically induced absorption in ladder-type atomic
systems. The primitive energy-level diagrams for the parallel
and perpendicular coupling-beam polarization configurations
were the three- and five-level schemes, respectively. We
derived analytically the absorption coefficients for these two
schemes and found them to be equivalent to a ladder system
with an upper transition of multiple alternative interacting
schemes. The absorption coefficient consisted of contributions
from the two opposite branches, one of which was Doppler
free. It was also found that the simplest scheme was the simple
four-level scheme.

In contrast to normal EIA in degenerate two-level systems,
where the transfer of coherence or population plays a major
role [29,30], TPEIA involves constructive interference [10,11],
and three-photon coherence is the main cause of TPEIA in
both parallel and perpendicular schemes. Although the basic
mechanism of TPEIA emerged from the analytical calculation
of the absorption spectra, TPEIA for real atoms displayed
interesting behavior. For example, the polarization dependence
was different depending on whether or not the transition was
closed. An accurate calculation and analysis for TPEIA for
real atoms are currently in progress.
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