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Dynamic control of light scattering using spatial coherence
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The scattering of light is perhaps the most fundamental of optical processes. However, active and dynamic
control of the directionality of a scattered light field has until now remained elusive. Here we show that with an
easily generated, Bessel-correlated field, this goal can be achieved, at least partially. In particular, the angular
distribution of a field scattered by a random spherical particle can be tuned to gradually suppress the forward
scattering intensity and even create a conelike scattered field. Our method provides a tool for the dynamic control
of scattering patterns, both macroscopically and microscopically.
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I. INTRODUCTION

The scattering of wave fields is a process that is encountered
in many branches of science, such as astronomy, atmospheric
studies, solid state physics, and optics. Because of both its
fundamental importance and its many applications, it is highly
desirable to achieve active control over the strength and
directionality of the scattered field. When a wave is incident on
a spherical object, typically a substantial portion of the field
is scattered in the forward and in the backward directions.
Examples of strong forward scattering are the Mie effect
[1, Sec. 14.5], and the Arago-Poisson spot [2, Sec. 8.1].
Kerker et al. [3] seem to have been the first to examine
under what conditions this angular distribution of the scattered
field is modified. Ever since their work, many researchers
have analyzed how the composition or geometry of a particle
can be chosen such that the scattering in certain directions
is suppressed; see, e.g., [4–11]. Here we demonstrate a
completely different approach to control the scattering process.
By using a scalar field model and applying the first-order Born
approximation, we show that dynamic manipulation of the
source that generates the incident field, rather than of the
scattering object, offers a simple tool to control the angular
distribution of the scattered field.

Over the years, many studies have been dedicated to the
effects of spatial coherence on the scattering process [12–20].
One typically finds that the scattering remains predominantly
in the forward direction, but becomes more diffuse when the
spatial coherence of the incident field decreases. However,
these studies were limited to Gaussian-correlated fields. Here
we report the result that Bessel-correlated fields, which
can readily be generated as reported in [21], allow one to
dynamically vary the scattering amplitude, making it possible
to gradually suppress scattering in the forward direction, and
eventually even create a conelike scattered field. We examine
scalar fields that are generated by partially coherent, planar
sources, and use the first-order Born approximation to study the
scattered field that arises when a Gaussian-correlated sphere
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is placed in the far zone. We compare so-called Gaussian
Schell-model sources and uncorrelated annular sources that
produce Bessel-correlated fields.

II. PARTIALLY COHERENT SOURCES

Let us consider a secondary, partially coherent, planar
source that is situated in the plane z = 0, as shown in
Fig. 1. The symbol ρ = (x,y) denotes a transverse vector.
The coherence properties of the source field at two points
ρ1, and ρ2 at frequency ω can be characterized by the
cross-spectral-density function [22, Sec. 4.3.2]

W (0)(ρ1,ρ2,ω) = 〈U (0)∗ (ρ1,ω)U (0)(ρ2,ω)〉, (1)

where the angular brackets indicate the average taken over
an ensemble of realizations of source fields U (0)(ρ,ω). The
cross-spectral density in the far zone of the source, denoted by
W (∞), is given by the formula [22, Eq. 5.3-4]

W (∞)(r1u1,r2u2,ω)

=
(

k

2π

)2 exp[ik(r2 − r1)]

r1r2
cos α1 cos α2

×
∫∫

z=0
W (0)(ρ1,ρ2,ω)

× exp[−ik(u2⊥ · ρ2 − u1⊥ · ρ1)] d2ρ1d
2ρ2, (2)

where u1⊥ and u2⊥ are the projections, considered as two-
dimensional vectors, of the three-dimensional directional unit
vectors u1 and u2 onto the source plane. α1 and α2 denote the
angles which the vectors u1 and u2 make with the positive z

axis. A sphere with volume D is located in the far zone of
the source, at a distance �z. If the linear dimensions of the
scatterer are assumed to be small compared to �z, then the
angle subtended at the origin O by the scatterer is small, and
cos α1 ≈ cos α2 ≈ 1. Furthermore, the factor k(r2 − r1) where
ri = |(ρi ,zi)|, with i = 1 or 2, can then be expressed as

k(r2 − r1) ≈ k
[
z2

(
1 + ρ2

2/2z2
2

) − z1
(
1 + ρ2

1/2z2
1

)]
(3)

≈ k(z2 − z1), (4)
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FIG. 1. A secondary, partially coherent source is situated in the
plane z = 0. A sphere occupying a domain D is located in the far zone,
at a distance �z. The directional unit vector u and the position z are
defined with respect to the origin O = (0,0,0). The directional unit
vector s and the position z′ are defined with respect to a second origin
O ′ = (0,0,�z). The transverse vectors ρ = (x,y) and ρ ′ = (x ′,y ′)
denote two-dimensional positions.

where we have used the fact that ρ1 and ρ2 are both bounded
by the transverse size of the scatterer. In addition, the small
size of the scatterer implies that the factor 1/r1r2 does not
vary appreciably over its domain D, i.e., 1/r1r2 ≈ 1/(�z)2.
On making use of these approximations in Eq. (2) we obtain
the expression

W (∞)(r1u1,r2u2,ω)

=
(

k

2π�z

)2

exp[ik(z2 − z1)]
∫∫

z=0
W (0)(ρ1,ρ2,ω)

× exp[−ik(u2⊥ · ρ2 − u1⊥ · ρ1)]d2ρ1d
2ρ2. (5)

It is worth noting that the factor exp[ik(z2 − z1)] implies that
the far-zone field is longitudinally fully coherent [22, Sec.
5.2.1]. Before we can use Eq. (5) as an expression for the cross-
spectral density of the field that is incident on the scatterer, it
must be expressed in terms of the primed variables defined in
Fig. 1. This is done by noting that

ri = riui = (ρi ,zi) = (ρ ′
i ,zi), i = 1,2, (6)

and hence

ui⊥ = ρ ′
i/ri ≈ ρ ′

i/�z. (7)

This allows us to rewrite Eq. (5) as

W (inc)(r′
1,r

′
2,ω)

=
(

k

2π�z

)2

exp[ik(z′
2 − z′

1)]

×
∫∫

z=0
W (0)(ρ1,ρ2,ω)

× exp[−ik(ρ ′
2 · ρ2 − ρ ′

1 · ρ1)/�z] d2ρ1d
2ρ2, (8)

where the superscript “inc” indicates the incident field. We will
make use of Eq. (8) to determine the cross-spectral density of
the field incident on the scattering volume D for different kinds
of sources.

III. SCATTERING BY A GAUSSIAN-CORRELATED
SPHERE

Suppose first that a deterministic field U (inc)(r,ω) is incident
on a deterministic scatterer. The space-dependent part of the

scattered field U (sca)(r,ω) is, within the accuracy of the first-
order Born approximation, given by the expression [1, Sec.
13.1.2]

U (sca)(r,ω) =
∫

D

F (r′,ω)U (inc)(r′,ω)G(r,r′,ω) d3r ′, (9)

where

F (r,ω) = k2

4π
[n2(r,ω) − 1] (10)

denotes the scattering potential of the medium, n(r,ω) being
its refractive index, and

G(r,r′,ω) = exp(ik|r − r′|)
|r − r′| (11)

is the outgoing free-space Green’s function of the Helmholtz
operator.

We choose the origin O ′ of a second Cartesian coordinate
system at the front face of the scatterer and consider the field
at a point r in its far zone, as sketched in Fig. 1. Setting r = rs,
with s a unit directional vector, the Green’s function in the far
zone may be approximated by the expression

G(r,r′,ω) ∼ exp(ikr)

r
exp(−iks · r′). (12)

For a random scatterer the scattering potential is a random
function of position. Let

CF (r′
1,r

′
2,ω) = 〈F ∗(r′

1,ω)F (r′
2,ω)〉F (13)

be its correlation function. The angular brackets denote
the average, taken over an ensemble of realizations of the
scattering potential. We will consider scattering from a
Gaussian-correlated, homogeneous, isotropic sphere. Then

CF (r′
1,r

′
2,ω) = C0 exp

[ − (r′
2 − r′

1)2/2σ 2
F

]
, (14)

where C0 is a positive constant, and the coherence length σF is
assumed to be small compared with the linear dimensions of
the scattering volume. This assumption will later allow us to
extend the domain of integration to R3. Next we assume that
the incident field is partially coherent. Because of the random
nature of both the incident field and the scatterer, the scattered
field will, of course, also be random. Its cross-spectral-
density function is defined, in complete analogy with Eq. (1),
as

W (sca)(r1,r2,ω) = 〈U (sca)∗ (r1,ω)U (sca)(r2,ω)〉, (15)

where the angular brackets indicate the average taken over an
ensemble of realizations of the scattered field. On substituting
from Eqs. (9) and (13) into Eq. (15) and interchanging the order
of integration and ensemble averaging, we find the formula

W (sca)(r1,r2,ω) =
∫∫

D

W (inc)(r′
1,r

′
2,ω)CF (r′

1,r
′
2,ω)

× G∗(r1,r′
1,ω)G(r2,r′

2,ω) d3r ′
1d

3r ′
2. (16)

The spectral density of the scattered field, S(sca)(r,ω), is
obtained by setting the two positions r1 and r2 equal,
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i.e.,

S(sca)(r,ω) = W (sca)(r,r,ω), (17)

= C0

r2

∫∫
D

W (inc)(r′
1,r

′
2,ω) exp

[−(r′
2 − r′

1)2/2σ 2
F

]
× exp[−iks · (r′

2 − r′
1)] d3r ′

1d
3r ′

2, (18)

where we have used Eqs. (12) and (14). Before proceeding,
we note that Eq. (18) relates the cross-spectral density of the
incident field, W (inc), with the distribution of the scattered
field in the far zone, S(sca). This relation has the form of a
Fourier transform of the cross-spectral density, weighed with
a Gaussian factor. In view of Eq. (8), which is also a Fourier
transform, one might then suspect, on the basis of the van
Cittert–Zernike theorem [22, Sec. 4.4.4], that the shape of a
δ-correlated source is somehow mimicked by the scattered
field. This observation was the motivation for this study.

Next we will analyze the consequences of Eq. (18) for
incident fields generated by sources with different coherence
properties. To simplify the notation we suppress the ω

dependence of the various quantities from now on.

IV. GAUSSIAN SCHELL-MODEL SOURCES

Let us first assume that the source is of the Gaussian Schell-
model type. Such sources have a cross-spectral density of the
form [23, Sec. 5.3.1]

W (0)(ρ1,ρ2) = [S(0)(ρ1)]1/2[S(0)(ρ2)]1/2μ(0)(ρ1 − ρ2,),
(19)

with

S(0)(ρ) = A2 exp
(−ρ2/2σ 2

S

)
, (20)

μ(0)(ρ1 − ρ2) = exp
[−(ρ2 − ρ1)2/2σ 2

μ

]
, (21)

representing the spectral density and the spectral degree of
coherence of the source field, respectively, the constants A,
σS , and σμ being positive quantities. On substituting from
Eqs. (19)–(21) into Eq. (8) we obtain the formula

W (inc)(r′
1,r

′
2) =

(
kAσSσeff

�z

)2

exp[ik(z′
2 − z′

1)]

× exp

[−k2σ 2
S (ρ ′

2 − ρ ′
1)2

2(�z)2

]

× exp

[−k2σ 2
eff(ρ

′
2 + ρ ′

1)2

8(�z)2

]
, (22)

where

1

σ 2
eff

= 1

4σ 2
S

+ 1

σ 2
μ

. (23)

On making use of Eq. (22) in expression (18), we find that the
normalized distribution of the scattered intensity is given by
the expression

S
(sca)
N (θ ) = S(sca)(θ )/S(sca)(θ = 0) (24)

= exp[−k2σ 2
F (1 −|, cos θ )2/2] exp[−k2 sin2 θ/4
],

(25)

S (sca) (   )θN

θ [rad]

λ100

20λ

10λ

FIG. 2. (Color online) The normalized spectral density of the
scattered field for selected values of the effective correlation length
of the sphere: σF = 10λ (red), 20λ (green), and 100λ (blue). In
these examples the wavelength λ = 0.6328 μm, σS = 1 cm, and
�z = 4 m.

where


 = k2σ 2
S

2�z2
+ 1

2σ 2
F

, (26)

and θ denotes the scattering angle, shown in Fig. 1. It is seen
from Eq. (25) that the scattered field depends on the two length
scales σS and σF . Notice that there is no dependence on the
correlation length σμ of the source. This is a consequence of the
fact that the scattering volume is located in the far zone, which
means that the field in the vicinity of the z′ axis has become
essentially transversely coherent, as is discussed in [22, Sec.
5.6.4]. In Fig. 2 the spectral density of the scattered field
is shown for different values of σF , the effective correlation
length of the scatterer. It is seen that the scattering becomes
more directional when σF increases. However, in all cases the
scattering reaches its maximum value in the forward direction
(θ = 0). The scattered intensity for angles larger than 0.08 is
negligible.

V. UNCORRELATED ANNULAR SOURCES

Next we consider a completely incoherent (i.e., δ corre-
lated), ring-shaped source with a uniform spectral density,
and with inner radius a and outer radius b. The realization of
such a source was reported in [21]. In this case the spectral
density and the spectral degree of coherence in the source plane
are

S(0)(ρ) = A2[circ(ρ/b) − circ(ρ/a)], (27)

μ(0)(ρ1,ρ2) = δ2(ρ2 − ρ1), (28)

where δ2 denotes the two-dimensional Dirac δ function,
and circ(x) the circle function; circ(x) = 1 if x � 1, and 0
otherwise. Hence

W (0)(ρ1,ρ2) =A2[circ(ρ1/b) − circ(ρ1/a)]1/2

× [circ(ρ2/b) − circ(ρ2/a)]1/2δ2(ρ2 − ρ1).

(29)
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FIG. 3. (Color online) Angular distribution of the scattered field
for various choices of the inner radius a of an annular source:
a = 0 (red), 2 mm (dashed green), and 2 cm (blue). The curves
are normalized to unity. In this example λ = 0.6328 μm, �z = 1 m,
σF = 100λ, and the outer radius b = 15 cm.

On substituting from this formula into Eq. (8) we find that

W (inc)(r′
1,r

′
2)

= kA2

2π�z
exp[ik(z′

2 − z′
1)]

×
[

bJ1(kb|ρ ′
2 − ρ ′

1|/�z)

|ρ ′
2 − ρ ′

1|
− aJ1

(
ka|ρ ′

2 − ρ ′
1|/�z

)
|ρ ′

2 − ρ ′
1|

]
,

(30)

where J1 denotes the Bessel function of the first kind of order
1. On using Eq. (30) in Eq. (18) we obtain for the scattered
intensity the expression

S(sca)(θ ) = C exp

[
−k2σ 2

F (1 − cos θ )2

2

]

×
∫ ∞

0

[
bJ1

(
kbρ

�z

)
− aJ1

(
kaρ

�z

)]

× J0(kρ sin θ ) exp

(
− ρ2

2σ 2
F

)
dρ. (31)

where C is a constant, independent of the angle θ . The results
of a numerical evaluation of Eq. (31) are shown in Fig. 3.
When the inner radius a = 0, meaning that the source is
circular, the scattered field has a broad distribution that is
centered on the forward direction θ = 0. When a = 2 mm,
the forward scattered field has a decreased intensity that is
only 45% of the maximum value, which occurs near θ = 0.01.
Increasing the inner radius a to 2 cm produces a scattered field
that is essentially zero in the forward direction and reaches a
peak near θ = 0.025. The effects of further increasing the inner
radius a are illustrated in Fig. 4. The scattered field distribution
becomes gradually narrower, and the direction of maximum
intensity increases, eventually reaching a value of 8◦. This

S (sca) (   )θ

θ [rad]
0.200.05 0.10 0.15

1.0

0.8

0.6

0.4

0.2

FIG. 4. (Color online) Angular distribution of the scattered field
for various choices of the inner radius a of an annular source: a =
5 cm (red), 10 cm (dashed green), and 14 cm (blue). The curves are
normalized to unity. The parameters are the same as in Fig. 3.

conelike scattering that is obtained with a Bessel-correlated
field is in marked contrast with the diffuse forward scattering
that arises from a Gaussian-correlated field, as was shown in
Fig. 2.

It is to be noted that, although we have presented examples
at optical frequencies and scatterers with dimensions of
∼100λ, we expect this method to work equally well at longer
wavelengths and for larger objects.

Finally, the question of how zero forward scattering can be
compatible with the optical theorem was raised several years
ago [4]. Since this theorem holds only for deterministic scat-
terers that are illuminated by a fully coherent, monochromatic
plane wave [24], and because these two conditions are not
satisfied here, it clearly does not apply to the present case.

VI. CONCLUSIONS

We have demonstrated how the angular distribution of a
field that is scattered by a random, Gaussian-correlated sphere
can be manipulated using spatial coherence. Two types of
sources were examined: Gaussian Schell-model sources and
incoherent annular sources. The first produces a Gaussian-
correlated field, the second a Bessel-correlated field. Using the
first-order Born approximation, it was found that a Gaussian-
correlated field gives rise to scattering that is predominantly in
the forward direction. In stark contrast, the Bessel-correlated
field was shown to lead to a decreased forward scattering. By
simply varying the size of an uncorrelated annular source, the
scattering distribution can be tuned, and can even take on a
conelike form without any forward scattering. Unlike the use
of specially designed scatterers which produce a single, static
field distribution, our approach can be used to dynamically
alter the scattered field. We believe that our approach offers
a further tool among the many uses of light scattering [25].
For example, this method may be used to selectively address
detectors that are positioned at different angles, or in cloaking
[26].
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