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Isothermal compressibility determination across Bose-Einstein condensation
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We apply the global thermodynamic variables approach to experimentally determine the isothermal
compressibility parameter κT of a trapped Bose gas across the phase transition. We demonstrate the behavior
of κT around the critical pressure, revealing the second-order nature of the phase transition. Compressibility is
the most important susceptibility to characterize the system. The use of global variables shows advantages with
respect to the usual local density approximation method and can be applied to a broad range of situations.
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I. INTRODUCTION

It is well known that a gas composed of bosonic atoms
with repulsive interparticle interaction at appropriate values
of density and temperature undergoes Bose-Einstein conden-
sation (BEC), a phase transition which shares similarities to
transitions to superfluid and superconductive states. Since the
first experimental demonstration of BEC [1–3], efforts have
directed toward investigating the thermodynamic properties
of such a macroscopic quantum system and finding suitable
theoretical descriptions of the phase transitions [4]. Recently
there is a revival of experimental interest devoted to the
study of the thermodynamics of quantum gases. On one hand,
distinguished works have explored the thermodynamics: a
Fermi gas with repulsive interactions [5], a Fermi gas in
the limit of very strong interactions, i.e., near the unitary
regime [6,7], a Fermi gas in a three-dimensional optical lattice
showing a fermionic Mott-insulator transition [8], and a boson
gas in a two-dimensional optical lattice showing a bosonic
Mott-insulator transition [9]. On the other hand, works on
weakly interacting bosonic gases have demonstrated that, even
in this simpler system, the understanding and characterization
of the thermodynamic behavior, especially across the phase
transition, are not yet complete [10–12] and that more experi-
mental works is needed to validate the theoretical predictions
[13–16]. New approaches to investigating these systems and
new experimental results can therefore contribute, in general,
to advance the understanding of the thermodynamics of
quantum gases and, in particular, of their phase transitions.

In this work, we experimentally determine a global sus-
ceptibility from a global thermodynamical variables approach
for a harmonically trapped Bose gas [17–19]. We investigate
and characterize the behavior of the susceptibility when the gas
undergoes a BEC. In standard thermodynamics, the equivalent
quantity of the global susceptibility that we define in this work
is the isothermal compressibility. This parameter describes the
relative variation of the volume V of a system due to a change
in the pressure P at constant temperature T : kT = − 1

V
( ∂V
∂P

)
N,T

.
It is a property associated with density fluctuations and it can
also be expressed in terms of a second derivative of the free
energy with respect to the pressure. At a second-order phase
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transition it is therefore expected to show a singularity. Here
we provide experimental evidence of such a singular behavior
by taking advantage of the global thermodynamic approach.

II. THERMODYNAMICS BASED ON GLOBAL VARIABLES

Global variables have already been successfully employed
to obtain the phase diagram [20] and measure the heat
capacity [21] of a gas in a harmonic potential. The need to
review standard thermodynamics when dealing with quantum
gases comes naturally from the fact that they are usually
trapped in nonhomogeneous (normally harmonic) potentials.
In this situation standard definitions of pressure and volume
do not apply. In fact, P and V are conjugate variables of
thermodynamical systems defined for homogeneous densities.
In particular, P is an intensive variable having the same
value in every position inside the volume occupied by the
gas. The local density approximation (LDA) is often used
in nonhomogeneous situations to define local variables. A
different approach, involving a set of thermodynamic variables
with single values for the entire gas, allows a global description
of the thermodynamics of an inhomogeneous gas and of its
phase transitions. This global approach is particularly suited,
compared to the LDA, for the case in which the gas is
characterized by abrupt spatial variations of the density, as
in the occurrence of a phase transition or in a more exotic
situation such as the presence of vortices or local potential
impurities.

The use of global variables to describe the thermodynamics
of an inhomogeneous system has been extensively described
elsewhere [17–19]. In brief, within the basis of thermodynamic
and statistical mechanics one can infer a volume parameter and
a pressure parameter, respectively:

V = 1

ωxωyωz

, (1)

� = 2

3V 〈U (r)〉 = m

3V

∫
d3rn(r)
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ω2

xx
2 + ω2

yy
2 + ω2

zz
2
)
,

(2)

where ωi with (i = x,y,z) are the harmonic trap frequencies,
〈U (r)〉 is the spatial mean of the external potential, and n(r) is
the density of the sample. V is a natural extensive “volume” for
the trapped gas and the thermodynamic limit can be achieved
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by making the density parameter nV = N/V constant as N

and V grow indefinitely. � is its intensive conjugated variable
(� = −( ∂F

∂V )
N,T

), where F = F (N,V,T ) is the Helmholtz free
energy. A nice proof that � = �(N,V,T ) and V are a good
set of variables to describe the system is obtained through the
determination of the heat capacity, CV [21], whose behavior
is close to that expected from treatment of a harmonic trapped
Bose gas [22,23]. In this framework, the isothermal compress-
ibility parameter can be obtained from the following relation:

κT = − 1

V

(
∂V
∂�

)
N,T

. (3)

κT is a quantity with the same properties of the standard
compressibility kT [24,25] and indicates the thermodynamic
stability defined by the second derivative of Gibbs free energy.
The convexity property of the free energy is maintained with
the condition, 0 � κT < ∞. Therefore, with this susceptibility
we characterize a system in thermodynamic equilibrium [26].

III. EXPERIMENTAL SYSTEM AND MEASUREMENT

We performed the measurements to determine κT across the
transition from a thermal cloud to a BEC of 87Rb atoms with a
new experimental setup in which the volume parameter can be
easily varied. The system is built in a standard double magneto-
optical trap (MOT) configuration [27]. In the first vacuum cell
we load a MOT of 108 atoms from a dispenser and then we
transfer the atoms to the second cell using an on-resonance
beam. Here, we recapture the atoms in a second MOT and, after
performing a sub-Doppler cooling, we spin-polarize the atomic
sample in the hyperfine state F = 2,mF = 2. Afterwards,
we transfer the atoms at temperatures of about 40 μK, in a
pure quadrupole magnetic trap where the first radio-frequency
evaporation is performed. Simultaneously, we ramp on a
far-detuned beam (with wavelength λ = 1064 nm) focused
on a waist w0 = 85 μm, dislocated by z0 = 300 μm along the
gravity direction below the center of the quadrupole trap. When
the temperature of the atomic cloud decreases to approximately
10 μK, atoms migrate from the quadrupole trap to the center
of the beam, which serves as an optical dipole trap (ODT). At
that point we reduce the vertical magnetic-field gradient to a
value that no longer compensates for the gravity. The atoms
are thus confined in a hybrid trap given by the combination of
the optical and magnetic confinements [28]. Here we further
decrease the temperature of the cloud by a second stage of
radio-frequency evaporation followed by optical evaporation
obtained by exponentially ramping down the power of the laser
beam. We can eventually achieve a pure BEC of ∼105 atoms
at typical temperatures of 100–200 nK. The hybrid potential
including gravity can be described by the following expression:

U (r) = μB ′
x

√
x2 + y2

2
+ z2

2
− U0(

1 + y2/y2
R

)
× exp

[
−2x2 + 2(z − z0)2

w2
0

(
1 + y2/y2

R

)
]

+ mg(z − z0) + E0.

(4)

μ is the atomic magnetic moment, B ′
x is the gradient of

the quadrupole trap along the x direction, yR = w2
0π/λ is

the Rayleigh range of the beam which propagates along
direction y, and U0 is the optical trap depth. g is the
gravitational acceleration, m is the atomic mass, and E0 is
the energy difference between the zero-field point absent
the dipole trap and the total trap minimum, giving the trap
minimum U (rmin) = 0 [28]. At low temperatures the effective
potential of the hybrid trap can be safely approximated by a
three-dimensional harmonic potential, whose frequencies are

ωx � ωz =
√

4U0

mw2
0

, ωy =
√

μB ′
x

2m|z0| . (5)

The trap has a cylindrical symmetry where the radial
frequency confinement is due to the ODT and the axial weaker
confinement is due to magnetic-field gradient.

We characterize the atomic cloud by using absorption
imaging after a free expansion from the trapping potential
with a time of flight of 30 ms. Each image is fitted to a
two-dimensional bimodal distribution composed of a Gaussian
function and a Thomas-Fermi function, which are known to
properly describe the thermal and the condensed component of
the gas, respectively. The number of particles and temperature
are obtained from the fitted images following conventional
procedure. The volume parameter can be easily changed by
varying the radial frequencies of the hybrid confinement,
which directly depend on the final laser power of the ODT. We
consider measurements for seven different sets of frequencies,
i.e., for seven different volume parameters. Different temper-
atures have been obtained by changing the radio-frequency
evaporation ramp; in this way the initial conditions for the
optical evaporation change, allow us to achieve different final
temperatures with the same trapping frequencies since the final
power of the ODT is the same. For each volume parameter
we have performed many experimental runs for temperatures
within the range 40–400 nK and postselected atomic clouds
containing (1 ± 0.1) × 105 atoms to be taken in consideration.
In order to calculate the pressure parameter � by performing
the integral in Eq. (2), it is necessary to reconstruct the density
profile of the atoms in the trap, n(r), from the measured profiles
in the time of flight and the trap frequencies. Toward this
aim, for the thermal component we can safely assume a free
expansion, whereas for the interacting condensed component
we apply the Castin-Dum procedure [29,30]. In Fig. 1 we
plot the calculated �(T ) for each volume parameter. With a
decrease in the temperature the atomic gas undergoes BEC:
at high temperatures we observe a linear dependence of the
pressure parameter on T until an abrupt change takes place
at a critical temperature Tc, and the decrease become faster
than linear. Above Tc, experimental data are well reproduced
by the the ideal gas law �V = NkBT , plotted in Fig. 1 for
the known number of particles and the different volumes.
Below Tc we perform a proper empirical exponential fit which
follows the behavior of the experimental points. These fitting
functions, in principle, are not related to any theoretical model.
For each volume parameter we can extract the critical pressure
for condensation: lower volumes demand higher pressure to
condense. The transition line from a thermal atomic cloud to a
BEC in the �V plane is shown in Fig. 2 marking the separation
between the white (thermal) and the gray (BEC) zone.
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FIG. 1. (Color online) Pressure parameter vs temperature for a
constant number of atoms (N = 1 × 105) and different volume
parameters: V1 = 1.9 × 10−7 s3, V2 = 6.4 × 10−8 s3, V3 = 3.2 ×
10−8 s3, V4 = 2.1 × 10−8 s3, V5 = 1.75 × 10−8 s3, V6 = 1.4 ×
10−8 s3, and V7 = 1 × 10−8 s3. Solid lines above Tc represent the
ideal gas law, whereas below Tc are empirical exponential fits.
The dotted black line marks the transition between the thermal
and the condensed regimes. Error bars represent the statistical error
on the average.

IV. ISOTHERMS AND DETERMINATION
OF COMPRESSIBILITY PARAMETER

From the measurements shown in Fig. 1, we extract differ-
ent isotherms relating the volume and pressure parameters,
V = VT (�), which we plot in Fig. 2. As the temperature

FIG. 2. (Color online) Isothermal V vs �. Symbols represent the
measured volume parameter vs the pressure parameter for different
temperatures. Solid lines in the thermal region (white) represent the
ideal gas law, whereas in the BEC region (gray) they are empirical
fitting curves known in the literature as the extended Langmuir
adsorption isotherm equation [31] (these curves are not used in the
analysis). The error bars on the V axis come from error propagation
of the measurement of the frequencies; on the other hand, the error
bars on the � axis are associated with the exponential fit in Fig. 1.

FIG. 3. Isothermal compressibility parameter vs pressure param-
eter for three temperatures: (a) T = 150 nK, (b) T = 80 nK, and
(c) T = 40 nK. The inset in (b) is the κT calculated from a simple toy
model for the density distribution. Lines are guides for the eye. The
error bar on the abscissa is not included so as to pollute the behavior
of κT . On the other hand, the error bar on the ordinate comes from
the extrapolation of the tangent isothermal curve in Fig. 2.

decreases, the overall isothermal lines shift towards a lower
pressure. We can clearly identify two different behaviors in the
two different regions of the thermal and condensed regimes.
In the thermal region, experimental points are well reproduced
by the ideal gas law for the known number of atoms and
temperatures (plotted as lines on the log-log scale of the figure).
When an isotherm crosses the critical line for condensation an
abrupt change occurs and it departs from the ideal gas behavior.

We can now extract the isothermal compressibility κT from
derivation of the isotherms in Fig. 2. Derivation is performed
point by point in correspondence with the experimental data
in order not to rely on the arbitrary fitting curves, which
do not correspond to any theoretical model. The obtained
κT values for three isothermal curves are shown in Fig. 3.
We have chosen the curves for T = 150 nK [Fig. 3(a)],
T = 80 nK [Fig. 3(b)], and T = 40 nK [Fig. 3(c)] because
they demonstrate the three classes of behavior: pure thermal
gas, gas undergoing BEC transition, and gas in the single BEC
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region, respectively. The isothermal curve at 150 nK shows
the decrease in κT with 1/�, as expected for an ideal gas.
Let us now consider the isotherm at 80 nK: at low pressures
the gas is thermal and the compressibility κT decreases with
increasing �; when the pressure reaches the region between
20 and 30 (×10−19 J s−3), the sudden increase in κT indicates
the transition. The compressibility reaches a maximum value
before returning close to the baseline after 40 × 10−19 J s−3.
In this pressure range the compressibility acquires values
4 to 8 times higher than the baseline. The behavior of κT

in Fig. 3 is typical for a second-order phase transition. An
investigation of κT vs � for different isothermal curves, where
the transition takes place, reveals that at higher temperatures
the transition occurs at a higher pressure and the peak of
compressibility is broader for higher temperatures. Contrary
to the expectation that quantities involving integration of
density over the potential [7] would be weakly sensitive to
the phase transition, our data show a sudden large variation in
the compressibility at the thermal-BEC transition.

V. DISCUSSION

We performed the data analysis using the Castin-Dum
procedure to reconstruct the in situ density distribution starting
with a Thomas-Fermi fit of the condensed component in
the time-of-flight images. In order to probe that the general
results we found do not depend on the specific model for
the analysis, we also tested an alternative, less constrained,
model. We fitted our images with two Gaussians for the
thermal and condensed components and we reconstructed
the in situ profiles by applying a variational method [32–34]
which has already proved to be valid to study the ballistic
expansion dynamics of a condensate [33,34]. We checked that
the �(T ) curves, and therefore all the derived thermodynamic
quantities, extracted with the two reconstructing methods are
quantitatively comparable.

A complete theory predicting the exact behavior of the
compressibility parameter across the transition does not exist.
Nevertheless, the need to make a prediction about the behavior
and the shape of the compressibility around the critical point
arises naturally. We have therefore attempted a comparison
between our findings and the results of a toy model. We
calculate � for synthetic density profiles consisting in a
Gaussian thermal component and a Thomas-Fermi condensed
one with a relative atom number given by the ideal BEC result.
This model qualitatively catches the general experimental
findings. In particular, the position and the shape of the
compressibility peak are reproduced by the model as presented
in the inset in Fig. 3. Nevertheless, this simple model cannot
give quantitative predictions, for example, of the absolute

value of the compressibility, because it is oversimplified. A
fair quantitative comparison would demand a more elaborate
model, beyond the scope of this experimental report.

The introduction of the global variable approach has proven
to be a valid complementary approach to the LDA. Generally
speaking, the LDA approach in fact has strong intrinsic
limitations in the case where sudden variation of the densities
occurs, as at the thermal-condensed interface in a Bose gas.
In this situation the LDA would in fact require a very high
imaging resolution, which is experimentally challenging. With
the global approach we overcome this limitation by describing
the system undergoing phase transition as a whole and we
can provide evidence of the compressibility peak at the
transition. On the other hand, the global variables approach
needs many measurements for different volumes with the same
atom number to trace a single isothermal curve, and this can
be experimentally nontrivial. In this sense the LDA has the
advantage of leading to a complete isothermal curve from the
analysis of a single image. Due to the lack of experimental
points, we cannot precisely measure the compressibility in
the close vicinity of the phase transition. Nevertheless, the
expected sharp peak in κT near the critical point is quite
clear and shares remarkable similarities to the behavior of
the isothermal compressibility for liquid helium as observed
across the λ point [35–37].

VI. CONCLUSIONS

In this paper, we have used the concept of global thermody-
namic variables to measure, the most appropriate susceptibility
to understand the phase transition of a harmonically confined
Bose gas, the isothermal compressibility parameter. Once
the sample had undergone BEC we characterized this phase
transition, from the classical to the quantum regime, indicating
a second-order transition likely related likely to a spontaneous
symmetry breaking. The concept of using global variables
to determine the global compressibility is quite useful in
situations where the LDA cannot be applied. In most complex
physical systems in which there are abrupt changes in the
density are of interest for superfluid physics, such as vortices,
vortex lattices, solitons, inter alia, and, especially, superfluid
turbulence, recently demonstrated by our group [38]. In
this case the local variables do not make sense and the
global behavior in the compressibility may indicate new
characteristics of the turbulent regime. Such an investigation
is currently in progress.
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