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Scattering of two-dimensional dark solitons by a single quantum vortex
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We study the process of scattering of two-dimensional dark solitons, and their vortex-antivortex pairs as a
specific case, by a single quantum vortex in a Bose-Einstein condensate with repulsive interaction between atoms.
An asymptotic theory describing the dynamics of such solitonlike structures in a smoothly inhomogeneous flow
of ultracold Bose gas is developed. An analytical expression for the angle of scattering of two-dimensional dark
solitons (including vortex pairs) by a single-phase singularity is obtained in the limit of large impact parameters.
All theoretical concepts are confirmed by numerical calculations performed directly within the Gross-Pitaevskii
equation. It is shown that for small impact parameters, the considered solitonlike structures interact inelastically
with the core of a single quantum vortex, scattering over large angles and radiating sound waves.
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I. INTRODUCTION

The dynamics of vortex structures and their interaction
with each other in many ways determine the key aspects of
the evolution of a cloud of ultracold Bose gas with repulsive
interaction between atoms. Quantum vortices (topological
defects or phase singularities) are associated with the breaking
of the superfluidity mode and the transition of the Bose-
Einstein condensate (BEC) to the turbulent state [1–15]. To
understand and describe such a transition, it is most important
to make a maximum progress in solving the model problems
of motion for interacting vortex structures. This issue has
been addressed in a fairly large number of papers (see,
e.g., [16–25]), which use, as a rule, the incompressible fluid
model of point vortices. However, using this model is not
always justified for the BEC, especially when the processes
leading to turbulence are studied.

The reasons for the generation of vortices in an ultracold
Bose gas are very diverse. They are formed in the BEC flows
behind the obstacles, whose role is usually played by laser
beams [9–15,26], because of the development of a modula-
tion instability of elongated (quasi-one-dimensional) inhomo-
geneities [9,27,28], at the dispersive shock-wave front [29–32],
etc. Quantum vortices tend to occur in vortex-antivortex pairs.
Such pairs in a homogeneous BEC are a specific case of
two-dimensional (2D) dark solitons [33–42] moving along
straight lines with constant velocities. In the absence of an
external potential, these solitons are localized solutions of
the Gross-Pitaevskii (GP) equation, which, in dimensionless
variables, coincides with the nonlinear Schrödinger (NLS)
equation with a defocusing nonlinearity [43–45].

Numerical calculations [40,41] show that in a smoothly
inhomogeneous condensate, where the distance between the
vortex and antivortex is much smaller than the characteristic
scale of the inhomogeneity of the medium, the vortex pairs
are close in structure to the corresponding 2D dark solitons.
However, in this case, the shape of the solitonlike structures
is reconstructed slowly (in particular, the distance between
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topological defects that are opposite in sign changes), and
they move with acceleration, generally along curved, rather
than straight, paths.

In our previous works [40,41], we analyzed in detail the
behavior of 2D dark solitons in a smoothly inhomogeneous
flow-free BEC, whose stationary density distribution is formed
and maintained by the potential of the external forces acting
on the condensate (e.g., the confining trap potential). In
this paper, we consider specific features of the dynamics
of such solitonlike structures (including vortex pairs) in an
inhomogeneous flow of ultracold Bose gas, paying particular
attention to their scattering by a single quantum vortex.
For the vortex pairs incident on an isolated topological
defect in the BEC, this problem has partly been analyzed
numerically [46–48]. It should also be mentioned that for
long characteristic distances between the phase singularities,
their interaction can in some cases be described using the
approximation of an incompressible fluid and the model of
point vortices, whose dynamics has been studied extensively
in hydrodynamics since the beginning of the last century. As
was shown by Poincaré [49,50], the nonlinear Hamiltonian
system of equations for the motion of three point vortices is
always integrable for an arbitrary set of vortex strengths. The
numerous solutions of this system were studied in detail by
Gröbly [51,52]. In particular, he considered the problem of
scattering of a vortex pair by a vortex. However, as applied
to BEC, the theory developed by Gröbly, which neglects
the condensate compressibility, has only a limited scope of
application.

In some papers, their authors studied the processes of scat-
tering of sound waves by a quantum vortex (see, e.g., [53–57])
and interaction of one-dimensional (1D) dark solitons with
a topological defect [58–60]. Our studies are in the natural
continuation of those publications.

This paper is organized as follows. It is divided into two
main parts (Secs. II and III). In Sec. II, we develop the
variational approach to the problem of the behavior of a 2D
dark soliton in a smoothly inhomogeneous cloud of condensate
with stationary flows. First of all (in Sec. II A), we formulate
the basic equation of the BEC dynamics with repulsive
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interaction between atoms. Then (in Secs. II B and II C),
we report on the stationary quantum vortices and 2D dark
solitons moving at constant velocities. In particular, we give
an analytical approximation, which was obtained in [40,41],
for the dependence of the momentum of such a soliton on
its energy. In Sec. II D, basing on the variational approach, we
develop an asymptotic description of the dynamics of a solitary
localized density drop, which is similar to a 2D dark soliton, in
a smoothly inhomogeneous flow of BEC and deduce a system
of ordinary differential equations governing the motion of a
quasiparticle that can be assigned to the considered solitonlike
structure. In Sec. III, using the developed asymptotic theory
and direct numerical simulation within the framework of the
GP equation, we analyze the problem of scattering of a 2D
dark soliton (including a vortex pair) by a single quantum
vortex. We deliberately neglect the impact of the trap potential,
which confines the cloud of ultracold Bose gas, on the
condensate and focus on features related first of all with the
interaction of nonlinear wave structures. Such a neglect of
external potential forces is justified for very smooth traps. In
addition, this assumption is certainly fulfilled in cases where
the technologies and methods proposed and demonstrated in
the experiments [61–63], in which a quasiuniform distribution
of the BEC density was created in a fairly large region of
space, are used. In Sec. III C, we pay special attention to
sound waves generation during collision of 2D dark solitons
with the initially isolated topological defect. In Sec. III D, we
use numerical simulation to study the dependencies of the
scattering angle, at which the solitonlike structure is incident
on a single quantum vortex, on the impact distance. The
limit of large impact distances is also considered analytically
and an expression that relates the scattering angle and the
parameters of a 2D dark soliton at the start point is obtained.
In Conclusions (Sec. IV), we summarize the main results of
our work.

II. VARIATIONAL APPROACH TO THE PROBLEM
OF THE DYNAMICS OF 2D DARK SOLITONS IN A

SMOOTHLY INHOMOGENEOUS BEC WITH FLOW

A. Mean-field approximation for the Bose gas at an absolute
zero temperature: Basic equation of the BEC dynamics

The BEC dynamics will be described in the mean-field ap-
proximation, according to which the system of a macroscopic
number of identical bosons in condensed state is characterized
by a unified classical wave function �(r,t), which satisfies
the GP equation [43–45]. This equation for an ultracold Bose
gas with repulsive interaction between atoms in dimensionless
variables has the following form [40,43–45]:

i
∂�

∂t
+ 1

2
�� + (1 − |�|2)� = Vext (r)�. (1)

Here, the time t , the coordinates r, the function �(r,t), and the
potential Vext (r) of the external forces acting on the condensate
were normalized in such a way that the dimensionless chemical
potential of the ground state is equal to unity [40,43–45].
From Eq. (1), one can also pass, using Madelung transform
�(r,t) = ψ(r,t) exp[iθ (r,t)], to hydrodynamic equations of

compressible inviscid fluid:

∂ψ2

∂t
+ div(ψ2∇θ ) = 0, (2)

∂θ

∂t
+ 1

2
(∇θ )2 = 1 − ψ2 + �ψ

2ψ
− Vext (r), (3)

where ψ(r,t) and θ (r,t) are the real-valued functions of
the coordinates and time, which have a distinct physical
meaning, namely, n(r,t) = ψ2(r,t) is the density of BEC
atoms and v(r,t) = ∇θ (r,t) is their velocity. The term �ψ/2ψ

is associated with a specific quantity, the so-called quantum-
mechanical pressure.

In this paper, we focus on a 2D problem to which the
analysis of the behavior of the Bose condensates in disklike
traps reduces [40,43–45]. The potential of such traps is fairly
sharply localized with respect to the coordinate z and gradually
varies with respect to two other coordinates, x and y. Thus, the
structure of the BEC cloud along the z axis can be assumed
fixed, and after the factorization procedure [40,43–45] in
Eqs. (1)–(3), it suffices to consider only the dependence of
the functions on the 2D vector r = (x,y).

In the homogeneous BEC, where Vext (r) = 0, there are
nonlinear wave structures, both at rest and moving at constant
velocities, in the form of single quantum vortices [43–45] and
2D dark solitons [33–42], respectively. These structures are
described by solitary solutions of the GP equation (1) and in
many respects determine the long-term evolution of the cloud
of ultracold Bose gas.

B. Stationary quantum vortices

The presence of quantum vortices (topological defects, or
phase singularities) is one of the most characteristic features
of superfluid systems [1,9,43–45], which include, in particular,
BEC of rarefied ultracold gases with repulsive interaction
between atoms. Velocity field circulation along a closed
path enveloping the vortex center is equal to 2π�, where
� is an integer, which is often called an azimuthal index
or a topological charge. Accordingly, when going around
these lines, the phase of the macroscopic wave function of
a superfluid system changes to 2π�.

The vortices with azimuthal indices |�| > 1 fall into
|�| vortices that are stable in the class of 2D solutions,
with topological charges that are unit in modulus [64–66].
Therefore, hereafter we assume that � = ±1. For � = +1 and
−1, the condensate is counterclockwise (vortex) or clockwise
(antivortex) rotated.

In the initially homogeneous BEC, where Vext (r) = 0, in
the polar coordinate system r , ϕ connected with the central
point, stationary wave functions �±

v (r) of the vortex and
antivortex, respectively, have a fairly simple form, namely,
�±

v (r) = ψv(r) exp (±iϕ), where the phase ±ϕ determines the
presence of a singular (for r = 0) vortex flow v±

v (r)=±ϕ0/r

(ϕ0 is the unit vector of the angular variable ϕ) and the
amplitude ψv(r) in both cases satisfies the ordinary differential
equation [1,43–45]

1

2

(
d2ψv

dr2
+ 1

r

dψv

dr
− 1

r2
ψv

)
+ (

1 − ψ2
v

)
ψv = 0 (4)
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FIG. 1. (Color online) Distributions (a) of the density and (b)
of the phase of the BEC wave function in the presence of a
single quantum vortex with � =+1 located at the center of the
Cartesian coordinate system x, y. (c) Gives a comparison of the
Padé approximation (7) (red solid line) for the dependence nv(r) with
the results of numerical calculation (unshaded blue markers) using
Eq. (4) and the boundary conditions ψv(0) = 0 and ψv(∞) = 1.

with the boundary conditions ψv(0) = 0 and ψv(∞) = 1,
which ensure that ψv(r) is continuous at the point r = 0 and
the condensate density reaches unity at r → ∞.

We note that the vicinity of the point r = 0, where
the density nv(r) = ψ2

v (r) of Bose particles in the vortex
solution differs markedly from the density of a homogeneous
background condensate, i.e., nv(r)�1, and the quantum-
mechanical pressure is significant, is called the core of a
quantum vortex. At the boundary of this region, the speed of
the flow created by a topological defect in the BEC becomes
of the order of the sound speed. A characteristic size of
the core is close to the correlation radius (equal to unity in
the dimensionless variables being used), which in the case
of a rarefied ultracold Bose gas is great compared with the
interatomic spacing. Therefore, the structure of the vortex and
antivortex can be described macroscopically.

The function ψv(r), which satisfies Eq. (4) and the corre-
sponding boundary conditions, can be found only numerically
(Fig. 1). However, it is easy to establish the asymptotic behav-
ior of the dependence ψv(r) for r →0 and r →∞ [37,67]. In
the first case, where r �1, we have

ψv(r � 1) = α1r − α1

4
r3 + α1

(
4α2

1 + 1
)

48
r5 + o(r7) (5)

with α1 = 0.824 177 059. Outside the core of the quantum
vortex (antivortex), and at sufficiently long distances r � 1
from the core, the amplitude ψv(r) of the BEC wave function
is determined by the following expression:

ψv(r � 1) = 1 − 1
4 r−2 − 9

32 r−4 − 161
128 r−6 + o(r−8). (6)

Using asymptotic forms (5) and (6), the stationary distribution
of the density nv(r) of a condensate with vortex (antivortex)
can be fit with the Padé approximation [67]

n[2/2]
v (r) = a1r

2 + a2r
4

1 + b1r2 + b2r4
, a1 = α2

1,

b1 = 3α2
1√

2
(
2 − α2

1

) , a2 = b2 = α2
1

(
2α2

1 − 1
)

4
(
2 − α2

1

) , (7)

which reproduces coefficients up to terms of order r3 in
expansion (5) and up to terms of order r−2 in expansion (6),
i.e., gives the correct behavior of nv(r) simultaneously
with r → 0 and r → ∞. Furthermore, a comparison shows

FIG. 2. (Color online) Distributions (a) of the density and (b)
of the phase of the wave function of the BEC confined in the
axially symmetric harmonic potential (8) with ωr ≈0.0736 in the
presence of a single quantum vortex with � =+1 at the trap center.
(c) Gives a comparison of the approximation (9) (red solid line) for the
dependence nv(r) with the results of numerical calculation (unshaded
blue markers) directly within the GP equation (1).

[see Fig. 1(c) and [67]] that the dependence n
[2/2]
v (r) calculated

by formula (7) is everywhere close to the density nv(r) of
an ultracold Bose gas with phase singularity, which was
calculated using the numerical solution of Eq. (4).

When a quantum vortex or antivortex is located at the center
of the BEC cloud confined in the x, y plane by an axially
symmetric harmonic potential

Vext (r) = ω2
r r

2
/

2, (8)

the phases of the corresponding stationary wave functions
�±

v (r) in the polar coordinate system r , ϕ will still be equal to
±ϕ, and their amplitudes ψv(r) in both cases will satisfy Eq. (4)
with a nonzero right-hand side, which is equal to Vext (r)ψv(r),
and the boundary conditions ψv(0) = 0 and ψv(∞) = 0. This
boundary-value problem, as the one considered above, can be
solved only numerically [see Fig. 2 and [68–70]]. However,
for a smooth potential Vext (r) of the form (8) with ωr � 1 in
this space domain, where 1 − Vext (r) > 0, the density nv(r) of
the condensate can be adequately described by the following
approximation [see Fig. 2(c) and [68–70]]:

nTF
v (r) = [1 − Vext (r)] n[2/2]

v (r). (9)

The first term in this factorized representation is the Thomas-
Fermi (TF) approximation for the density distribution of a
condensate with repulsive interaction between atoms, which
is enclosed in a large-scale trap [43–45].

Note that a quantum vortex (antivortex) will be at rest
only if the related phase singularity is located at the point
coinciding with the center of the potential (8). Otherwise, when
the topological defect is away from this point, the quantum
vortex will rotate around it, with frequency determined by ωr

(see, e.g., [1,16,70–75]). However, this effect is beyond the
scope of this paper and is not discussed here in detail.

C. 2D dark solitons in a homogeneous BEC

It is easy to show that the BEC energy concentrated
within the region of radius R with a topological defect at the
center increases logarithmically with increasing R [43,44,67].
However, in a homogeneous condensate, there are stable vortex
structures having an ultimate energy. The simplest of these are
the vortex-antivortex pairs, which are a particular case of 2D
dark solitons of the GP equation (1) with Vext (r) = 0.
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Two-dimensional (2D) dark solitons are the localized
density drops moving at constant subsonic velocities v̄ against
the background of a unit-density BEC [33–42]. Their wave
functions �̄s(ξ,y,v̄) satisfy the stationary NLS equation

− iv̄
∂�̄s

∂ξ
+ 1

2

∂2�̄s

∂ξ 2
+ 1

2

∂2�̄s

∂y2
+ (1 − |�̄s |2)�̄s = 0 (10)

with the boundary condition �̄s[(ξ 2 + y2) → ∞] → 1.
These solitary structures can also be considered as a

one-parameter family of solutions of the variational problem
δ(H − v̄Px) = 0, where

H = 1

2

∫ +∞

−∞
dy

∫ +∞

−∞
dξ [|∇�|2 + (1 − |�|2)2], (11)

P = i

2

∫ +∞

−∞
dy

∫ +∞

−∞
dξ (�∇�∗ − �∗∇�) (12)

are the Hamiltonian and the momentum of condensate, re-
spectively. This variational formulation implies the following
relations [35,40,41]:

Ē =
∫ +∞

−∞
dy

∫ +∞

−∞
dξ

∣∣∣∣∂�̄s

∂ξ

∣∣∣∣
2

,

Ē − v̄P̄ =
∫ +∞

−∞
dy

∫ +∞

−∞
dξ

∣∣∣∣∂�̄s

∂y

∣∣∣∣
2

,

v̄P̄ =
∫ +∞

−∞
dy

∫ +∞

−∞
dξ (1 − |�̄s |2)2,

v̄ = dĒ
dP̄

<
Ē
P̄

. (13)

Here, Ē = Hs and P̄ = Psx are the soliton energy and
momentum, respectively. In this case, v̄, P̄ , and Ē are uniquely
related to each other.

In Refs. [33–35,37,40,41], the properties of 2D dark
solitons were considered in detail within the framework of
Eq. (10). In particular, the features of their inner structure
as functions of the quantity v̄, which plays the role of the
problem parameter, were analyzed there. When 0 < v̄ < 0.61,
the solitons are vortical, and for 0.61 � v̄ < 1 are vortex free.
In the first case [see Figs. 3(a) and 3(d), 3(b) and 3(e)], they are
the so-called vortex-antivortex pairs, in which the condensate
density at two points located on the line perpendicular to
the direction of motion becomes zero. The phase of the wave
function �̄s(ξ,y,v̄) of BEC when going around these points
changes to ±2π . As the speed v̄ increases, the energy Ē
of a 2D dark soliton decreases, and the phase singularities
in it converge. For the critical energy Ē∗ = 7.59, which
corresponds to the critical velocity v̄∗ = 0.61, the topological
defects merge, so that instead of the vortex pair, there forms a
vortex-free soliton, in which the condensate density nowhere
vanishes and jumps by ±2π are absent in the phase distribution
[see Figs. 3(c) and 3(f). In the weakly nonlinear limit, where the
speed v̄ tends to the sound velocity, i.e., 1 − v̄ � 1, vortex-free
solitons are close in structure to solitary solutions of the
Kadomtsev-Petviashvili (KP) equation [76–78].

FIG. 3. (Color online) Distribution (a)–(c) of the condensate
density and (d)–(f) of the phase of the BEC wave function in 2D dark
solitons for three values of the soliton velocity v̄, namely, (a), (d)
v̄ = 0.3, (b), (e) v̄ = 0.5, and (c), (f) v̄ = 0.7. For v̄ = 0.3 and 0.5,
these solitons have the form of vortex pairs, in which the condensate
density at two points vanishes [see fragments (a) and (b)], and the
phase of the BEC wave function �s(ξ,y) when going around these
points changes to ±2π [see fragments (d) and (e)]. For the velocity
v̄ = 0.7, a 2D dark soliton is vortex free, i.e., the density of ultracold
Bose gas in it nowhere vanishes [see fragment (c)], while the phase
of the wave function �s(ξ,y) changes gradually [see fragment (f)].

Note that for the dependence of the momentum P̄ of a
2D dark soliton on its energy Ē , which was calculated by
numerically solving the stationary equation (10), we found a
fairly simple analytical approximation [40,41]

P̄(Ē) = ℘(Ē) sinh[Ē/℘(Ē)], (14)

℘(Ē) = 2π + (2π/3) exp[−(Ē/9.8)2], (15)

which has a high accuracy. In other words, we have constructed
a nonlinear dispersion relation for the considered soliton
excitations in a homogeneous BEC.

D. Asymptotic description of the dynamics of 2D dark solitons
in a smoothly inhomogeneous vortex flow of BEC

A fairly universal and frequently used approach to solving
the problems of the dynamics and interaction of solitons (or,
more precisely, quasisolitons) in different nonlinear models
close to integrable is the variational method [78–80]. This
approach permits one to analyze the processes of propagation
and collision of solitary waves in terms of slow evolution
of their parameters, the so-called collective coordinates. The
main idea of this method is as follows. First, it is needed
to select a particular approximation that describes most
adequately and correctly the shape of nonlinear structures
and substitute it into the Lagrange function density. Then,
one should calculate the averaged Lagrangian, assuming that
during integration the parameters of solitonlike structures
change adiabatically gradually in time, and vary the resulting
expression for the collective coordinates. This strategy is
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similar to the approach proposed by Whitham and which
he used for a study of the behavior of the trains of periodic
traveling waves (often called cnoidal waves) [81].

It should be specially mentioned that some of the dis-
turbances can break the Hamiltonian nature of the undis-
turbed nonlinear equations having solutions in the form
of solitons. Dissipative effects and external nonconservative
forces can be taken into account when the Lagrangian is
varied by introducing generalized forces corresponding to
the collective coordinates, as is done in classical mechanics
(see, e.g., [82,83]).

Whitham’s method has repeatedly demonstrated its high
efficiency and expediency in the study of the dynamics and in-
teraction of solitary waves in a variety of the nonlinear physical
models described, in particular, by the sine-Gordon (SG) and
Korteweg–de Vries (KdV) equations, as well NLS equations
in the presence of different types of disturbances (including
the dissipative ones) and smooth inhomogeneities [78–80].
We emphasize that the variational method was used for a
study of the behavior of 1D dark solitons and ring dark
solitons (see, e.g., [45,82,84–86]) in the BEC confined in a
parabolic trap [45,87], as well as for the analysis of their
modulation instability [88,89]. However, such a theory for 2D
dark solitons has not existed to date. Therefore, in this section
we will develop the ideology outlined above in relation to the
problem of scattering of such solitary density drops (including
vortex pairs) by a single quantum vortex. This procedure is
not difficult to generalize to other cases where we are talking
about the behavior of localized structures in an ultracold Bose
gas with repulsive interaction between atoms.

So, let a 2D dark soliton moving in the general case
against the background of a smoothly inhomogeneous BEC
be incident on a single quantum vortex with the topological
charge � = +1. Note that using symmetry considerations, all
the results obtained in the following can easily be extended
to the case of a phase singularity with the azimuthal index
opposite in sign � = −1, i.e., an antivortex. In the space
domain where the characteristic size �s of a 2D dark soliton
is small compared with the distance rs to the vortex center,
i.e., �s � rs , it is possible to introduce a small parameter
μ = �s/rs � 1, which characterizes smooth variations in the
vortex velocity field on the scale �s . The wave function �(r,t)
of the condensate can conveniently be represented in the form
of the product

�(r,t) = �v(r)�(r,t), (16)

where �(r,t) is the complex function of the coordinates r
and time t , �v(r) is the stationary wave function of a single
quantum vortex, which was discussed in Sec. II B (the upper
index + is omitted to avoid a cumbersome writing in what
follows). That the function �v(r) corresponding to the isolated
topological defect was extracted as one of the factors reflects
the fact that a 2D dark soliton transiting at long distances rs

(rs � �s) from the center of the phase singularity disturbs
very weakly the structure of the quantum vortex and the flow
it created. Therefore, the inverse effect of such a disturbance
on the dynamics of the solitonlike structure can be neglected.
Upon substitution of expression (16) into the GP equation (1)
for the second factor �(r,t) describing the behavior of a 2D
dark soliton in a smoothly inhomogeneous vortex flow of BEC,

we obtain the nonlinear dynamic equation

i
∂�

∂t
+ 1

2
�� + nv(r)(1 − |�|2)�

+
{
ivv(r) + 1

2
∇[ln nv(r)]

}
· ∇� = 0. (17)

Here, vv(r) is the velocity field created in an ultracold Bose
gas by an isolated topological defect, and nv(r) determines the
inhomogeneous distribution of the density of the background
condensate with a single quantum vortex. Equation (17) is
essentially an NLS equation with smoothly inhomogeneous
coefficients. The Lagrange function density corresponding to
this equation (and its complex-conjugate counterpart) has the
following form:

L(�,�∗) = i

2
nv(r)

{
�

[
∂

∂t
+ vv(r) · ∇

]
�∗ − c.c.

}

+ nv(r)

2
|∇�|2 + n2

v(r)

2
(1 − |�|2)2. (18)

Now, the dynamics of 2D dark solitons in a smoothly inhomo-
geneous vortex flow can be described using the variational
method based on averaging of expression (18) over the
so-called fast variables.

We assume that the solitonlike structure in the form of a
density drop moves against the inhomogeneous background
stipulated by the presence of a single quantum vortex in
the center of the BEC cloud confined in the trap along
a smoothly curved path rs(t) with slowly varied velocity
vs(t) = ṙs(t). By virtue of the condition �s � rs , at any
arbitrary moment of time t such a quasisoliton excitation
is close in structure to the corresponding solitary solution
�s(r − rs ,vs) of Eq. (17), in which instead of the scalar
function nv(r) of the space variables r and the vector field vv(r)
we substituted for each t the r-independent local values of the
corresponding quantities at the point with the radius vector
rs(t), i.e., nv(rs) and vv(rs). In view of what was said above,
as an approximation correctly describing the shape of a 2D
dark soliton in the case considered, it is natural to choose the
function �s(r − rs(t),ṙs(t)) with time-dependent parameters.
Using a simple algebra, �s(r − rs(t),ṙs(t)) can be expressed
via the wave function �̄s(ξ̄ ,η̄,v̄) which we introduced before
(see Sec. II C):

�s(r − rs(t),ṙs(t)) = �̄s(ξ̄ ,η̄,v̄(t)), (19)

where

ξ̄ = 1

v̄
(r − rs) · [ṙs − vv(rs)], (20)

η̄ = 1

v̄
(r − rs) · {z0 × [ṙs − vv(rs)]} (21)

are the normalized orthogonal curvilinear coordinates that
accompany a soliton along its propagation path, z0 is a single
vector that is perpendicular to the x, y plane and is directed
along the z axis, and the quantity

v̄(t) = v̄(rs(t),ṙs(t)) = |ṙs(t) − vv(rs(t))|√
nv(rs(t))

(22)
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has the meaning of the normalized velocity of a solitonlike
structure in the coordinate system ξ̄ , η̄.

Substitute into the Lagrange function density (18), instead
of �(r,t), its approximation �s(r−rs(t),ṙs(t)), which, as
was discussed above, locally describes well the shape of the
solitary density drop moving in an inhomogeneous vortex
flow of BEC at long distances from the center of a single
topological defect. Taking into account the smooth dependence
of the vector field vv(r) and the background density nv(r)
of the condensate on the coordinates r on characteristic
scales �s of the considered quasisoliton structure, and also
assuming that the velocity ṙs(t) of a 2D dark soliton slowly
varies in time, we proceed, in accordance with Eqs. (20)
and (21) and using transformation of the rotation and additional
normalization, to the new variables ξ̄ and η̄ and integrate
L(�s,�

∗
s ) over these variables. If we make use of the mirror

symmetry of the function �̄s(ξ̄ ,η̄,v̄) with respect to η̄ = 0, i.e.,
�̄s(ξ̄ ,η̄,v̄) = �̄s(ξ̄ , − η̄,v̄), asymptotic forms of its behavior
on the infinity [33,34,40,41], and relations (13), we arrive at
the following expression:

L̄(rs ,ṙs)=−
∫∫

Ds

L(�s(r̃,ṙs(t)),�∗
s (r̃,ṙs(t))) d2r̃

= nv(rs)[v̄(rs ,ṙs)P̄(v̄(rs ,ṙs)) − Ē(v̄(rs ,ṙs))]. (23)

Here, r̃ = r − rs(t), Ds is the localization region of the soliton,
and the quantities P̄(v̄(rs ,ṙs)) and Ē(v̄(rs ,ṙs)) at each fixed
moment of time t are the corresponding integral characteristics
of a 2D dark soliton, which in a flow-free homogeneous
condensate of unit density could propagate along a straight line
at a constant velocity equal to the value v̄(rs ,ṙs) calculated for
a given t by Eq. (22). In what follows, by analogy with [40,41],
we will call P̄(v̄(rs ,ṙs)) and Ē(v̄(rs ,ṙs)) the normalized
momentum and normalized energy of the quasisoliton structure
considered. The quantities P̄(v̄(rs ,ṙs)) and Ē(v̄(rs ,ṙs)) defined
in such a way are connected to each other by the nonlinear
dispersion relations (14) and (15).

Now, a 2D dark soliton can be interpreted as a quasiparticle
with the Lagrange function (23). If at the times t = t1 and
t2 this quasiparticle is located at certain points of space with
the radius vectors rs1 = rs(t1) and rs2 = rs(t2), then between
them it moves along the path on which the so-called action
functional

Ī =
∫ t2

t1

L̄(rs(t),ṙs(t)) dt (24)

takes an extreme value. This statement follows from the fact
that the Lagrangian (23) was constructed directly on the basis
of the Lagrange function density (18) of the exact equation (17)
describing the dynamics of considered solitonlike structure in
a smoothly inhomogeneous BEC (including that in the cloud of
ultracold Bose gas with a single quantum vortex at the center).
Varying the action functional (24) with respect to rs(t) and
ṙs(t) and using the condition of its extreme value on the true
path of the soliton, we arrive at the Euler-Lagrange equation

d

dt

[
∂L̄(rs ,ṙs)

∂ ṙs

]
− ∂L̄(rs ,ṙs)

∂rs

= 0 , (25)

which reduces to the following form:

d

dt

{ P̄(v̄(rs ,ṙs))
v̄(rs ,ṙs)

[ṙs − vv(rs)]

}

+
[
Ē(v̄(rs ,vs)) − 1

2
v̄(rs ,vs)P̄(v̄(rs ,vs))

]
∂nv(rs)

∂rs

+ P̄(v̄(rs ,ṙs))
v̄(rs ,ṙs)

{
[ṙs −vv(rs)] · ∂

∂rs

}
vv(rs)=0. (26)

Mathematically, relation (26) is a vector equation of the
second order, which establishes the connection between the
acceleration r̈s(t) of a 2D dark soliton, its velocity ṙs(t), and
the position of rs(t) in space.

Using the Hamiltonian formalism developed in classical
mechanics [90,91], by introducing as the vector of independent
variables, instead of ṙs , the generalized momentum

ps(rs ,ṙs) = ∂L̄(rs ,ṙs)

∂ ṙs

= P̄(v̄(rs ,ṙs))
v̄(rs ,ṙs)

[ṙs −vv(rs)] (27)

we can pass from fairly cumbersome expression (26) to the
so-called canonic equations, which are more convenient for
analysis and numerical solution:

drs

dt
= ∂H̄(rs ,ps)

∂ps

=
√

nv(rs) v̄(Ē(rs ,ps))
ps

|ps | + vv(rs), (28)

dps

dt
= −∂H̄(rs ,ps)

∂rs

= −
(

ps · ∂

∂rs

)
vv(rs)

+
[ |ps |v̄(Ē(rs ,ps))

2
√

nv(rs)
− Ē(rs ,ps)

]
∂nv(rs)

∂rs

, (29)

where

H̄(rs ,ps) = ps · ṙs(rs ,ps) − L̄(rs ,ṙs(rs ,ps))

= nv(rs)Ē(rs ,ps) + ps · vv(rs) (30)

is the Hamiltonian of a quasiparticle corresponding to the
quasisoliton structure considered. Since this Hamiltonian does
not depend explicitly on time, the conservation law

nv(rs)Ē(rs ,ps) + ps · vv(rs) = H = const (31)

will be fulfilled, according to which the normalized energy of
a 2D dark soliton should vary along its propagation path as
follows:

Ē(rs ,ps) = H − ps · vv(rs)

nv(rs)
, (32)

where the constant H is determined by the initial conditions.
Knowing Ē , one can also find the function v̄(rs ,ps), using the
chosen approximations (14) and (15) for the dependence P̄(Ē):

v̄(Ē(rs ,ps)) =
[
dP̄
dĒ

]−1∣∣∣∣
Ē(rs ,ps )

. (33)

As was mentioned in the Introduction, in Refs. [40,41] we
analyzed in detail the case where in the background BEC
there are no flows, and the stationary distribution of the
condensate density nb(r) was formed under the action of an
external potential Vext (r). If in relations (28) and (29) we set
vv(r) = 0 and nv(r) = nb(r), where in the TF approximation
nb(r) ≈ 1 − Vext (r) > 0, then expressions (28) and (29) can
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be transformed to the equations obtained in papers [40,41]
for the propagation path of a 2D dark soliton in a flow-
free inhomogeneous condensate with the undisturbed density
nb(r). Derivation of the equations of motion, which is given
in [40,41], is based not on the Whitham method, but on a
rigorous asymptotic expansion using Fredholms alternative
theorem [79,80]. This fact confirms the validity of the
variational approach used here.

In the next section, we discuss scattering of 2D dark
solitons by the inhomogeneities of the singular velocity field
vv(r) = ϕ0/r created by a single quantum vortex and directed
along the angular variable ϕ of the polar coordinate system
r , ϕ and by the inhomogeneities of the axially symmetric
distribution nv(r) of the BEC density. According to Sec. II B,
in the absence of the external potential, i.e., in cases where
the action of the external forces on the rarefied ultracold Bose
gas is negligibly small in the space domain in the x, y plane
the density nv(r) of the condensate is well described using
the Padé approximation (7). If the effect of a large-scale trap
Vext (r) where 1 − Vext (r) > 0 is taken into account, then for
nv(r) one can use expression (9), which corresponds to the
generalization of the TF approximation in the presence of a
single topological defect at the BEC cloud center.

Taking into account that vv(r) = ϕ0/r , and nv(r) depends
only on the radial coordinate r , we rewrite expression (22)
for the normalized velocity v̄(t) of a 2D dark soliton in the
following way:

v̄(t) = v̄(rs,ṙs ,ϕ̇s) =

√√√√ r2
s ṙs + (

r2
s ϕ̇s − 1

)2

r2
s nv(rs)

, (34)

where rs = rs(t) and ϕs = ϕs(t) is the position of the center
of the solitonlike structure in the polar coordinate system r ,
ϕ connected with a single quantum vortex. The dots over
the variables denote the derivatives with respect to time t .
From relation (34) and equality nv(rs) = nv(rs) it follows
directly that the Lagrangian (18) does not depend explicitly
on the angular variable ϕs , i.e., for the quasiparticle associated
with the solitary density drop considered, ϕs is a cyclic
generalized coordinate. By virtue of the Lagrange equations,
the generalized momentum �s = ∂L̄/∂ϕ̇s corresponding to ϕs

is the motion integral:

P̄(v̄(rs,ṙs ,ϕ̇s))
v̄(rs,ṙs ,ϕ̇s)

(
r2
s ϕ̇s − 1

) = M = const. (35)

This fact, together with the conservation law (31) rewritten in
the form

nv(rs)Ē(v̄(rs,ṙs ,ϕ̇s)) + M

r2
s

= H = const, (36)

significantly simplifies the solution of Eq. (26). With analytical
approximations (14) and (15), for the dependence of the
normalized momentum P̄ of a solitonlike structure on its
normalized energy Ē of relations (35) and (36) it is sufficient
that the problem of the dynamics of a 2D dark soliton is reduced
to the quadratures. In particular, using these relations we obtain
a transcendental algebraic equation for the minimum distance
rsmin by which, according to the concept developed above, the
quasiparticle approaches to the topological defect located at the

point with r = 0. Substituting expression (34) for v̄(rs,ṙs ,ϕ̇s)
into Eqs. (35) and (36) and assuming ṙs = 0, we find that

r2
s minnv(rsmin)P̄2(Ē(rsmin)) = M2, (37)

Ē(rsmin) = Hr2
s min − M

r2
s minnv(rsmin)

. (38)

From this relation, taking into account Eqs. (14) and (15)
and using standard numerical methods (e.g., Neuton-Raphson
method) [92], it is easy to find the value rsmin.

III. NUMERICAL SIMULATION OF INTERACTION
OF 2D DARK SOLITONS WITH A SINGLE QUANTUM

VORTEX IN THE BEC

A. Formulation of the problem of scattering of a 2D dark
soliton by a single quantum vortex

The numerical simulation of the dynamics of 2D dark
solitons (in particular, vortex pairs) interacting with the
vortex flow was performed both within the framework of
the asymptotic theory developed in Sec. II D and directly
using the GP equation (1) for the wave function �(r,t) of
the BEC. In the latter case, we employed parallel algorithms
based on the splitting scheme with fast Fourier transform (FFT)
and adapted to high-performance multiprocessor systems
(see, e.g., [93–95]). The wave function �(r,t) was calculated
in detail on discrete spatial grids with a large number
of nodes (213 × 213), which first of all permitted us to
estimate reliably the radiative losses which are discussed
in Sec. III C. The numerical calculation required multiple
modeling of the condensate dynamics for different initial
parameters. Therefore, using the CUDA development tools of
GPGPU applications [93,94], we created a software package
for numerical solution of the GP equation (1), which requires
modern graphical processor units (GPU) of NVIDIA company.

Assume that a single quantum vortex with topological
charge � =+1 (for definiteness) and centered at the origin
of the Cartesian coordinate system x, y be excited in the
initially homogeneous condensate. Let a 2D dark soliton
(this can be a vortex pair as well), which is characterized
by the normalized velocity v̄0 and related normalized energy
Ē0 = Ē0(v̄0) and momentum P̄0 = P̄0(v̄0), start from the point
x0 < 0, y0 along the x axis at the time t = 0. For relatively large
values |x0|, i.e., when |x0| � 1 (namely, for such abscissas x0

and arbitrary ordinates y0 of the start point it can be said that
the considered solitonlike structure is initially distant from the
quantum vortex), the pattern of interaction of solitons with
a topological defect qualitatively ceases to depend x0 and is
mainly determined by the parameters v̄0 and y0. Therefore,
to be specific, we present and discuss the results of numerical
calculations for a fixed value of x0 = −25.6. Then, by analogy
with the classical problem of scattering [90,91], we will call
the coordinate y0 an impact distance (or an impact parameter).

Based on the factorized representation used in section (16),
in direct numerical simulation within the framework of the GP
equation (1), the BEC wave function �(r,t) at the initial time
t = 0 was specified in the form of the product

�(x,y,t = 0) = �v(x,y)�s(x − x0,y − y0,vs0x0). (39)
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Here, the first cofactor �v(x,y) is the stationary wave function
corresponding to a single quantum vortex. The amplitude
ψv(x,y) of the complex function �v(x,y) [and therefore the
nonuniform distribution of the density nv(x,y) of a background
ultracold Bose gas] at each node of the spatial grid was
calculated by solving Eq. (4) without any approximations. The
second cofactor �s(x − x0,y − y0,vs0x0) in Eq. (39) describes
the form of the 2D dark soliton, which starts from the point
x0, y0 in the positive direction of the x axis with velocity
equal to vs0 in absolute value. In order to correctly specify
�s(x − x0,y − y0,vs0x0) on the elements of a discrete grid, we
first calculated the function �̄s(ξ̄ ,η̄,v̄0) by numerically solving
the stationary NLS equation (10) (see Refs. [33,34,37,42] for
details) and then scaled by a factor of

√
nv(x0,y0) and rotated

the coordinate system ξ̄ , η̄ through an angle

α = arcsin[vvy(x0,y0)/
√

nv(x0,y0)v̄0], (40)

where vvy(x0,y0) is the y-axis projection of the velocity vector
vv(x,y) of the vortex flow of BEC created by a topological
defect at the center of the 2D dark soliton.

According to the variational approach we developed in
Sec. II D, a solitonlike structure that is incident on the initially
isolated phase singularity can be put into correspondence with
a quasiparticle whose motion obeys the canonic equations (28)
and (29) having two first integrals (35) and (36). In the case
considered, the constants M and H in Eqs. (35) and (36) are
determined by the following expressions:

M = − P̄0

v̄0

⎡
⎣y0

√√√√nv0v̄
2
0 − x2

0(
x2

0 + y2
0

)2 + x2
0

x2
0 + y2

0

⎤
⎦, (41)

H = nv0Ē0 + M

x2
0 + y2

0

, (42)

where nv0 = nv(x0,y0) is the density of the background BEC
at the point with the coordinates x0 and y0, which can be
calculated using the Padé approximation (7). We used this
approximation for solution of the system of Hamiltonian
equations (28) and (29), as well as in the theoretical analysis
and interpretation of the results.

B. Flyby and exchange modes of scattering of a 2D dark soliton
by a single quantum vortex

Figures 4–6 show the results of direct numerical simulation
within the framework of the GP equation (1) of the dynamics
of 2D dark solitons in a smoothly inhomogeneous vortex flow
of BEC for different initial normalized velocities and impact
distances: v̄0 = 0.3 and y0 = −16 (Fig. 4), v̄0 = 0.5 and
y0 = 12.8 (Fig. 5), and v̄0 = 0.7 and y0 = −9.6 (Fig. 6).
Fragments (a)–(c) in these figures are snapshots of the spatial
distribution of the density of an ultracold Bose gas, which
follow one another at equal intervals �t (the time interval �t

is specific for each example). The trajectories of quasiparticles
calculated using a system of Hamiltonian equations (28)
and (29) are shown by solid lines for comparison. It is clearly
seen that the core of a single quantum vortex is virtually not
shifted with respect to its initial position, and all of the time is
localized near the origin of the Cartesian coordinate system x,
y, while the solitonlike structure during scattering propagates

FIG. 4. (Color online) Snapshots of the BEC density at (a) t = 20,
(b) t = 70, and (c) t = 120, which illustrate the process of scattering
of a 2D dark soliton by a single quantum vortex (with a topological
charge � = +1) excited in the initially homogeneous ultracold Bose
gas and located at the origin of the Cartesian coordinate system x,
y (unshaded green circle). At the time t = 0 the solitonlike structure
starts from the point x0 = −25.6, y0 = −16 (green cross) in the
positive direction of the x axis and has the normalized velocity
v̄0 = 0.3, i.e., is initially a vortex pair. The condensate density
distributions were obtained by direct numerical simulation performed
immediately within the framework of the GP equation (1). The solid
black line shows the trajectory of a composite quasiparticle, which
is calculated using canonic equations (28) and (29). The dashed red
line shows the trajectory of this quasiparticle, which is calculated in
the small-angle approximation (53).

along the path which was found using the asymptotic theory
developed in Sec. II D. Thus, with chosen values of v̄0 and
y0 the proposed variational approach adequately describes the
behavior of a 2D dark soliton in a smoothly inhomogeneous
vortex flow created in the BEC by a single phase singularity.
However, we note for fairness sake that in all of the three cases
the impact distance y0 will be large enough in absolute value.

The numerical calculations performed directly within the
framework of the GP equation (1) show that if the absolute
value of the impact distance |y0| is decreased for a fixed
start value of the normalized velocity v̄0, then sooner or later
the situation will occur in which a 2D dark soliton moves
strictly along the line obtained by using canonic equations (28)
and (29) only at the initial stage (for a finite time) and then
deviates from the given trajectory (see, e.g., Figs. 7 and 8).
These figures demonstrate how a vortex pair with v̄0 = 0.3
that begins to move from two different points x0 = −25.6,
y0 = −4.8 and x0 = −25.6, y0 = 9.6 is scattered by a single
quantum vortex. Such a behavior is due to the fact that
the solitonlike structure approaches the point x = 0, y = 0

FIG. 5. (Color online) Same as Fig. 4, but at the times (a) t = 30,
(b) t = 70, and (c) t = 110 for the 2D dark soliton which was initially
specified in the form of a vortex pair with normalized velocity
v̄0 = 0.5 and started from the point with the coordinates x0 = −25.6
and y0 = 12.8.
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FIG. 6. (Color online) Same as Fig. 4, but at the times (a) t = 20,
(b) t = 40, and (c) t = 60 for the initially vortex-free 2D dark soliton
with normalized velocity v̄0 = 0.7 which started from the point with
the coordinates x0 = −25.6 and y0 = −9.6.

(where the isolated topological defect was initially located)
to a distance rs , which is comparable with its characteristic
size �s . As a result, the conditions of applicability of the
asymptotic theory developed in Sec. II D are violated, and the
dynamics of a 2D dark soliton is subject to a variety of effects
that were neglected when deriving a system of Hamiltonian
equations (28) and (29). In particular, the motion of the center
of a single quantum vortex and its final displacement with
respect to the origin of the Cartesian coordinates x, y, and
the emission of sound waves, as well as the disappearance
and generation of zeros of the ultracold Bose gas density,
with which the phase singularities of the BEC classical wave
function are inseparably linked, were neglected.

Before proceeding to a more detailed discussion of the
above processes, we emphasize that even in cases where the
variational approach proposed in Sec. II D formally ceases
to work, canonic equations (28) and (29) continue to be
informative. First of all, it is shown that the change of the
flyby mode of motion to the mode of trapping by the scattering
center for the quasiparticles corresponding to the solitonlike
structure is always indicative of a qualitative change in the

FIG. 7. (Color online) Same as Fig. 4, but at the times (a) t = 20,
(b) t = 40, (c) t = 60, (d) t = 80, (e) t = 100, and (f) t = 120 for
the 2D dark soliton, which is initially specified in the form of a
vortex pair with the normalized velocity v̄0 = 0.3 and starts from
the point x0 = −25.6, y0 = −4.8. The impact distance y0 = −4.8
is smaller than the bifurcation value y0a(v̄0 = 0.3) ≈ −3.44, which
corresponds to the flyby scattering mode of a solitonlike structure on
a single quantum vortex.

FIG. 8. (Color online) Same as Fig. 4, but at the times (a) t = 25,
(b) t = 60, (c) t = 95, (d) t = 130, (e) t = 165, and (f) t = 200 for
the 2D dark soliton, which is initially specified in the form of a
vortex pair with the normalized velocity v̄0 = 0.3 and starts from
the point x0 = −25.6, y0 = 9.6. The impact parameter y0 = 9.6 lies
in the interval y0a < y0 < y0b, where y0a(v̄0 = 0.3) ≈ −3.44 and
y0b(v̄0 = 0.3) ≈ 13.65, i.e., the exchange scattering mode of the
solitonlike structure with a single quantum vortex is implemented.

nature of the interaction of 2D dark solitons with a single
quantum vortex. Let us specify what we are speaking about.

With allowance for nonlinear dispersion relations (14)
and (15) and Padé approximation (7) for the background
condensate density nv(r), expressions (37) and (38) together
with (41) and (42) are none other than a transcendental
algebraic equation relative to rsmin. From this equation, it is
possible to find numerically the minimum distance rsmin, to
which the considered quasiparticle approaches the origin of
the Cartesian coordinate system x, y, as a function of the
impact parameter y0 for fixed x0 and v̄0. Figure 9 shows the
dependencies rsmin(y0) for the same abscissa x0 = −25.6 of
the start point of a 2D dark soliton and three values of its
initial normalized velocity v̄0, namely, v̄0 = 0.3 (curve A),
v̄0 = 0.5 (curve B), and v̄0 = 0.7 (curve C). The unshaded
markers indicate the distances corresponding to the maximum
approach of solitonlike structures with the initial position
of a single quantum vortex. These distances were obtained
by direct numerical simulation of the GP equation (1). That
these markers fit well the corresponding diagrams rsmin(y0)
once again confirms the validity of the proposed method for
describing the behavior of 2D dark solitons in a smoothly
inhomogeneous BEC when stationary vortex flow is present in
it. It is seen in Fig. 9 that for y0 → ±∞ the function rsmin(y0)
tends asymptotically to |y0|, i.e., a 2D dark soliton moves
almost along a straight line, irrespective of the presence of a
single quantum vortex (which is quite natural). Comparing the
curves A, B, and C in Fig. 9, it can easily be verified that,
according to the asymptotic theory developed in Sec. II D, for
a given impact parameter y0 = const the soliton with smaller
initial normalized velocity v̄0 (and therefore greater initial
normalized energy Ē0 and momentum P̄0) should come closer
to the topological defect and, therefore, be more deflected
from its initial propagation direction. In particular, this effect is
also demonstrated by Figs. 10(a)–10(c), which were calculated
using canonic equations (28) and (29) and show the proposed
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FIG. 9. (Color online) The dependencies of the minimum dis-
tances rsmin(y0,v̄0) to which the quasiparticles starting from the points
x0 = −25.6, y0 and having different initial normalized velocities
v̄0, namely, v̄0 = 0.3 (red solid curve A), v̄0 = 0.5 (green solid
curve B), and v̄0 = 0.7 (blue solid curve C), approach the scattering
center, which were calculated using the asymptotic theory developed
in Sec. II D. For each value of v̄0 there is an interval from
y0a(v̄0) to y0b(v̄0), inside which the transcendental algebraic equation
connecting rsmin and impact parameters y0 does not have real-valued
solutions. These nested intervals correspond to the regions shown by
colors of different shades. The contrast of these regions increases
with increasing v̄0. Unshaded markers show the minimum distances
to which the 2D dark solitons with v̄0 = 0.3 (red circles), v̄0 = 0.5
(green squares), and v̄0 = 0.7 (blue diamonds) approach the origin
of the Cartesian coordinates x y, which were obtained by direct
numerical calculations within the framework of the GP equation (1).

trajectories of motion of solitonlike structures according to
v̄0 = 0.3, 0.5, and 0.7 for different y0.

The transcendental algebraic equation connecting the
minimum distance rsmin between the quasiparticle and the
scattering center with the impact parameter y0 does not have
solutions in a certain, v̄0-dependent (as previously, x0 is
assumed fixed and equal to x0 =−25.6) interval of values

FIG. 10. (Color online) The trajectories of quasiparticles for
three initial normalized velocities v̄0, namely, (a) v̄0 = 0.3,
(b) v̄0 = 0.5, and (c) v̄0 = 0.7, which were calculated using canonic
equations (28) and (29). The quasiparticles start in the positive
direction of the x axis from the points x0 = −25.6, y0, for which the
impact distance y0 takes the following values: y0 = ±16 (green dotted
lines), y0 = ±9.6 (blue dashed lines), and y0 = 4.8 (red solid line). If
the impact parameter y0 enters the interval y0a(v̄0) < y0 < y0b(v̄0), to
which its region shown by a color corresponds in each fragment (a),
(b), or (c), then the quasiparticle is trapped by the scattering center
located at the origin of the Cartesian coordinates x, y and approaches
the scattering center by curling.

y0, i.e., for y0a(v̄0) < y0 < y0b(v̄0), where y0a(v̄0) < 0 and
y0b(v̄0) > 0. This fact is clearly reflected in Fig. 9, in which it
is seen how for v̄0 = const the diagram of the function rsmin(y0)
of the region of negative y0 monotonically decreases, breaks
at the point with y0 = y0a(v̄0) < 0, and then appears again for
y0 = y0b(v̄0) > 0, continuously increasing with increasing y0.
We emphasize that the interval y0a(v̄0) < y0 < y0b(v̄0) for any
v̄0 is nonsymmetric with respect to y0 = 0, and the inequality
y0b(v̄0) > |y0a(v̄0)| is always fulfilled, so that both y0b(v̄0) and
|y0a(v̄0)| increase with decreasing initial normalized velocity
v̄0 of a 2D dark soliton. The nested intervals from y0a(v̄0)
to y0b(v̄0) for the same different v̄0 in Fig. 9 (and then in
Figs. 10, 14, and 15) are shown by colors of different shades
to improve visual perception.

The absence of solution in the transcendental algebraic
equation for rsmin when y0a(v̄0)<y0 <y0b(v̄0) is evidence for a
bifurcation variation in the dynamic behavior of a quasiparticle
for the impact distances y0 = y0a(v̄0) and y0 = y0b(v̄0). This
is seen in Fig. 10 showing families of the trajectories of
such quasiparticles, which were calculated using canonic
equations (28) and (29). For y0 � y0a(v̄0) and y0 � y0b(v̄0)
the quasiparticles can be called flyby since they go to
infinity. If the start points lie inside the regions marked in
Figs. 10(a)–10(c) by colors of different shades, i.e., the impact
parameters y0 enter the interval from y0a(v̄0) to y0b(v̄0), then
the quasiparticles are trapped by the scattering center located
at the origin of the Cartesian coordinates x, y and fall on it,
performing curler motion.

The numerical calculations fulfilled directly within the
framework of the GP equation (1) show that for y0 � y0a(v̄0)
and y0 � y0b(v̄0) the 2D dark solitons (in particular, vortex-
antivortex pairs), which essentially are composite quasipar-
ticles, as a result of scattering by a single quantum vortex
are retained as an entity and indeed go to infinity, i.e.,
are flyby quasiparticles (see, e.g., Figs. 4–7). If y0a(v̄0) <

y0 < y0b(v̄0), then due to a collision with the core of the
phase singularity, the initial (both vortical and vortex-free)
2D dark soliton is destroyed. One of its parts forms the
core of a new single quantum vortex and another combines
with the initially isolated topological defect and abandons the
interaction region in the form of a newly generated solitonlike
structure (see, e.g., Fig. 8). It can be said that the scattering is
accompanied by a peculiar exchange, in which the current lines
reconnect in the BEC [46–48]. Similar effects also occur in the
analogous problem for three point vortices in hydrodynamics
of incompressible fluid [50–52]. However, a specific feature of
an ultracold Bose gas is its fundamental compressibility, due to
which the considered processes are accompanied by radiative
losses stipulated by the emission of sound waves [46–48].

Using the terminology proposed in [50], the first regime, in
which the scattering is not followed by a break (in the sense
mentioned above) of the solitonlike structure incident on the
phase singularity, will be called a flyby mode and the second
regime, an exchange mode. This terminology correlates in part
with the classification of possible variants of the colliding
particle interaction, which is adopted in nuclear physics [96].

Actually, the examples of flyby scattering of 2D dark
solitons with different initial normalized velocities v̄0 for
relatively large distances y0 were given at the very beginning
of this section (see Figs. 4–6). In this case, as was mentioned
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above, a single quantum vortex remains almost fixed, and
the behavior of a solitonlike structure is described with high
accuracy within the framework of the variational approach
proposed in Sec. II D.

Figure 7 demonstrates the process of flyby collision of a
vortex pair (v̄0 = 0.3) with the initially isolated topological
defect, in which the impact parameter y0 =−4.8 is close
enough to the bifurcation value y0a(v̄0 = 0.3)≈−3.44. At
first [Figs. 7(a)–7(c)], such a pair moves with acceleration
along the trajectory calculated using canonic equations (28)
and (29). According to the developed theoretical concepts,
when y0 < y0a(v̄0) the velocity of a 2D dark soliton is the
greater the smaller is the distance between the soliton and
the center of the phase singularity. This is due mainly to two
factors. First, the inhomogeneous vortex flow is oriented at
an acute angle to the direction of motion of the solitonlike
structure at each point of its propagation path. Second, as
the distance between the isolated topological defect and the
composite quasiparticles that is incident on it reduces, the
normalized energy Ē of the soliton decreases [see Eq. (36),
where 2M > H , H > 0], which unavoidably leads to an
increase in the normalized velocity v̄ and, as a consequence,
variations in characteristic spatial sizes of a 2D dark soliton
(we will come back to a discussion of this fact below when
considering the small-angle scattering). In this case, when
the vortex and antivortex (the zeros of the BEC density) in
a pair converge as they approach the origin of the Cartesian
coordinates x, y [see Figs. 7(b)–7(d)] and then diverge again
as the solitonlike structure recedes to infinity [see Figs. 7(d)–
7(f)]. When the vortex pair comes to the core of a single
quantum vortex to a distance where the BEC flow created
by the soliton in the region of localization of the core of
the topological defect become significant, the center of the
phase singularity begins to move and starts to shift from
the point with the coordinates x = 0, y = 0 [see Figs. 7(c)
and 7(d)]. After the end of the active-interaction stage, a single
quantum vortex still remains shifted with respect to its initial
position, which is seen in the Figs. 7(e) and 7(f). It is seen
in these fragments how the sound waves are emitted during
the collision of a vortex pair and a topological defect. Due to
the effects mentioned above, a 2D dark soliton deviates from
the trajectory predicted by canonic equations (28) and (29), in
deriving which the dynamics of the center of a single quantum
vortex and the radiative energy losses were neglected. As a
result, the vortex pair propagates at a smaller angle to the x

axis than was expected, and the distance between the zeros of
the condensate density in a pair slightly reduces compared with
the start instant for t = 0. Note that for y0 < y0a(v̄0) during
scattering the core of a single quantum vortex always remains
closer to the vortex in the flyby solitonlike structure, and
therefore the vortex pair during interaction with the initially
isolated topological defect does not break.

The case where the initial normalized velocity v̄0 of the
vortex pair that is incident on the phase singularity is close to
the critical value v̄∗ ≈ 0.61, upon exceeding which the vortex
pair peels off circulation and becomes a vortex-free 2D dark
soliton (see Sec. II C), is of particular interest. Such an example
is shown in Fig. 11, where along with the snapshots of the BEC
density distribution [Figs. 11(a)–11(c)], the phase structure
of the condensate wave function [Figs. 11(d)–11(f)] is also

FIG. 11. (Color online) Snapshots (a)–(c) of the condensate den-
sity and (d)–(f) of the phase of the BEC wave function at the times
(a), (d) t = 30, (b), (e) t = 50, and (c), (f) t = 70 for the case where
a 2D dark soliton, which starts at t = 0 from the point x0 =−25.6,
y0 =−6.4 (green cross) in the positive direction of the x axis and has
the normalized velocity v̄0 = 0.5, i.e., initially represents a vortex
pair, is incident on the initially isolated topological defect (with
� = +1) located at the center of the Cartesian coordinate system
x, y (unshaded green circle). Spatial distributions of the density
and phase were obtained by direct numerical simulation performed
immediately within the framework of the GP equation (1). A solid
black curve shows the trajectory, which was calculated using canonic
equations (28) and (29), of a composite quasiparticle corresponding to
the solitonlike structure. In the active-interaction region [(b) and (e)]
with single-phase singularity, the vortex pair transforms into a
vortex-free soliton, which when moving away from the topological
defect converts again into a vortex pair [(c) and (f)].

shown for clarity. In this case, the vortex pair with v̄0 = 0.5
begins to move from the point x0 = −25.6, y0 = −6.4 at t = 0
in the positive direction along the x axis. In the region of
active interaction with the initially isolated topological defect,
it transforms at first into a vortex-free 2D dark soliton [see
Figs. 11(b) and 11(e)] and then transforms again into a vortex
pair [see Figs. 11(c) and 11(f)]. This, in particular, is evidenced
by the disappearance of 2π jumps in the wave-function
phase in the soliton localization region on Fig. 11(e) and
the appearance of these jumps again on Fig. 11(f). As was
mentioned above, this behavior is due to a decrease in the
normalized energy Ē of a quasiparticle when y0 < y0a(v̄0).
On fragments (b) and (c) of Fig. 11 it is easily seen that the
scattering is accompanied by the emission of sound waves.
Radiation losses lead to a decrease in the normalized energy of
the 2D dark soliton which escapes from the active-interaction
region. However, in the discussed example, these losses are
not sufficient that the incident vortex pair transforms into a
vortex-free soliton due to a collision with the topological defect
[see Figs. 11(c) and 11(f)].

Characteristic features of the exchange collisions of 2D
dark solitons with a single quantum vortex are illustrated
by Fig. 8. This figure shows snapshots of the BEC density
for the case of scattering of a vortex pair that is incident
on the initially isolated topological defect with the initial
normalized velocity v̄0 = 0.3 under the impact distance
y0 = 9.6 < y0b(v̄0 = 0.3) ≈ 13.65. Figures 8(a)–8(c) clearly
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demonstrate that at the initial stage, the vortex pair approaches
the phase singularity, propagating along the path calculated
using a system of Hamiltonian equations (28) and (29). When
approaching a single quantum vortex, the 2D dark soliton
is significantly slowed down, which results in changes in its
characteristic spatial sizes. Specifically, the distance between
the centers of the vortex and antivortex comprising the soliton
increases. The considered composite quasiparticle is slowed
down, first, due to an increase in its normalized energy Ē as
it approaches the origin of the Cartesian coordinate system x,
y [see Eq. (36), where 2M < H and H > 0], and, second, by
the vortex flow oriented at an obtuse angle to the direction
of motion of the solitonlike structure at each point of its
trajectory. Finally, the vortex pair ceases to exist as an entity
and forms, by combining with the initially isolated topological
defect, a system of three interacting objects, namely, two
vortices and one antivortex [see Figs. 8(d) and 8(e)]. In this
interaction, there is a fairly complex motion of the phase
singularities (three zeros of the BEC density). At some instant,
the distance between the centers of the antivortex and vortex
that is initially at rest is smaller than the distance between
the topological defects included in the 2D dark soliton at
t = 0. Since the relation between two topological defects
with azimuthal indices opposite in sign is determined by their
relative position (the closer they are located, the stronger they
are connected), the core of the vortex initially belonging to
the incident vortex pair gradually stops and converts into the
core of a stationary isolated topological defect shifted with
respect to the origin of coordinates. In this case, the antivortex
and the initially single quantum vortex form a new 2D dark
soliton, which moves away from the point x = 0, y = 0
[see Fig. 8(f)]. It can be said that a new quasiparticle appears,
which escapes the active-interaction region at an obtuse angle
to the x axis, i.e., the so-called backscattering, which is typical
of head-on collisions, takes place. As the case of flyby scatter-
ing, the exchange processes described here are accompanied
by radiative losses stipulated by the emission of sound waves.

Figure 12 shows the dynamics of a vortex pair that is
incident on the isolated topological defect with the initial
normalized velocity v̄0 = 0.5 under the impact distance
y0 = −0.8 experiences an exchange collision with a single
quantum vortex and, as a result, is scattered at an acute angle
to the direction of its initial motion. It is seen on Figs. 12(a)
and 12(b) that at the first stage, the 2D dark soliton moves
almost along a straight line, gradually slowing down and
rotating through a certain angle relative to the x axis, in full
agreement with the theoretical concepts developed in Sec. II D.
Then, the stage of active interaction of the vortex pair with a
single-phase singularity comes [see Figs. 12(b)–12(e)]. In this
case, the exchange processes follow the scenario described
above. As a result, a new vortex pair and a new isolated
topological defect are formed [see Fig. 12(f)]. It should be
noted that in this situation, the radiative loss level is relatively
low. Snapshots of the phase distribution of the BEC wave
function give more detail to follow and get more information
on how 2D dark solitons break and form. In particular, from
fragments 12(g)–12(i) it can be concluded that the current lines
reconnect at the time of the formation of a new vortex pair.

Figure 13 illustrates specific features of the exchange
scattering of a vortex-free 2D dark soliton that is incident on

FIG. 12. (Color online) Snapshots (a)–(f) of the condensate den-
sity and (g)–(i) of the phase of the BEC wave function at the times
(a) t = 27.5, (b), (g) t = 47.5, (c), (h) t = 50, (d), (i) t = 52.5,
(e) t = 55, and (f) t = 75 for the case where a 2D dark soliton,
which starts at t = 0 from the point x0 = −25.6, y0 = −0.8 (green
cross) in the positive direction of the x axis and has the normalized
velocity v̄0 = 0.5, i.e., is initially a vortex pair, is incident on the
initially isolated topological defect (with � = +1) located at the
origin of the Cartesian coordinate system x, y (unshaded green circle).
Spatial distributions of the density and phase were obtained by direct
numerical simulation performed immediately within the framework
of the GP equation (1). The value of the impact parameter y0 =−0.8
falls in the interval from y0a(v̄0 = 0.5) ≈ −2.33 to y0b(v̄0 = 0.5) ≈
8.74. Therefore, the solitonlike structure has an exchange interaction
with a single quantum vortex. This is demonstrated by (b)–(d) and
(g)–(i). In this case, the radiative losses due to the sound-wave
emission are small.

a single quantum vortex with the initial normalized velocity
v̄0 = 0.7 under the impact distance y0 = −0.8. As in the
previous case, at the first stage the solitonlike structure
propagates almost along a straight line because it is oriented in
space so as to compensate for the drift along the y axis due to
its own motion relative to the vortex flow. When approaching
the initially isolated topological defect, the vortex-free 2D
dark soliton is slowed down, and converts into a vortex pair
when its normalized velocity becomes less than the critical
value v̄∗ ≈ 0.61 [see Figs. 13(b) and 13(g)]. It is exactly a
pair that participates in the exchange process with a single
quantum vortex following the scenario described above [see
Figs. 13(b), 13(c), 13(g), and 13(h)], which results in that a
new isolated topological defect appears and a new vortex pair
is formed. After leaving the active-interaction region, the new
vortex pair is accelerated and again converts into a vortex-free
2D dark soliton [see Figs. 13(c), 13(d), 13(h), and 13(i)].
Comparing Figs. 13(a) and 13(f), it can be noted that the
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FIG. 13. (Color online) Same as Fig. 12, but at the times (a)
t = 25, (b), (g) t = 35, (c), (h) t = 37.5, (d), (i) t = 40, (e) t = 42.5,
and (f) t = 52.5 for the initially vortex-free 2D dark soliton with the
normalized velocity v̄0 = 0.7. The value of the impact parameter
y0 = −0.8 falls in the interval from y0a(v̄0 = 0.7) ≈ −1.77 to
y0b(v̄0 = 0.7) ≈ 6.16. Therefore, the exchange interaction mode
takes place. In this case, the initially vortex-free solitonlike structure
as it approaches the phase singularity converts at first into a vortex
pair [(b) and (g)]. Then, the topological defect with � = +1, which
is included in this pair, becomes isolated, so that the antivortex
and the initially single quantum vortex form a new vortex pair [(c)
and (h)], which later converts into a vortex-free 2D dark soliton
[(d) and (i)]. Comparing (a) and (f), it can easily be verified that the
new vortex-free solitonlike structure is a wider and less deep drop of
the BEC density than the initial 2D dark soliton. This is due to the
fairly intense emission of sound waves which can be noticed in (f).

vortex-free 2D dark soliton which formed after the collision is
a wider and less deep density drop than the initial solitonlike
structure which is incident on the single quantum vortex from
the point x0 = −25.6, y0 = −0.8. First of all, this is due to
significant radiative losses, which lead to a decrease in the
normalized energy Ē . The emitted sound waves are distinctly
seen in Fig. 13(f). Note that the radiative loss effect increases
with increasing v̄0 (especially for the near-sound solitons, i.e.,
for 1 − v̄0 � 1) since Ē0 becomes comparable with unity in
the dimensionless variables being used.

C. Radiative losses due to scattering of a 2D dark soliton
by a single quantum vortex

We have repeatedly pointed out above that during interac-
tion of a 2D dark soliton with a single quantum vortex, part of
the energy stored in the solitonlike structure is emitted in the
form of sound waves into the surrounding space. According
to the theoretical concepts developed in Sec. II D, the value of
the normalized energy Ē th

∞ of a 2D dark soliton for rs → ∞

coincides with the constant H [see Eq. (36)], which, in turn,
can be determined from the initial conditions at the start point
x0, y0 from Eqs. (41) and (42). This statement is valid not only
for flyby, but also exchange modes of scattering. If the emission
of sound waves is neglected, then, by analogy with the problem
on the behavior of three point vortices with the charges
�1 = −�2 = �3 = +1 in an ideal incompressible fluid, the
new solitonlike structure (in particular, a vortex pair), irrespec-
tive of the dynamics of topological defects during the exchange
collision, should also have the normalized energy Ē th

∞ equal
to H for rs → ∞. Therefore, as a qualitative characteristic
of radiative losses, we have chosen the difference between
Ē th

∞ = H and the normalized energy Ēnum
∞ calculated by direct

numerical simulation of the GP equation (1), which a 2D
dark soliton has at very long distances rs � rs0 =

√
x2

0 + y2
0

from the origin of the Cartesian coordinate system x, y

after the scattering event by a single quantum vortex. The
quantity Ēnum

∞ can be found by two methods. In one method,
we first determine the stationary velocity v̄num

∞ of a solitary
drop of the condensate density and, then, using the analytical
approximation given by Eqs. (14) and (15) for P̄(Ē), we solve
a transcendental algebraic equation. In another method, we
calculate directly by the distribution of the BEC density n(r,t)
in the region of localization of a 2D dark soliton (see [40] for
details).

Figure 14 shows the dependencies �Ē = Ē th
∞ − Ēnum

∞ on the
impact distance y0 for three values of the initial normalized
velocity v̄0, namely, v̄0 = 0.3 (solid red curve connecting
unshaded red circles), v̄0 = 0.5 (solid green curve connecting
unshaded green squares), and v̄0 = 0.7 (solid blue curve

FIG. 14. (Color online) Dependencies of the radiative losses
�Ē(y0,v̄0) on the impact parameter y0, which accompany the
scattering by the initially single quantum vortex of 2D dark solitons
that start in the positive direction of the x axis from the points
with the coordinates x0 = −25.6, y0 and at the time t = 0 have
different normalized velocities v̄0, namely, v̄0 = 0.3 (solid red
curve connecting unshaded red circles), v̄0 = 0.5 (solid green curve
connecting unshaded green squares), and v̄0 = 0.7 (solid blue curve
connecting unshaded blue diamonds). For all three values of v̄0,
the functions �Ē(y0,v̄0) have local maxima near the boundaries
y0a(v̄0) and y0b(v̄0) of the impact-parameter interval within which
the solitonlike structure has an exchange interaction with the initially
isolated topological defect. These nested intervals correspond to the
regions shown by different-shade colors whose contrast increases
with increasing v̄0.
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connecting unshaded blue diamonds). It is seen that the
function �Ē(y0,v̄0 = const) has pronounced maxima near
the boundaries y0 = y0a(v̄0) and y0 = y0b(v̄0) which separate
the regions of flyby and exchange interaction. In other words,
the scattering of 2D dark solitons that are incident on a
single quantum vortex under the impact distances y0 close
to the critical values y0a(v̄0) and y0b(v̄0) is accompanied by
the most intense emission of sound waves. Such emission
for y0 ≈ y0b(v̄0) is always smaller than for y0 ≈ y0a(v̄0).
At the same time, in the interval y0a(v̄0) < y0 < y0b(v̄0) the
radiative losses are markedly attenuated, and for large impact
parameters y0, when |y0| � yb(v̄0), they become so small
that they can generally be neglected. It should be mentioned
that in the case of an initially vortex-free 2D dark soliton,
when v̄0 = 0.7, the function �Ē(y0) has one more additional
local maximum lying on the left of the point y0 = y0a(v̄0)
(see Fig. 14, solid blue curve connecting unshaded blue
diamonds).

The general features characteristic of all three dependencies
�Ē(y0,v̄0 = const) presented in Fig. 14 can be explained
by analyzing the accelerated motion of solitonlike structures
along curved trajectories during their collision with a topo-
logical defect. Indeed, it is exactly the accelerated motion of
localized drops of the density of an ultracold Bose gas that
is directly related with the sound-wave emission: the greater
the acceleration of the BEC density drops, the higher the
intensity of the sound they emit [47]. A considerable increase
in radiative losses in the vicinity of the negative bifurcation
impact parameter y0a(v̄0) is due to the fact that for such y0,
the main changes in the velocity of a 2D dark soliton occur
fairly rapidly within a small time span, while the soliton is
located at distances comparable with its characteristic size
�s from the initially isolated phase singularity, i.e., in close
vicinity of the core of the single quantum vortex. The longer the
distance we go from the left boundary y0a(v̄0) into the interior
of the impact-parameter interval y0a(v̄0) < y0 < y0b(v̄0), the
greater the effect of the exchange processes on the dynamics
of the BEC density drops. Essentially, these processes termi-
nate the propagation path of a 2D dark soliton, and it has no
time to reach the areas where, according to Eqs. (28) and (29),
the soliton should undergo the maximum acceleration. As a
result, the intensity of the emitted sound waves decreases.
However, when the impact distance y0 approaches its positive
critical value y0b(v̄0), the radiative losses increase again. In
the vicinity (somewhat left) of the point y0 = y0b(v̄0) the
function �Ē(y0) reaches one more local maximum, whose
appearance directly correlates with the fact that as it comes
closer to the topological defect, the soliton is slowed down, its
spatial sizes increase and, as a consequence, the scales of the
exchange interaction region, from which the sound waves are
emitted, also increase. Far from the boundaries of the interval
y0a(v̄0) < y0 < y0b(v̄0), in the regions of large negative and
positive parameters y0 in absolute value, the sound-wave
emission becomes very weak since the propagation paths
of 2D dark solitons are gradual and the accelerations they
experience are small. It will be shown in the next section
that in this situation, it is possible to significantly simplify
canonic equations (28) and (29), which describe the dynamics
of solitonlike structures, and find an analytical expression for
the scattering angle β in a way similar to that in classical

FIG. 15. (Color online) (a) Shows the dependencies of the angle
β(y0,v̄0), to which a 2D dark soliton that starts from the points
x0 = −26.6, y0 in the positive direction of the x axis with the initial
normalized velocity v̄0 is scattered, on the impact distance y0. The
solid curves connecting the unshaded markers correspond to three
different values of the initial normalized velocity v̄0 of a soliton:
v̄0 = 0.3 (red curve connecting red circles), v̄0 = 0.5 (green curve
connecting green squares), and v̄0 = 0.7 (blue curve connecting blue
diamonds). The nested intervals y0a(v̄0) < y0 < y0b(v̄0) of the impact
parameters y0, for which the collisions of solitonlike structures with a
solitary quantum vortex are exchange ones, correspond to the region
indicated by different-shade colors, whose contrast increases with
increasing v̄0. (b), (c) Include the parts illustrating the asymptotic
behavior of the function β(y0,v̄0) for large negative and positive y0,
respectively. Here, the unshaded markers show the results obtained
by direct numerical simulation immediately within the framework of
the GP equation (1) and the dashed lines show the law determined by
the analytical formula (54) for three different values v̄0: v̄0 =0.3 (red
curve A), v̄0 = 0.5 (green curve B), and v̄0 = 0.7 (blue curve C).

mechanics for a particle that transits far enough from the center
of the scattering potential [90,91].

D. Small-angle approximation for scattering of 2D dark
solitons by a single quantum vortex

Figure 15 shows the dependencies of the angles β of
scattering of a 2D dark soliton by a single quantum vortex
for three values of the initial normalized velocity v̄0, namely,
v̄0 = 0.3 (solid red curve connecting unshaded red circles),
v̄0 = 0.5 (solid curve connecting unshaded green square),
and v̄0 = 0.7 (solid blue curve connecting unshaded blue
diamonds) on the impact distance y0. The angle β is reckoned
from the x axis along the flow created in the BEC by an
isolated topological defect (with the azimuthal index κ = +1),
i.e., the positive β correspond to the counterclockwise rotation
of the velocity vector ṙs(t) of a 2D dark soliton with respect
to the initial direction. It is seen in Fig. 15 that the behavior of
the functions β(y0,v̄0 = const) is nonmonotonic. For example,
if we move towards the point y0 = y0a(v̄0) from the region of
negative y0, then the quantity β is always positive, and for
a certain impact parameter smaller than y0a(v̄0) it reaches the
maximum value βmax(v̄0). As the initial normalized velocity v̄0

decreases, the maximum scattering angle βmax(v̄0) increases; it
can become greater than π/2 (as for v̄0 = 0.3) and approaches
π in the limit v̄0 → 0. Note that for β = π the direction of
motion of the solitonlike structure changes to strictly opposite,
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i.e., the case of backscattering takes place. For each value v̄0 of
those considered within the interval y0a(v̄0) < y0 < y0b(v̄0),
where the collision of a 2D dark soliton with an isolated
topological defect is an exchange one, the scattering β as a
function of y0 decays at first, vanishes, and goes to the region of
negative values. When β = 0, the exchange interaction results
in formation of a new (scattered) soliton moving in the same
direction as the initial one. We also pay attention to the fact that
the scattering angle β(y0 = 0,v̄0) corresponding to the zero
impact distance y0 = 0 does not depend on v̄0. For a certain
value of the impact parameter y0, which lies on the left of
the point y0 = y0b(v̄0), the function β(y0,v̄0 = const) reaches
its minimum βmin(v̄0) < −π . This can be treated so that the
solitonlike structure performs a clockwise rotation relative to
its initial propagation direction through an angle exceeding π

in absolute value. The further increase in y0 is accompanied
by an increase in the function β(y0,v̄0 = const) and its gradual
approach to zero from the side of the negative values.

Using the theoretical representations developed in Sec. II D,
for each 2D dark soliton characterized by its initial normalized
velocity v̄0, one can find the asymptotic forms of the function
β(y0,v̄0 = const) for large impact parameters y0 in absolute
value, when v̄0|y0| � 1. This condition is certainly fulfilled
for |y0| > y0b(v̄0) since for any values of the initial normalized
velocity v̄0, the product v̄0y0b(v̄0) significantly exceeds unity.
In this limiting case, the scattering of a 2D dark soliton is flyby
and occurs at small angle β � 1. Let us analyze this situation
in more detail.

First of all, we note that in the case considered, where
v̄0|y0| � 1, according to Eq. (36), the normalized energy Ē of
a 2D dark soliton along the trajectory of its motion undergoes
only slight changes which, in the first order of smallness in
ε = (v̄0|y0|)−1 � 1, are described by the following expres-
sion:

Ē ≈ Ē0 + P̄0y0
/
r2
s . (43)

From Eq. (43) it is seen that if the impact parameter y0

is negative, i.e., y0 < 0, then as the solitonlike structure
approaches the core of a single quantum vortex, the quantity
Ē slightly decreases, reaches its minimum value Ēmin ≈ Ē0 −
P̄0|y0|/rs

2
min when the distance rs between the soliton and the

topological defect is minimal, i.e., rs = rsmin, and then begins
to increase with increasing rs again. If the impact distance
y0 is positive, i.e., y0 > 0, then during the propagation of a
2D dark soliton the quantity Ē behaves in an opposite way,
namely, it first increases up to Ēmax ≈ Ē0 + P̄0|y0|/rs

2
min and

then decreases to the initial value Ē0.
It was mentioned above that knowing the behavior of the

normalized energy Ē of a 2D dark soliton along the trajectory
of its motion, it is possible to describe the structural trans-
formations occurring with it [40,41]. For example, according
to the developed concepts for y0 < 0, the process by which
the configuration of a vortex pair is varied in the course of
its scattering by a single quantum vortex is as follows. As the
isolated topological defect is approached, the distance between
the zeros of the BEC density in the pair decreases. If the
initial normalized energies Ē0 are such that Ēmin < Ē∗, where
Ē∗ ≈ 7.59 corresponds to the critical normalized velocity
v̄∗ ≈ 0.61, then the zeros of the condensate density completely
disappear and the initially vortex 2D dark soliton becomes

vortex free (literally speaking, the soliton peels off circulation).
However, having escaped the region of interaction with the
phase singularity, the solitonlike structure is reconstructed in
the form of a vortex pair (if the weak emission of sound waves
is neglected). The initially vortex-free 2D dark soliton, in
which v̄0 > v̄∗, and therefore Ē0 < Ē∗, for y0 < 0 still remains
vortex free and only the depth of the density drop in it changes
during the scattering. In the case where y0 > 0, the vortex
and antivortex comprising a vortex pair will diverge while Ē
increases. Once the value Ē begins to decrease, the zeros of
the condensate density in the pair will converse back, and
the distance between them will recover (in the absence of
radiative losses). In the case of a vortex-free soliton that starts
from the point with y0 > 0, the depth of the density drop
in the solitonlike structure will increase when approaching
the isolated topological defect, and then will decrease when
moving away from the center of a single quantum vortex. If the
initial normalized energy Ē0 of the initially vortex-free 2D dark
soliton (Ē0 < Ē∗) takes such values that Ēmax > Ē∗, then even
in the course of its weak interaction with the phase singularity
the soliton will convert into a vortex pair with two zeros of the
BEC density and back.

To describe the small-angle scattering mode, we use
canonic equations (28) and (29) and rewrite them as the x

and y projections in the Cartesian coordinate system x, y

connected with the center of a single quantum vortex. Expand
the right-hand sides of the obtained relations in a series of
powers of the small parameter ε, retaining only the number of
terms required for finding the angle β:

dxs

dt
=

[
v̄0 + (w̄0P̄0−1)y0

x2
s +y2

s

]
psx

P̄0
− ys

x2
s +y2

s

+ o(ε2), (44)

dpsx

dt
= − 2xsys(

x2
s + y2

s

)2 psx + o(ε3), (45)

dys

dt
=

[
v̄0 + (w̄0P̄0−1)y0

x2
s +y2

s

]
psy

P̄0
+ xs

x2
s +y2

s

+ o(ε3), (46)

dpsy

dt
=

(
x2

s − y2
s

)
(
x2

s + y2
s

)2 psx + 2xsys(
x2

s + y2
s

)2 psy

+
(

1

2
v̄0P̄0 − Ē0

)
ys(

x2
s + y2

s

)2 + o(ε4). (47)

Here, the symbol o(εj ) denotes the terms having the order εj

or higher, and the constant w̄0 can easily be calculated using
the approximations (14) and (15):

w̄0 = dv̄

dĒ

∣∣∣∣
Ē=Ē0

= d2P̄
dĒ2

∣∣∣∣
Ē=Ē0

. (48)

When writing these equations, we also took into account that
the components of the vortex velocity field vv(x,y) along the
x and y directions at the point with the coordinates xs and ys

have the values

vvx(xs,ys) = − ys

x2
s + y2

s

, vvy(xs,ys) = xs

x2
s + y2

s

. (49)
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From Eqs. (44), (45), and (47) it follows immediately that

dxs

dt
= v̄0 + (w̄0P̄0 − 1)y0

x2
s + y2

s

+ o(ε2), (50)

psx = P̄0 + P̄0

v̄0

ys

x2
s + y2

s

+ o(ε2), (51)

psy = −P̄0
xs

x2
s + y2

s

+ o(ε2), (52)

and according to Eqs. (46) and (52), the derivative ẏs(t) has an
order of smallness ε2.

We now differentiate expression (46) over time t and
make use of equality (47), retaining terms of the order of
ε2 and ε3. The latter is not the exceeding of accuracy since
ÿs(t) ∼ ε3. Finally, with allowance for Eq. (50), using the
small-angle approximation, we obtain the following equation
for the propagation path ys(xs) of a 2D dark soliton (including
a vortex pair) if a single quantum vortex is present in the BEC:

d2ys

dx2
s

= (w̄0P̄0 − 1)

v̄2
0

2y0x
2
s(

x2
s + y2

s

)3

+
(
v̄2

0P̄0 − 2v̄0Ē0 − 2P̄0
)

2v̄2
0

ys(
x2

s + y2
s

)2 . (53)

The dashed lines in Figs. 4–6 show the quasiparticle tra-
jectories calculated in the small-angle approximation using
Eq. (53). It is seen that they almost do not differ from the
solutions of canonic equations (28) and (28) shown by solid
lines.

Next, we proceed in the same way as in classical mechanics
when deriving a formula for small deviation angles of the
elementary particles scattered by a weak potential [90,91].
Let us integrate expression (53) over xs , taking into account
that in the integration-significant region where x2

s � y2
s , the

coordinate ys differs only slightly from the impact distance
y0, i.e., assuming ys ≈ y0. As a result, we find the low angle
β, by which, according to the asymptotic theory developed,
the solitonlike structure is scattered by an isolated topological
defect:

β(y0) = π
(
w̄0P̄2

0 + 2v̄2
0P̄0 − 3P̄0 − 2v̄0Ē0

)
4v̄2

0P̄0

|y0|
y3

0

. (54)

Note that in this expression the factor enclosed in the
parentheses is always negative for the parameters Ē0, P̄0,
v̄0, and w̄0 corresponding to any 2D dark soliton from the
discussed family of solitary structures. From Eq. (54) it is
seen that for large absolute values of the impact distance y0,
where |y0| � �s , the scattering angle β decreases inversely
proportionally to y2

0 . Also, according to Eq. (54), the angle
β for a fixed value of |y0| is the greater, the smaller is the
initial normalized velocity v̄0 (correspondingly the greater is
the initial normalized energy Ē0).

Figures 15(b) and 15(c) in clearly demonstrate that the
dependencies β(y0,v̄0 = const) constructed on the basis of
the results of numerical calculations immediately within the
framework of the GP equation (1) asymptotically reach the
value determined by Eq. (54), which confirms that this formula
is adequate.

Using Eq. (54) it is easy to find an expression for the linear
differential cross section σ(β):

σ (β) = −
√

π
(
3 + 2v̄0Ē0

/
P̄0 − w̄0P̄0 − 2v̄2

0

)
4v̄0β3/2

, (55)

which is a complete analog of the well-known Rutherford
formula for charged particles [90,91].

IV. CONCLUSIONS

Thus, within the framework of the mean-field approxima-
tion for the BEC with repulsive interaction between atoms,
we have studied in detail the process of scattering of 2D dark
solitons, and their vortex-antivortex pairs as a specific case, by
a single quantum vortex excited in the initially homogeneous
condensate. In the analysis of this problem, we used both
analytical methods and direct numerical simulation by the GP
equations (1) for the classical wave function. This problem is
important and quite topical for the theory of coherent waves of
matter and nonlinear wave processes in ultracold quantum
gases. Sound waves, which have a Bogolyubov spectrum,
and vortex-free 2D dark solitons can propagate in a BEC
because of its compressibility and the presence of a specific
quantum-mechanical pressure in it. These are essentially two
main factors making the problem of scattering of 2D dark
solitons by the initially isolated topological defect in the BEC
different from the corresponding classical problem on the
dynamics of three point vortices in an ideal incompressible
fluid. To summarize, we briefly list the main results.

First, we have developed a variational approach to describe
the dynamics of 2D dark solitons in a smoothly inhomoge-
neous BEC with a stationary flow inside. It has been shown that
the solitonlike structures in such a condensate can be put into
correspondence with quasiparticles, whose behavior obeys the
canonic equations (28) and (29) of Hamiltonian mechanics.

Second, we have found two first integrals (35) and (36)
of the system of Hamiltonian equations (28) and (29) with
regard to scattering of a 2D soliton by a single quantum vortex
in the presence of axial symmetry in the density distribution
of the background condensate. This permitted us to propose
a method for seeking the minimum distance rsmin to which
a quasiparticle approaches the stationary scattering center
and obtain a transcendental algebraic equation for rsmin. This
equation does not have real-valued solutions in the interval
y0a(v̄0) < y0 < y0b(v̄0) of values of the impact parameter
y0, which depends on the initial normalized velocity v̄0 of
a 2D dark soliton. The boundaries of this interval separate
two possible modes of motion of quasiparticles, namely,
flyby [when y0 �y0a(v̄0) and y0 �y0b(v̄0)] and trapped [when
y0a(v̄0)<y0 <y0b(v̄0)].

Third, directly within the framework of the GP equation (1),
we have performed a numerical simulation of the dynamics of
the wave function of BEC, which permitted us to analyze in
detail the scattering of 2D dark solitons by a single quantum
vortex and explain all the key features and subtleties of the
process using the theoretical concept we developed. In partic-
ular, it has been clearly demonstrated that the trajectories of
motion and structural changes of the solitonlike structures are
described with high accuracy using the proposed variational
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approach for the impact distances y0 significantly exceeding
the characteristic spatial sizes of the soliton in absolute value.
However, even in cases where the conditions of applicability
of the analytical methods being used are violated and the
asymptotic theory formally ceases to work, its results are
still informative. Direct numerical calculations using the GP
equation (1) show that for a fixed initial normalized velocity
v̄0, change of the flyby mode of motion to the mode of trapping
by the scattering center for the quasiparticles associated with
the considered solitary drops of the condensate density, always
indicates a qualitative change in the nature of the interaction
of 2D dark solitons with the initially isolated topological
defect. The bifurcation values y0a(v̄0) and y0b(v̄0) actually
separate the radically different flyby and exchange collisions
of solitonlike structures with phase singularity. In the case of
flyby scattering [where y0 � y0a(v̄0) and y0 � y0b(v̄0)], both
the vortex and vortex-free 2D dark solitons are retained as
an entity throughout the entire path of its propagation and
experience only internal structural transformations on the path.
In the case of exchange interaction [where y0a(v̄0) < y0 <

y0b(v̄0)] of the initially vortex pairs (v̄0 < v̄∗ ≈ 0.61) with
a single quantum vortex, all the three topological defects
come fairly close to each other and form a system of three
equal actively contacting objects. There is complex motion
of the phase singularities (zeros of the BEC density), which
results in that the topological defects with azimuthal indices
of the same sign change roles: the core of the initially moving
vortex stops gradually and becomes the core of a stationary
phase singularity, while the antivortex and the vortex that is
initially at rest form a new pair that escapes from the strong
interaction region to infinity. For vortex-free 2D dark solitons,
the exchange interactions with an isolated topological defect
follow a similar but more intriguing scenario. Such a soliton,
as it approaches the topological defect, transforms into a
vortex pair that participates in the exchange interaction with

a single quantum vortex, which was described above. Finally,
a new vortex pair forms, which is then accelerated, peels off
circulation, and transforms into a vortex-free soliton.

Fourth, we have analyzed the radiative losses related to the
sound-wave emission. It is shown that their intensity depends
nonmonotonically on the impact distance y0, under which a 2D
dark soliton is incident on the topological defect, and reaches
its maximum values near the critical values y0a(v̄0) and y0b(v̄0),
where there is a change of the flyby and exchange collision
modes.

Fifth, we have constructed the dependence of the scattering
angle β of a 2D dark soliton on the impact distances y0, which
were obtained by numerically solving the GP equation (1).
Using a small-angle approximation, we found analytical
expressions connecting the scattering angle β and the linear
differential cross section σ with the impact parameter y0 and
initial normalized velocity v̄0 of the solitonlike structure.

To conclude, we note that the inhomogeneity of most
of the real BEC, which are confined (not only along the
z axis, but also in the x, y plane) in the external trap
Vext (r), can change dramatically the pattern of scattering of
2D dark solitons by a single quantum vortex. However, if
the potential Vext (r) is wide and is axially symmetric, i.e.,
Vext (r) = Vext (r), and the isolated defect is initially located at
the center, then the dynamics of a 2D dark soliton in such a
smoothly inhomogeneous condensate with vortex flow can also
be studied using the variational approach we developed here.
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M. J. Davis, and B. P. Anderson, Phys. Rev. Lett. 111, 235301
(2013).

[9] B. P. Anderson, J. Low Temp. Phys. 161, 574 (2010).
[10] K. E. Wilson, E. C. Samson, Z. L. Newman, T. W. Neely,

and B. P. Anderson, Annu. Rev. Cold Atoms Mol. 1, 261 (2013).
[11] M. T. Reeves, B. P. Anderson, and A. S. Bradley, Phys. Rev. A

86, 053621 (2012).

[12] A. S. Bradley and B. P. Anderson, Phys. Rev. X 2, 041001
(2012).

[13] M. T. Reeves, T. P. Billam, B. P. Anderson, and A. S. Bradley,
Phys. Rev. Lett. 110, 104501 (2013).

[14] W. J. Kwon, G. Moon, J. Y. Choi, S. W. Seo, and Y. I. Shin,
Phys. Rev. A 90, 063627 (2014).

[15] G. W. Stagg, A. J. Allen, N. G. Parker, and C. F. Barenghi,
Phys. Rev. A 91, 013612 (2015).

[16] A. L. Fetter, J. Low Temp. Phys. 161, 445 (2010).
[17] P. J. Torres, P. G. Kevrekidis, D. J. Frantzeskakis, R. Carretero-
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