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Intrinsic-to-extrinsic supersolid transition and fractionally modulated states in a lattice ultracold
Bose gas with long-range interaction
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We investigate the intrinsic-to-extrinsic supersolid (SS) transition in a lattice ultracold Bose gas with strong
long-range interaction. When changing the depth of the periodic lattice potential, the transition is shown to
manifest in the ground-state wave function and energy, the change of superfluid fraction fs , and a roton instability.
Near the transition in the extrinsic SS phase, due to the competition between the long-range interaction and the
periodic potential, we show that there exist a variety of stable fractionally modulated states (FMSs) upon the
change of the effective length of the long-range interaction. Consequence of the transition across different FMSs
is discussed.
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I. INTRODUCTION

Supersolid (SS) is a quantum state which simultaneously
possesses crystalline and superfluid (SF) properties [1–3].
Recently there is an emerging interest for the SS state in
the 4He system [4,5] and in the ultracold atomic system both
with [6–9] and without [10–13] optical lattices. For instance,
a Rydberg dressed Bose-Einstein condensate (BEC) with a
controllable long-range interaction may pose a great potential
to exhibit the SS state [6,14–17]. By increasing the strength
of the long-range interaction, the uniform system can undergo
a SF-SS transition to which a hexagonal (or triangular) lattice
can form in the SS state in a two-dimensional geometry.

When the preformed intrinsic SS system is loaded into a
periodic potential, upon increasing the depth of the periodic
potential the system can undergo an intrinsic-to-extrinsic SS
transition. In the intrinsic SS phase, the periodicity is governed
by the effective range of the internal long-range interaction,
while in the extrinsic SS phase, the periodicity is governed
by the lattice constant of the external periodic potential.
Motivated by the Rydberg dressed BEC, this paper intends to
investigate under what circumstances the intrinsic-to-extrinsic
SS transition will occur, and, how the intrinsic-to-extrinsic
SS transition will manifest in experimentally observable
quantities.

In the absence of the periodic potential, the role of
the long-range interaction for the system is relatively well
understood. However, when the periodic potential is present
such that another energy scale and/or length scale mixes in,
the role of the long-range interaction becomes more complex.
In particular, near the intrinsic-to-extrinsic SS transition, the
competition between the long-range interaction and periodic
potential may cause some exotic states. It will be shown that
there exists a stable “fractionally modulated state” (FMS)
in which atom droplets per lattice constant is a fraction ν.
More interestingly, there occurs not just one, but a variety of
different fractional ν states upon the change of the effective
range of the interaction. How the transition across different
FMSs manifests in observable quantities, such as the superfluid
fraction, will be discussed in detail.

The paper is organized as follows. In Sec. II, we introduce
the basic formalism. Section II A outlines the mean-field

treatment and Sec. II B outlines the Bloch band theory for
the system. In Sec. III, we show that the intrinsic-to-extrinsic
SS transition can be manifested by the ground-state wave
function and energy (Sec. III A), the superfluid density change
(Sec. III B), and a dynamical roton instability (Sec. III C). In
Sec. IV, it is shown that some stable FMSs can exist in the
system near the intrinsic-to-extrinsic SS transition. How the
superfluid fraction changes when crossing different FMSs is
also discussed. Section V studies for the intrinsic-to-extrinsic
SS transition the effects of the strength and range of the
interaction on the critical depth Vc of the periodic potential.
Section VI is a brief summary.

II. BASIC FORMALISM

A. Mean-field treatment

As the stability of Rydberg-dressed atoms confined in
an optical lattice has been confirmed [18,19], and as the
dressing-induced interactions are shown to be almost the same
regardless of whether in free space or in an optical lattice [19],
it motivates us to consider the following mean-field treatment.

For simplicity, we focus on a one-dimensional (1D) periodic
ultracold Bose system with the energy functional

E =
∫

ψ∗(x,t)ĥ0ψ(x,t)dx

+ 1

2

∫∫
U (x̄)|ψ(x ′,t)|2|ψ(x,t)|2dx ′dx. (1)

In the first term in (1), ĥ0 = −∂2
x /2 + V0 sin2(πx/d) is the

single-particle energy with d the lattice constant and V0 the
controllable depth of the periodic potential (optical lattice).
Natural units m = � = 1 are used. In the second term in (1),

U (x̄) = γ δ(x̄) + αθ (rc − |x̄|), (2)

which involves both short- and long-range two-body inter-
actions (x̄ ≡ x − x ′). To have a more systematic study on
the long-range interaction, we employ a simplified step-
function-like long-range interaction with α and rc respectively
the strength and effective range (or blockade radius) of the
interaction. This simplified interaction gives a good approxi-
mation for the effective long-range interaction of the ultracold

1050-2947/2015/92(1)/013634(6) 013634-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.92.013634


C.-H. HSUEH, Y.-C. TSAI, AND W. C. WU PHYSICAL REVIEW A 92, 013634 (2015)

Rydberg-dressed Bose gas, U (x̄) ∼ α/[1 + (x̄/rc)6] [20–23].
The corresponding Gross-Pitaevskii equation (GPE) of the
system can be obtained following the differential-variational
equation i∂tψ = δE[ψ,ψ∗]/δψ∗ together with Eq. (1).

B. Bloch band theory

It is also important to study the band structures of such
a 1D periodic system, in particular, when the system is near
the intrinsic-to-extrinsic SS transition and in the extrinsic SS
phase. In addition, results of the lowest band is crucial in
accessing the superfluid fraction of the system. Band structures
of the system can be obtained by solving the Bloch waves
which are the eigenstates of the nonlinear GPE. The overall
time-dependent wave functions have the following form:

ψ(x,t) = e−iμkt eikx√n0ϕk(x), (3)

where for a given wave vector k, μk is the chemical potential,
n0 is the mean particle numbers per unit cell, and the Bloch
wave ϕk(x) satisfies the time-independent GPE:

μkϕk(x) = [ĥk + Uk(x)]ϕk(x). (4)

Here ĥk = −(∂x + ik)2/2 + V0 sin2(πx/d) and

Uk(x) ≡ n0

∫
U (x̄)|ϕk(x ′)|2dx ′. (5)

As for the current system, long-range interaction is compet-
ing with the periodic potential, or more precisely the blockade
radius rc is competing with the lattice constant d, the ground
state of the system may have a period longer than one lattice
constant. That is, the period may be multiples of d. Under this
consideration, the Bloch waves can be generally expanded as

ϕk(x) =
N∑

j=−N

ak
j e

i2πjνx/d , (6)

where based on a (2N + 1)-mode discrete Fourier expansion,
the coefficients ak

j , assumed to be real, satisfy the normaliza-

tion condition
∑N

j=−N (ak
j )2 = 1. Typically only a few lower

modes are numerically needed for a good convergent result.
The parameter ν introduced in (6) plays a key role for the

current system. For a periodic system without the long-range
interaction, ν can only be integer 1, corresponding to the case
with the period equal to one lattice constant (d). However, for
the current complex system, ν can actually be any fraction,

ν ≡ n

�
, (7)

with n,� the positive integers. With such a fractional ν, the
period-�d lattice translation symmetry can be satisfied by the
Bloch wave, i.e., ϕk(x) = ϕk(x + �d). This implies that certain
extrinsic SS states may correspond to a fraction ν.

III. INTRINSIC-TO-EXTRINSIC SS TRANSITION

The intrinsic-to-extrinsic supersolid (SS) transition will be
shown to manifest in the ground-state wave function and
energy, the superfluid fraction change, and a roton instability.

FIG. 1. (Color online) (a)–(f) Intrinsic-to-extrinsic SS transition
manifested by the ground-state wave functions (black lines) of a
long-range interacting lattice ultracold Bose gas. For long-range
interaction, α = 30 and rc = 0.75 are fixed in all frames. Lattice
potentials are schematically shown by red curves with the depth
V0 = 2.0, 1.55, 1.45, 1.0, 0.5, and 0.1 respectively from (a) to (f).
See text for the units of energy and length. Panels (g)–(i) show the
ground-state energy E, the derivative dE/dV0, and the superfluid
fraction fs as a function of V0 crossing the critical point at Vc = 1.478.

A. Ground-state wave function and energy

We have numerically solved Eq. (1) for the ground-state
wave function and energy of the 1D long-range interacting
lattice Bose gas using various parameters. Figures 1(a)–
1(f) show the ground-state wave functions, normalized as∫ d/2
−d/2 dx|ψ(x)|2 = 1, with decreasing V0 = 2.0, 1.55, 1.45,

1.0, 0.5, and 0.1 respectively for the lattice potential. Consid-
ering the experiment presented in Ref. [20], the total number of
condensed atoms is about 105, which are loaded into a 100-site
optical lattice, i.e., n0 ∼ 103. For the long-range interaction,
we have fixed n0α → α = 30 and rc = 0.75 in all six cases.
For the short-range interaction, we simply set γ = 0 valid
for the case of strong long-range interaction. Throughout this
paper, all the lengths are in units of lattice constant d and all
the energies are in units of �

2/md2. The transition is seen
when the lattice potential depth V0 is near the critical value
Vc = 1.478 [see Fig. 1(c)]. The one near the critical regime is
very profound such that two length scales appear to interfere
strongly with each other.

Figures 1(g) and 1(h) show the ground-state energy E and
its derivative dE/dV0 as a function of V0. Critical phenomena
at V0 = Vc = 1.478 are clearly seen in these two cases.

One might question that the extrinsic supersolid states
shown in Figs. 1(a) and 1(b) may not be interpreted as the
supersolids as they do not break the underlying translational
symmetry. However, in our opinion, the states shown in
Figs. 1(a) and 1(b) can still be viewed as a supersolid in
a deep optical lattice. The point is to see how the strong
lattice potential depth V0 affects the already formed (intrinsic)
supersolids shown in Figs. 1(d)–1(f). When V0 > Vc, intrinsic
“supersolid” is reformed (phase transitioned) to an “extrin-
sic supersolid” state which complies with the underlying
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translational symmetry [the cases of Figs. 1(a) and 1(b)].
This is exactly the idea behind the term “intrinsic-to-extrinsic
supersolid transition” introduced. Moreover, as one will see
in Sec. IV, some extrinsic supersolid states, classified as
the fractionally modulated states, do break the underlying
translational symmetry.

B. Superfluid fraction

Superfluid fraction fs = ρs/ρ (ρs is superfluid density
and ρ is total density) is a decisive measure for a given
quantum system with a SF nature. In a perfect SF system,
fs → 1, whereas fs reduces from 1 when spatial modulation or
dynamical fluctuation occurs, which suppresses the long-range
phase coherence of SF. In the absence of lattice potential (V0 =
0), Leggett showed in 1970 that one can study fs by loading
the system into a cylindrical geometry and then measure the
nonclassical rotational inertial fraction (NCRIF) [3,24]. In the
rest frame, the energy of the rotating system is

E(ω) = E(0) + 1
2Iclω

2 − 1
2fsIclω

2, (8)

where ω is the angular velocity and Icl = mR2 is the classical
rotational inertia with m the mass of the identical atoms loaded
in a cylindrical annulus with radius R [3,24]. As the last term
corresponds to the “nonrotating” superfluid part, consequently
superfluid fraction fs is proportional to NCRIF:

fs = 1 − lim
ω→0

1

Icl

∂2E(ω)

∂ω2
. (9)

Recent observation of a possible SS phase in solid 4He was
in fact based on measuring the NCRIF [4], although a more
recent experiment has filed an opposition on the original
interpretation of the previous results [5].

In a lattice system, it had been shown by Pitaveskii that the
superfluid fraction is equal to the ratio of bare to effective band
mass of the system, fs = m/m∗ [25]. That is, reduction of fs

is compensated by the increase of the effective mass m∗. For
a 1D periodic ultracold Bose system, one thus has

fs = m

m∗ = lim
k→0

m

�2

∂2E1(k)

∂k2
, (10)

where E1(k) denotes the lowest Bloch band [26–29]. Recently
an effective band mass of a periodic ultracold Bose system has
been successfully measured by the Toronto group [30].

Using the Bloch band theory outlined in Sec. II B, we have
solved the lowest Bloch band E1 of the corresponding system.
Based on (10), we then obtain the results of the superfluid
fraction fs as a function of V0 shown in Fig. 1(i). A critical
phenomenon at V0 = Vc is seen as a sudden jump of fs . More
results of fs are given in Sec. IV.

C. Roton instability

It is also useful to study the elementary excitation of
the corresponding ground states. The key is to investigate
whether the results remain energetically minimum against
perturbations that break the periodicity and especially how
the intrinsic-to-extrinsic SS transition manifests. The pertur-
bations can be decomposed into different plane-wave modes

labeled by q:

δϕk,q(x,t) = uk,qe
iqxe−iωk,q t + v∗

k,qe
−iqxeiω∗

k,q t . (11)

The corresponding Bogoliubov–de Gennes (BdG) equations
are then given by

σ̂3Mk,q

(
uk,q

vk,q

)
= ωk,q

(
uk,q

vk,q

)
, (12)

where

σ̂3 =
(

1 0
0 −1

)

and

Mk,q =
[
Lq+k(x) + Uk(x) 0

0 Lq−k(x) + Uk(x)

]

+
[
Ck,q(x)ϕk(x) Xk,q(x)ϕk(x)
Ck,q(x)ϕ∗

k (x) Xk,q(x)ϕ∗
k (x)

]
(13)

is an (8N + 2)×(8N + 2) matrix with Lq±k(x)≡(q ± k)2/2 +
V0 sin2(πx/d) − μk , Ck,q(x) ≡ n0

∫
U (x̄)ϕ∗

k (x ′)eiqx̄dx ′,
and Xk,q(x) ≡ n0

∫
U (x̄)ϕk(x ′)eiqx̄dx ′.

Based on the above BdG equations, we have calculated
the dispersions ωk,q of the elementary excitations for an
ultracold 1D nonlinear SF or SS system in the k → 0 limit.
As a reference, in Fig. 2(a) we first show the calculated
results for the case without the periodic potential (V0 = 0).
The blockade radius is fixed at rc = 0.75. By increasing
the interaction strength α, one sees the well-known roton
instability when α > αc � 24.95. It signals that the ground
state is dynamically unstable against homogeneity and the
system tends to modulate and form the intrinsic SS phase.

FIG. 2. (Color online) (a) Roton instability occurred in the el-
ementary excitations of a 1D homogeneous ultracold Bose gas
(V0 = 0) when the long-range interaction strength α is above a
critical value αc � 24.95. Blockade radius is fixed at rc = 0.75.
(b) Roton instability occurred in the elementary excitations of a lattice
system when the lattice potential depth V0 is below a critical value
Vc � 1.478. The interaction strength and range are fixed at α = 30
(>αc) and rc = 0.75. In both frames, yellow zone corresponds to
Im(ω) 	= 0 for the red curve.

013634-3



C.-H. HSUEH, Y.-C. TSAI, AND W. C. WU PHYSICAL REVIEW A 92, 013634 (2015)

On the contrary, Fig. 2(b) shows another roton instability
for the lattice system (V0 	= 0). For the long-range interaction,
α = 30 (above αc) and rc = 0.75 are fixed. For the periodic
potential, starting from a higher V0 such that the extrinsic SS
preforms and by reducing V0 to below a critical value Vc =
1.478, one sees a roton instability that signals the extrinsic SS
phase governed by the periodic potential becoming unstable.
Consequently the system undergoes a transition to the intrinsic
SS phase. How the critical depth Vc depends on α and rc will
be discussed in Sec. V.

It is worth noting that the roton instability shown in Fig. 2(a)
is due purely to the interaction effect and when the instability
occurs the excitation spectrum touches ω = 0 at a given wave
vector associated with the blockade radius. On the other hand,
the roton instability shown in Fig. 2(b) is due to a mixed effect
of the interaction and the lattice. The spectra shown in Fig. 2(b)
are periodic with the reciprocal-lattice vector q̄ = 2π/d and
when the instability occurs, the spectrum touches ω = 0 at two
wave vectors q1 and q2 that satisfy q1 + q2 = q̄.

In both cases of roton instabilities, after the instability
occurs, the system undergoes a transition to the true ground
states. How the elementary excitations behave in these true
ground states [14,31] and especially how the roton restabilizes
in these true ground states will be studied in details in a
forthcoming paper [32].

IV. FRACTIONALLY MODULATED STATES

In the extrinsic SS phase with band character, one can
investigate properties of the system based on the Bloch band
theory outlined in Sec. II B. Substitution of (6) in (5) yields

Uk(x) = n0

N∑
j,j ′=−N

ak
j a

k∗
−j ′Ũ [2π (j + j ′)ν]ei2π(j+j ′)νx/d ,

(14)

where

Ũ (p) = γ +
(

2αrc

d

)
sin(prc/d)

prc/d
(15)

is the Fourier transform of the two-body interaction U (x̄) given
in (2). As shown explicitly in (14) and (15), Uk(x) and hence
the k-dependent Bloch wave ϕk(x) [see Eq. (4)] will depend
strongly on the values of rc and α. In addition, as mentioned
earlier, the fraction ν also plays an important role in the current
complex system. As a matter of fact, there could exit a rich
phase diagram for the ground states in the extrinsic SS phase.
In particular, near the intrinsic-to-extrinsic transition, it will be
shown that there exist a variety of fractionally (ν) modulated
SS states for the system.

In the basis of Bloch band theory, ground states can be ob-
tained by taking the k → 0 limit in the Bloch wave of the low-
est band, i.e., ϕk→0(x). Here one can estimate for a given α what
set of (ν,rc) a particular SS ground state will correspond to. Let
us first assume that chemical potential μk is approximately pro-
portional to Uk by ignoring the effect of the single-particle term
ĥk in Eq. (4). For a given k, the leading-order term in the expan-
sion of Uk in (14) is Ũ [2π (j + j ′)ν](j,j ′)=(0,0) = Ũ (0) = γ +
2αrc/d which plays as a datum point for the chemical potential.
The next-order term Ũ [2π (j + j ′)ν](j,j ′)=(±1,0)or(0,±1) =
Ũ (2πν) = γ + α/(νπ ) sin(2πνrc/d) is an oscillatory
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FIG. 3. (Color online) (a) Ũ (2πν)/α plotted as a function of rc/d

for ν = 1 (blue), 4/5 (green), 3/4 (red), 2/3 (cyan), 3/5 (magenta),
and 1/2 (gold) respectively. For a given rc, the ground state can be
estimated corresponding to a particular ν which makes Ũ (2πν)/α
minimum (see text). (b) The calculated superfluid fraction fs as a
function of rc/d , with fixed α = 30 and V0 = 11, showing transitions
across various fractionally modulated states.

function of νrc/d and scales with α/ν. An estimation to
determine the ground states is thus the following. For a given
value of rc/d, whatever ν makes Ũ (2πν) minimum will
determine the ground state. In addition, when a particular
fraction ν = n/� makes Ũ (2πν) minimum, the ground state
will have a period of �d and over this period there will be n

atom droplets (see Fig. 4).
Figure 3(a) plots Ũ (2πν)/α as a function of rc/d for six rep-

resentative ν’s: ν = 1, 4/5, 3/4, 2/3, 3/5, and 1/2 respectively.
Again we set γ = 0 for simplicity. With increasing the value
of rc/d, the ν which makes Ũ (2πν)/α minimum are from the
left to the right ν = 1, 4/5, 3/4, 2/3, 3/5, and 1/2 accordingly.

Of course the exact ground states, subject to the examination
of stability, should be obtained by solving the full differential
equation (4) taking into account the single-particle term as

-5 0 5
0

2

4

0

10

|φ
|2 0

V
(x)

x/d

(a) (d)

(b) (e)

(c) (f)

FIG. 4. (Color online) Fractionally modulated states revealed by
the k = 0 Bloch wave density distribution |ϕk=0|2 of the lowest
band. The blockade radius rc/d = 48/64 (a), 57/64 (b), 62/64 (c),
68/64 (d), 78/64 (e), and 87/64 (f) (black curves), which correspond
respectively to ν = 1, 4/5, 3/4, 2/3, 3/5, and 1/2 states (see Fig. 3).
For comparison, the cyan curve in (a) is for rc/d = 30/64, which
corresponds to ν = 1 as well, but has relatively minor modulation.
Thin red curves represent schematically the fixed lattice potential.
V0 = 11 and α = 30 are fixed in all frames.
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well. In principle, all fraction ν should be considered as the
possible candidates for solutions. A thorough numerical study
and examination has revealed that for the system with fixed
α = 30 and V0 = 11, some categories of ν will not result
in energetically favorable or stable ground states. It includes
those with 1 > ν > 4/5 and ν > 1. For instance, the ν = 5/6
state with five droplets distributing over six lattice constants
is not permitted due to energy being too high, while the ν = 2
state with two droplets per lattice constant is not stable, which
is easily reduced to the ν = 1 state with one droplet per lattice
constant. It is also not difficult to perceive that the states with
ν = n/� with large n and � are typically not energetically
favorable nor stable.

We have solved the lowest Bloch band for each possible ν

state with fixed α = 30 and V0 = 11 and have calculated the
corresponding superfluid fraction fs based on the effective
mass scheme [Eq. (10)]. Figure 3(b) shows the calculated
superfluid fraction fs as a function of rc/d. As mentioned
earlier, for the current system only those states with ν = 1 and
ν = n/� < 4/5 (for n and � not being too large) are available.
In view of Fig. 3(b), phase transitions across different fraction
ν states are manifested either by a jump or by a drop of
fs . These jumps or drops arise due to the “discontinuity”
or “forbiddance” of some fractional ν states. The state with
ν < 1/2 such as ν = 1/3 is actually permitted and corresponds
to a modulation of one droplet per three lattice constants.
However, the superfluid fraction fs is sufficiently reduced and
the SS state is no longer justified (the system is perhaps in the
solid phase).

To view the possible fractionally modulated states in an
evident way, Figs. 4(a)–4(f) plot the ground-state density
distribution, ρ(x) ≡ |ϕk=0(x)|2. To make a contact with the
results in Fig. 3, it has been chosen that rc/d = 48/64, 57/64,
62/64, 68/64, 78/64, and 87/64, respectively in panels (a)–(f).
V0 = 11 and α = 30 are fixed in all frames. These correspond
to ν = 1, 4/5, 3/4, 2/3, 3/5, and 1/2 modulated SS states
respectively. As shown explicitly, the ν = 2/3 state [panel
(d)] has two atom droplets every three lattice constants (3d),
while the ν = 1/2 state [panel (f)] has one atom droplet every
two lattice constants (2d). In panel (a), we also show ρ(x) for
rc/d = 30/64 (cyan curve). This case, also corresponding to
the ν = 1 state, has relatively minor modulation compared to
that of the rc/d = 48/64 case.

V. CRITICAL DEPTH Vc

For the intrinsic-to-extrinsic SS transition, we here discuss
the effects of the interaction strength α and the blockade radius
rc on the critical depth Vc of the lattice potential. In our studies,
Vc is defined as the critical depth at which the ν 	= 1 state
undergoes a transition to the ν = 1 state or vice versa.

Figure 5(a) shows the results of Vc as a function of α.
For a given rc, the curve stars from the corresponding critical
strength αc for the SF to the intrinsic SS transition (the dot). As
seen, αc is smaller for the case with larger rc. It is perceived
that larger rc means more effectiveness for the long-range
interaction and the roles of α and rc are counterparts in
the absence of the external potential. As a matter of fact, a
somewhat universal dimensionless number, αcr

3
c ≈ 10, exists

among the three curves shown in Fig. 5(a). Once α > αc, Vc

FIG. 5. (Color online) (a) Critical depth Vc of the lattice potential
as a function of α for three different rc. The dots correspond to
critical strength αc for the SF-to-intrinsic SS transition when V0 = 0.
(b) Critical depth Vc as a function of rc for three different α. The dots
correspond to critical length rc for the SF-to-intrinsic SS transition
when V0 = 0.

rises monotonically as α increases as they compete with each
other. In the present complex system, however, in addition to
competition α also plays the role for stabilizing the extrinsic
SS state. As a consequence, the Vc curve will drop for larger α

and eventually decrease to zero when α is larger than a certain
value. In the latter case, it means that the extrinsic SS state is
robust so long as V0 > 0.

Figure 5(b) shows the effect of the blockade radius rc on Vc.
As seen for a given α, the curve starts from a critical rc for Vc to
be finite (the dot). In general, a smaller α case corresponds to
a larger critical rc which again states the counterpart roles of α

and rc. Once rc is above the critical value, Vc increases with the
increasing rc. It was pointed out that a relatively smaller-ν frac-
tionally modulated state can form for relatively larger rc (see
Fig. 3). And generally it requires a stronger Vc to reform the
ν = 1 extrinsic SS state from a relatively smaller ν < 1 state.

VI. SUMMARY

In summary, the intrinsic-to-extrinsic supersolid (SS) tran-
sition is investigated in a lattice ultracold Bose gas with strong
long-range interaction. It is demonstrated that the transition
is manifested in the ground-state wave function or energy,
the change of superfluid fraction fs , and a roton instability.
Due to the competition between the long-range interaction
and the periodic potential, we show that there exist a variety
of stable fractionally modulated states near the intrinsic-to-
extrinsic SS transition in the extrinsic SS phase. The transition
across different fractionally modulated states is evidenced by
either a superfluid fraction jump or a drop.
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