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Localizing spin dynamics in a spin-1 Bose-Einstein condensate via magnetic pulses
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Spin-exchange interaction between atoms in a spin-1 Bose-Einstein condensate causes atomic spin evolving
periodically under the single-spatial-mode approximation in the mean-field theory. By applying fast magnetic
pulses according to a two-step or a four-step control protocol, we find analytically that the spin dynamics is
significantly suppressed for an arbitrary initial state. Numerical calculations under single-mode approximation
are carried out to confirm the validity and robustness of these protocols. This localization method can be readily
utilized to improve the sensitivity of a magnetometer based on spin-1 Bose-Einstein condensates.
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I. INTRODUCTION

Spin-exchange interaction between atoms in a spin-1
Bose-Einstein condensate (BEC) causes complex spin mixing
dynamics and spin diffusion, which is a major obstacle to
realize experimentally a high-precision magnetometer based
on a spinor BEC [1–8]. In order to improve the sensitivity of the
magnetometer, a smaller spin-exchange interaction is required,
which may be implemented effectively by the dynamical de-
coupling method using optical Feshbach resonance techniques
[9,10]. In addition, the small spin-exchange interaction can
be utilized to resolve the ambiguity of the spin texture in
ferromagnetically interacting 87Rb spin-1 BEC, where the
spatial texture structure may be induced by the spin-exchange
interaction, the magnetic dipolar interaction, or both of them
[1,3,11–15].

However, a more experimentalist-friendly proposal to sup-
press the spin-exchange interaction employs magnetic pulses
and microwave pulses, which are much easier to implement
and tune experimentally [11,16–20]. By applying a magnetic
field to an atomic spin-1 BEC, only the quadratic Zeeman
effect δ, which is proportional to the square of the field, is
considered because the linear Zeeman effect can be eliminated
mathematically by adopting the rotating reference frame due
to the conservation of the total magnetization of the spin-1
condensate [2,21,22]. Under current experimental conditions,
the effective quadratic Zeeman energy of either the magnetic
field or the microwave driving field can be adjusted from
−240 Hz to +240 Hz, which is about 10 times larger than
the spin exchange interaction for typical densities of a 87Rb
spin-1 condensate, ∼1014 cm−3 [17,18,22].

In this paper, we propose to localize the spin dynamics
of a spin-1 BEC by periodically applying magnetic and/or
microwave field pulses, which effectively suppress the spin
exchange interaction. By applying two-step pulse cycles with
only positive δ, the condensate dynamics is localized if the
relative phase of the initial state is close to zero; by applying
four-step pulse cycles with both positive and negative δ, the
condensate dynamics is localized for an arbitrary initial state.
The exploration of the robustness of the protocols shows that
a wide parameter regime exists for a spin-1 condensate under
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current experimental conditions. This proposal may find its
potential application to improve the sensitivity of a practical
high-resolution magnetometer based on spin-1 BEC.

This paper is organized as follows. In Sec. II, we review the
theoretical description of the free spin mixing dynamics under
the single-spatial-mode approximation (SMA) in a spin-1
BEC in a magnetic field, whose quadratic Zeeman splitting
δ ranges from large negative values to large positive values.
In Sec. III, we analytically design and numerically confirm
the control protocols of magnetic and microwave pulses to
localize the condensate spin dynamics, where either a two-step
or a four-step pulse cycle is employed. Furthermore, the
robustness of the control protocols is explored in Sec. IV by
assuming 5% random error of the pulse amplitude δ(t). Finally,
a brief summary is presented in Sec. V.

II. FREE SPIN DYNAMICS IN A MAGNETIC FIELD

Within the mean-field theory, the free spin mixing dynamics
in a spin-1 BEC with either ferromagnetic or antiferromagnetic
spin exchange interaction under the SMA in a magnetic field
is described by the following equation of motion [2,9,18]:

ρ̇0 = 2c

�
ρ0

√
(1 − ρ0)2 − m2 sin θ,

θ̇ = −2δ

�
+ 2c

�
(1 − 2ρ0)

+ 2c

�

(1 − ρ0)(1 − 2ρ0) − m2√
(1 − ρ0)2 − m2

cos θ, (1)

where c = c2N
∫

d�r|φ(�r)|4, with N being the total number
of atoms in the condensate and φ(�r) being a normalized
spatial mode function under the SMA, which is determined
by a scalar Gross-Pitaevskii equation with a spin-independent
interaction, [−(�2/2M)∇2 + Vext(�r) + c0|φ|2]φ(�r) = μφ(�r),
where M is the atomic mass and V is the external harmonic
trapping potential. The spin-independent coefficient c0 and
spin-exchange coefficient c2 are given, respectively, by c0 =
4π�

2(a0 + 2a2)/3M and c2 = 4π�
2(a2 − a0)/3M with the

s-wave scattering length a0 (a2) for two spin-1 atoms in the
compound symmetric channel of total spin 0 (2). For two
popular ultracold spin-1 atomic gases in experiments, 87Rb
and 23Na, c0 � |c2| is always satisfied and thus guarantees the
validity of the SMA in most experimental situations [22–24].
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The fractional population of spin component ρα(α =
−1,0, + 1) satisfies

∑
α ρα = 1. The magnetization m =

ρ+ − ρ− is constant during the evolution due to the isotropic
nature of the spin-exchange interaction. The relative phase
among the three components is θ = θ+ + θ− − 2θ0, with θα

being the phase of the spin wave function. The quadratic
Zeeman energy is δ = (E+ + E− − 2E0)/2, with Eα being
the Zeeman energy shift of the component. In general, δ ≈
72B2 Hz/G2 for 87Rb BECs and δ ≈ 278B2 Hz/G2 for 23Na
BECs, where the magnetic field B is in units of Gauss. Due
to the conservation of the magnetization m, the linear Zeeman
energy (E− − E+)/2 can be eliminated mathematically by
adopting a rotating reference frame.

The total spin energy is constant during the free evolution
of the spin-1 condensate in a magnetic field,

ε = cρ0[(1 − ρ0) +
√

(1 − ρ0)2 − m2 cos(θ )] + δ(1 − ρ0).

Starting from a given initial state, which is usually a ground
state in a magnetic field in experiments, the condensate evolves
according to an isoenergy trajectory in the plane of ρ0-θ by
abruptly changing the magnetic field to a different value. By
taking into account the energy conservation, Eq. (1) is further
simplified as (ρ̇0)2 = (4/�

2){[ε − δ(1 − ρ0)][(2cρ0 + δ)(1 −
ρ0) − ε] − (cρ0m)2}; thus, the time evolution of ρ0 can be
analytically expressed in terms of the Jacobian elliptic function
cn(·,·) if δ �= 0 and the sinusoidal function if δ = 0 [2,9,25],

ρ0(t) = 1
2 [x2 + x1 − (x2 − x1) sin(γ0 + 2t

√
2cε + c2m2)]

(2)

for δ = 0;

ρ0(t) = x2 + (x3 − x2)cn2[γ0 + t
√

2cδ(x3 − x1),k] (3)

for cδ > 0;

ρ0(t) = x2 − (x2 − x1)cn2[γ0 + t
√

−2cδ(x3 − x1),k] (4)

for cδ < 0. We have set � = 1. Here x1 � x2 � x3 (x1 � x2

for δ = 0) are the roots of ρ̇0 = 0, k = √
(x3 − x2)/(x3 − x1)

if cδ > 0, and k = √
(x2 − x1)/(x3 − x1) if cδ < 0. γ0 is

determined by the initial state [i.e., sin(γ0) = (x1 + x2 −
2ρ0i)/(x2 − x1) for δ = 0]. Hereafter we assume c = −1; thus,
the energy unit is |c|, the time unit is |c|−1, and m = 0.

Typical trajectories are illustrated in Fig. 1(a) for different
δ. Although starting from the same initial state, the trajectories
could cover the whole ρ0-θ plane if the quadratic Zeeman
energy δ is continuously varied from negative infinity to
positive infinity. All the trajectories are classified into two
modes: the oscillatory mode where θ is in the range [−π,π ]
and the running phase mode where θ goes beyond [−π,π ].
As shown clearly in Fig. 1(a), the oscillatory mode trajectories
evolve in a clockwise (counterclockwise) direction if c < 0
(c > 0), while the running phase mode trajectories for large
|δ| � |c| may take one of two opposite directions, depending
on the sign of δ. This is a key point in order to localize
the condensate spin dynamics. The boundaries between the
oscillatory modes and the running phase modes satisfy one
of the two requirements, ρ0(t) = 0 (δ = δ−) or 1 (δ = δ+) if
time is long. The corresponding period T becomes infinite
[see also Fig. 1(b)]. Another special point δ = δ0 denotes the
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FIG. 1. (Color online) (a) Typical trajectories in the ρ0-θ plane
for δ/|c| = −0.5 (dashed line), −0.39, − 0.1,0.2,0.7,1.5,1.59 (solid
lines), and 1.8 (dotted line), from bottom to top. All the trajectories
with solid lines evolve in a clockwise direction. The initial state
(asterisk) is ρ0(0) = ρ0i = 0.8 and θ (0) = θi = 0. (b) Dependence of
the oscillation amplitude A (blue solid line) and the period T (green
dashed line) of ρ0 on δ. The running phase modes correspond to
regions I and IV, and the oscillatory modes correspond to regions II
and III. The red dotted lines marked by δ0 and δ± denote, respectively,
the ground-state quadratic Zeeman energy (the initial state coincides
with the ground state and A is zero) and the resonant quadratic
Zeeman energy (T is infinite and ρ0 → 0 or 1).

coincidence of the initial state with the ground state; thus, the
oscillation amplitude A is zero, but the period T is finite.

The oscillation amplitudes and the periods are shown in
Fig. 1(b). There are clearly four regions: (I) a running phase
mode with increasing θ (t), (II) an oscillatory mode with 0 <

ρ0(t) � ρ0i , (III) an oscillatory mode with ρ0i < ρ0(t) < 1,
and (IV) a running phase mode with decreasing θ (t). The am-
plitude of the oscillations A monotonically increases in regions
I and III but decreases in regions II and IV with increasing δ.
The period of the oscillations T shows two resonant peaks at
δ = δ±, where ρ0(t) = 0 or 1 at long enough time. The period
is almost a constant between these two peaks but decreases
rapidly outside the peaks. Similar oscillation behaviors were
also observed in antiferromagnetically interacting 23Na spin-1
condensates (c > 0) [18,19].

We observe from Fig. 1(a) that in the oscillatory mode
θ increase or decrease with time if θ ≈ 0 and ρ0 is around
its extremes. We may utilize this property to localize the
condensate dynamics around θ ≈ 0 by canceling θ in a
period with θ increasing (decreasing) during the first (second)
part. For an arbitrary state, however, we may utilize both
the oscillatory and the running phase modes to localize the
dynamics since θ may increase or decrease for a given ρ0,
depending on the value of δ.

III. LOCALIZED SPIN DYNAMICS

We consider first that the control period consists of two
steps, a free evolution (δ = 0) for a time slot τ1, which
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guarantees ρ0(τ1) = ρ0i and θ (τ1) = −θi , followed by an
evolution in a magnetic field δ = d for a time slot τ2,
which guarantees ρ0(τ1 + τ2) = ρ0i and θ (τ1 + τ2) = θi . We
hereafter refer to this protocol as the two-step control. For a
given initial state with θi ≈ 0, it is easy to prove analytically
that τ1 depends on the initial state and τ2 depends uniquely
on d, which indicates that there is only one free parameter
in the two-step control protocol. The time dependence of the
magnetic field for the two-step control is

δ(t) =
{

0, j (τ1 + τ2) � t < j (τ1 + τ2) + τ1,

d, j (τ1 + τ2) + τ1 � t < (j + 1)(τ1 + τ2),

where j = 0,1,2, . . . is an integer denoting the number of
control cycles.

Typical controlled trajectories are illustrated in Fig. 2(a) for
three values of d, where the initial state is ρ0i = 0.8 and θi =
−0.1π [26]. We see clearly that the oscillations of both ρ0 and
θ under the two-step control are smaller than that during free
evolution, indicating that the condensate dynamics is indeed
localized by the two-step control protocol. Starting from the
same initial state, the lager d is, the smaller the oscillation of
ρ0 is.

The condensate spin average is 〈F〉 = 〈Fx〉x̂ + 〈Fy〉ŷ +
〈Fz〉ẑ for a state with [2]

〈Fx〉 + i〈Fy〉 = 2
√

ρ0(1 − ρ0) cos(θ/2),

〈Fz〉 = 0.

Once we localize ρ0(t) and θ (t), the condensate spin 〈F〉 is
obviously localized. For a nonzero 〈Fz〉, the localization occurs
similarly.

The cycle period T depends on the free evolution time τ1

and the controlled evolution time τ2. The free evolution time
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FIG. 2. (Color online) (a) Typical trajectories under the modula-
tion of δ(t). Each modulation cycle includes a free evolution with δ =
0 (dashed line) and a controlled evolution with d/|c| = 1.5,2.0,3.0
(solid lines, from bottom to top). The initial state (red asterisk) is
ρ0i = 0.8 and θi = −0.1π . (b) Dependence of the amplitude (blue
solid line) and period (green dashed line) of ρ0 on d , the nonzero
quadratic Zeeman splitting. Circles and diamonds are the period and
amplitude calculated analytically with Eqs. (7) and (8) for large d’s,
respectively.

is determined by the evolution time of the system from its
initial state ρ0i and θi to the symmetric state ρ0(τ1) = ρ0i and
θ (τ1) = −θi . In this way, the time τ1 is calculated analytically
by using Eq. (2),

τ1 = (π/2 − γ0)/
√

2 c ε + c2m2, (5)

and γ0 is calculated by using Eq. (2), sin(γ0) = (x1 + x2 −
2ρ0i)/(x2 − x1). In the limit of small θ � 1, τ1 ≈ |θi/[2c(1 −
2ρ0i)]|, where we have used ρ0(t) ≈ ρ0i . Similarly, the
controlled evolution time τ2 is the evolution time of the system
in the magnetic field δ = d and can be calculated by using the
conditions ρ0(T ) = ρ0i and θ (T ) = θi ,

τ2 =
√

2γ ′
0/

√
−c d(x3 − x1), (6)

and γ ′
0 is calculated by using Eq. (3), cn2(γ ′

0,k) = (ρ0i −
x2)/(x3 − x2). In the limit of small θ � 1 and large d,
τ2 ≈ |θi/[2c(1 − 2ρ0i) − d]|. In total, the cycle period is
approximated as

T ≈
∣∣∣∣ θi d

2c(1 − 2ρ0i)[2c(1 − 2ρ0i) − d]

∣∣∣∣ (7)

for small θi and large d. We notice that T ≈ τ1 for large d, as
shown in Fig. 2(b).

We define the control oscillation amplitude as A =
max(ρ0) − min(ρ0), which depends obviously on the initial
state and the magnetic field d. The amplitude can be calculated
analytically but is too lengthy to present here. In the limit of
large d and small θi , the amplitude is approximately

A = A1 + A2, (8)

where

A1 ≈ ρ0i(1 − ρ0i)

4(2ρ0i − 1)
θ2
i , A2 ≈ ρ0i(1 − ρ0i)

|2d/c| − 4(2ρ0i − 1)
θ2
i .

We see that A approaches A1 as d goes to infinity.
In Fig 2(b), we present the dependence of A and T on the

control magnetic field d. We see clearly that A and T decrease
monotonically as d increases, manifesting the fact that better
localization of the condensate dynamics is achieved in a higher
magnetic field. We note that A and T approach their nonzero
asymptotic values at large values of d. Actually, to reduce
the oscillation amplitude A further down to zero, we have to
employ the following four-step control protocol.

We consider next that the control period consists of four
steps, (i) a free evolution for a time τ1, (ii) an evolution in
a magnetic field with δ = d1 for a time τ2, (iii) a second free
evolution for the time τ3, and (iv) a second controlled evolution
in another magnetic field with δ = d2 for a time τ4, as shown in
Fig. 3(a). We refer to this protocol as the four-step control. For
simplicity but without loss of generality, we limit ourselves to
the symmetric situations where d1 = −d2 = d and τ3 = τ1 =
τ . It will be analytically proved that τ2 and τ4 are uniquely de-
termined by d and τ . Thus, there are only two free parameters,
d and τ , in the four-step control we considered here.

It is straightforward to find the analytical solution to τ2 and
τ4 by using the initial state and Eqs. (2)–(4),

τ2 =
√

2γ0√−cd(x3 − x1)
, τ4 =

√
2γ ′

0√
cd(x ′

3 − x ′
1)

;
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FIG. 3. (Color online) (a) Schematic of a magnetic pulse
sequence. (b) Typical controlled trajectory of ρ0(t) and θ (t) under
a four-step pulse sequence of δ(t) for a four-step protocol. The red
asterisk marks the initial state. The parameters are ρ0i = 0.8, θi =
−0.2π , d/|c| = 10, and τ1 = τ3 = τ = 0.05π . The values of τ2 and
τ4 are calculated, τ2 ≈ 0.0072π and τ4 ≈ 0.0226π . (c) Amplitude of
ρ0 under four-step pulse sequences. Better localization of ρ0 (smaller
A) is achieved for larger d and smaller τ .

γ ′
0 and x ′

3,1 are determined by ρ0(τ ) and −θ (τ ). We note here
that the initial state for τ2 is ρ0(τ ) and θ (τ ), and that for τ4 is
ρ0i and −θi . The total period for a complete cycle is

T = 2τ +
√

2γ0√−cd(x3 − x1)
+

√
2γ ′

0√
cd(x ′

3 − x ′
1)

. (9)

Typical controlled evolution of the condensate is illustrated
in Fig. 3(b), where the parameters are given in the caption.
Compared to the two-step control protocol, there are two
advantages. The first is that the initial state is arbitrary;
particularly, θi goes beyond the smallness requirement. The
second is that the oscillation amplitude and period approach
zero if d is large enough and τ is short enough, as shown in
Fig. 3(c) and Eq. (9).

IV. ROBUSTNESS OF THE CONTROL PROTOCOLS

We have assumed the magnetic control pulses are perfect in
the previous sections, but there are always uncontrollable er-
rors in practical experiments; for example, the microwave field
δ [18] and the initial θi may have relative uncertainty. Since
the timing is pretty accurate in current experiments, we next
evaluate the robustness of the two-step and four-step protocols
under only 5% uncertainty of δ or θi for many control cycles.

We define the fidelity of a protocol after many control cycles
as

F = |〈�ξi |�ξf 〉|2, (10)

where |�ξi,f 〉 is the initial and the final state of the spin-1
condensate and satisfies |〈�ξ |�ξ〉|2 = 1. The state has three
components, |�ξ〉 = (ξ+,ξ0,ξ−)T , with ξα = √

ραe−iθα (α =
−1,0,+1) and ρα and θα being the fraction and the phase
of component α, respectively. The fidelity measures how
close the initial and the final states are. The fidelity is 1
for ideal pulses but lower than 1 in the presence of pulse
errors. The larger the errors are, the lower the fidelity is.
Higher fidelity indicates more robustness of the protocol to
errors.

We assume the magnetic-field error is distributed with
equal probability in the range [0.95,1.05]d with an average
of d. For the four-step protocols, the errors for d1 and d2

(|d1| = |d2| = d) are independent. We numerically calculate
the dependence of the fidelity F on d. The initial state is
ρ0i = 0.8, θi = −0.1π for two-step protocols and ρ0i = 0.8,
θi = −0.2π for four-step protocols.

The results are shown in Fig. 4(a) for two-step protocols
and in Fig. 4(b) for four-step protocols with an error of δ.
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FIG. 4. (Color online) (a) Fidelity after 1 cycle (blue solid line),
10 cycles (red dashed line), 100 cycles (black dash-dotted line), and
200 cycles (purple dotted line) for the two-step protocol with 5%
relative uncertainty in δ. For clarity, each curve is shifted up by 0.01
from bottom to top. (b) Fidelity after 1 cycle [blue (dark gray) solid
line], 10 cycles [red (light ray) solid line], and 100 cycles (black lines)
while τ/π = 0.01 (dash-dotted line), 0.03 (dashed line), and 0.05
(solid lines) for the four-step protocol with 5% relative uncertainty
in δ. (c) Fidelity after 1 cycle (blue solid line), 10 cycles (red dashed
line), 100 cycles (black dash-dotted line), and 200 cycles (purple
dotted line) for the two-step protocol with 5% relative uncertainty in
θi . Each curve is also shifted up by 0.01 from bottom to top. The inset
shows a zoom-in view near the dip in the main panel. The results
show that both the two-step protocol and the four-step protocol are
robust against errors.
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As shown in Fig. 4(a), the fidelity, which is, after a few
cycles, under the uncertainty of δ, is above 99% for most
d, except a sharp dip near d/|c| ≈ 1.2. This dip is nothing
but d = δ0 where the period T is most sensitive to the change
of d [i.e., the largest derivative of T with respect to d in
Fig. 2(b)]. The dip becomes wider and deeper after more
cycles. Clearly, the two-step protocol is robust except when
d ≈ δ0. For the four-step protocol, as shown in Fig. 4(b), we
find that the fidelity is very close to 1, particularly for large d’s,
although it decreases as τ decreases after many cycles under
the uncertainty of δ. By taking into account the requirements of
small τ and large d to better localize the condensate dynamics
[see Fig. 3(c)], both requirements on the localization and
the robustness can be satisfied simultaneously in practical
experiments.

For the errors in the initial relative phase, we also assume an
equal distribution probability in the range [0.95,1.05]θi with
an average of θi . In Fig. 4(c), the fidelity is again very close
to 1 except a sharp dip around d/|c| = δ0, similar to Fig. 4(a).
This result shows that the two-step control protocol is pretty
robust under the uncertainty of θi if we choose a field away
from the dip. Strikingly, the fidelity for the four-step protocol
with the error of θi is always above 99.99% within 100 cycles,
showing the superrobustness of the protocol against this kind
of error.

V. CONCLUSION

We propose to localize the spin mixing dynamics in a
spin-1 Bose condensate by periodically applying magnetic
pulse sequences, according to the two-step protocol for an
initial state with a small initial relative phase or the four-step
protocol for an arbitrary initial state. Numerical calculations
confirm the validity of the proposal for a ferromagnetically
interacting spin-1 condensate under the single-spatial-mode
approximation. We further illustrate the robustness of the
localization protocol with numerical calculations by assuming
5% uncertainty of the magnetic pulse amplitude and θi ,
which might occur in practical experiments [18]. Our proposal
may be utilized to realize higher-precision magnetometers
based on spinor BEC [4,27] or to explore the weak dipolar
interaction effects in 87Rb spin-1 condensates by suppressing
the spin dynamics induced by the spin-exchange interaction
[3,11,15,28,29].
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