
PHYSICAL REVIEW A 92, 013628 (2015)

Many-body formalism for fermions: Enforcing the Pauli principle on paper
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Confined quantum systems involving N identical interacting fermions are found in many areas of physics,
including condensed matter, atomic, nuclear, and chemical physics. In a previous series of papers, a many-body
perturbation method that is applicable to both weakly and strongly interacting systems of bosons has been set forth
by the author and coworkers. A symmetry-invariant perturbation theory was developed that uses group theory
coupled with the dimension of space as the perturbation parameter to obtain an analytic correlated wave function
through first order for a system under spherical confinement with a general two-body interaction. In the present
paper, we extend this formalism to large systems of fermions, circumventing the numerical demands of applying
the Pauli principle by enforcing the Pauli principle on paper. The method does not scale in complexity with N and
has minimal numerical cost. We apply the method to a unitary Fermi gas and compare to recent Monte Carlo values.
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I. INTRODUCTION

Confined quantum systems of fermions are widespread
across physics. They include, for example, atoms, atomic
nuclei, neutron stars, quantum dots, and cold Fermi gases.
These systems possess from a few tens to millions of particles
and span an enormous range of interparticle interaction
strength presenting a challenge for N -body methods when
mean-field approaches fail. In the past decade, ultracold
Fermi gases have emerged as a testing ground for many-body
methods due to their precise controllability in experiments.
Using a magnetic field to tune the scattering length of atoms
allows the exploration of the physics over many length
scales, including the “unitary gas” defined by an infinite
scattering length. Without a defining length scale other than
the interparticle distance, the unitary gas does not yield to
conventional perturbation treatments, typically requiring a full
many-body treatment for an accurate description.

Fermi systems in the unitary regime are currently of great
interest. This strongly interacting regime, stabilized by the
Pauli exclusion principle, exists on the cusp of the BCS-BEC
crossover and exhibits universal thermodynamic behavior,
which has been verified in the laboratory to within a few
percent [1]. Verifying this universal behavior theoretically
requires access to the partition function, i.e., the energy
spectrum with degeneracies. Required resources on a classical
computer for an exact solution of even the ground state of
the N -body problem scale exponentially with N . Traditional
full configuration interaction can cope with at most some
ten particles [2] and methods, such as coupled-cluster [3]
with a computational time polynomial in N , O(N7), are
extremely expensive. Quantum Monte Carlo (QMC) methods
for fermions suffer from the so-called “sign” problem [4–6],
resulting in an exponential growth in simulation times. Other
methods that have been applied to strongly interacting Fermi
systems include the method of correlated basis functions [7,8],
density functional theory [9], diagrammatic approaches [10],
and the stochastic variational method [11,12]. To date, the
determination of the energy spectrum of systems containing
four or more particles remains a challenge [12].
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In this paper, we investigate an alternative approach to
study large systems of fermions. Our symmetry-invariant
perturbation theory (SPT) offers a perturbation approach
for a systematic study of correlation including the unitary
regime. The perturbation parameter depends on the inverse
dimensionality of space (δ = 1/D), rather than the strength
of the interaction, so SPT is equally applicable to weakly
or strongly interacting systems. The method is essentially
analytic [13], with N , the number of particles, entering as
a parameter, allowing results for any N to be obtained from
a single calculation [14]. The lowest-order result includes
correlation and in theory, can be systematically improved by
going to higher order [15]. This method couples group theory
with conventional dimensional perturbation theory (DPT)
[16–18] to take advantage of the high degree of symmetry pos-
sible among identical particles in higher dimensions. The terms
in the perturbation expansion are invariant under N ! symmetry
operations, greatly reducing the number and complexity of
the building blocks of these terms. This method currently
includes full many-body effects that are exact through first
order. Excited states are obtained from the same analytic
calculation [14], differing only in the number of quanta in the
different normal modes. In principle, the full energy spectrum
is accessible.

In past work, DPT has been applied to fermion systems,
including single atoms [17,19], quantum dots [20], and
small molecules [21]. The symmetry-invariant approach, SPT,
has been applied thus far only to bosons with spherical
confinement, determining first-order energies, normal mode
frequencies [13,14], the lowest-order SPT wave function [22],
and density profile [23]. We applied these results to a BEC for
which the density profile is a directly observable manifestation
of the quantized behavior. In a later series of papers, we
extended this work for bosons to first-order wave functions
and density profiles [24,25]. We demonstrated that this method
effectively rearranges the numerical work for this many-body
problem into analytic building blocks at each order giving the
exact result order by order in the perturbation series [25,26].
The complexity of the rearranged problem scales with the order
of the perturbation series, not with the number of particles [26].

In this extension of SPT to fermions, we tackle the chal-
lenge of applying the Pauli principle, typically an expensive
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numerical task. We describe how this is achieved “on paper”
for any value of N , thus circumventing heavy numerical
effort. We apply the method in this initial study to large
systems of cold fermions in the unitary regime for which a
number of very accurate calculations are available. Results
are obtained using analytic building blocks that have been
calculated and stored previously and that have been extensively
checked using an independent solution of a model system of
harmonically confined, harmonically interacting particles [25].
Our results compare well to very accurate Monte Carlo
results [8,27], including some recent benchmark calculations
using the auxilliary field Monte Carlo method [28].

We begin the perturbation analysis by defining dimension-
ally scaled quantities: Ē = κ(D)E and H̄ = κ(D)H , where
κ(D) is a scale factor that regularizes the large-dimension
limit [22]. The scaled version of the Schrödinger equation
becomes

H̄� =
[

1

κ(D)
T̄ + V̄eff

]
� = Ē�, (1)

where barred quantities indicate variables in scaled units
(κ(D) = D2/(�ω̄ho) for this work; see Ref. [22]). The term
T̄ contains the derivative terms of the kinetic energy and
V̄eff includes centrifugal, two particle, and confinement
potentials [22].

We assume a totally symmetric, large-dimension config-
uration at which the effective potential is a minimum. The
N particles are arranged on a hypersphere, each particle
with a radius r̄∞ from the center of the confining potential.
Furthermore, the angle cosines between each pair of particles
take on the same value, γ ∞, i.e.,

lim
D→∞

r̄i = r̄∞ (1 � i � N ),
(2)

lim
D→∞

γij = γ ∞ (1 � i < j � N ).

(This symmetric high-dimensional structure is not unlike
the localized structure found in a hyperspherical treatment
of the confined two-component Fermi gas in the N → ∞
limit [29].) In scaled units the δ → 0 (D → ∞) approximation
for the energy is simply the effective potential minimum, i.e.,
Ē∞ = V̄eff(r̄∞,γ ∞; δ = 0) .

In this δ → 0 approximation, the centrifugal-like term that
appears in V̄eff , which is nonzero even for the ground state,
is a zero-point energy contribution satisfying the minimum
uncertainty principle [30]. The value of γ ∞ , which is
zero in the mean-field approximation for the L = 0 angular
momentum states considered here, is, in fact, not zero, an
indication that beyond-mean-field effects are included in the
δ → 0 limit.

This highly symmetric δ → 0 structure imparts a point
group structure to the system which is isomorphic to the
symmetric group of N identical objects [31], SN , allow-
ing a largely analytic solution. The δ → 0 approximation
may be systematically improved by using it as the starting
point for a perturbation expansion [15]. The SN symmetry
greatly simplifies this task since the interaction terms indi-
vidually have to transform as a scalar under the SN point
group.

The perturbation series has the form

Ē = Ē∞ + δ

∞∑
j=0

(δ
1
2 )j Ēj ,

(3)

� =
∞∑

j=0

(δ
1
2 )j �j .

In practice, Ēj = 0 ∀ j odd. The j = 0 terms are obtained from
a harmonic equation and are referred to as the energy and wave
function at harmonic order. To obtain this harmonic correction
for small values of δ , we expand about the minimum of the
δ → 0 effective potential.

The harmonic-order Hamiltonian is solved using the FG
matrix method [32] to obtain the normal-mode frequencies,
ω̄μ. The number of roots, λμ (λμ = ω̄2

μ), of the secular
equation, N (N + 1)/2 roots, is potentially huge; however, due
to the SN symmetry of the problem there is a reduction to five
distinct roots.

The FG matrix is invariant under SN , so it does not connect
subspaces belonging to different irreducible representations
(irreps.) of SN [33]. Thus, the normal coordinates must trans-
form under irreps. of SN . The normal coordinates are linear
combinations of the elements of the internal displacement
vectors, which transform under reducible representations of
SN . One can show that these reduce to two 1-dimensional [N ]
irreps. denoted by 0+,0−, two (N − 1)-dimensional [N − 1,1]
irreps. denoted by 1+,1−, and one angular N (N − 3)/2-
dimensional [N − 2,2] irrep. denoted by 2 [13].

The energy through harmonic order in δ is [13]

E = E∞ + δ

⎡
⎢⎢⎢⎣

∑
μ = {0±,1±,

2}

(
nμ + 1

2
dμ

)
ω̄μ + vo

⎤
⎥⎥⎥⎦, (4)

where nμ is the total number of quanta in the normal mode
with the frequency ω̄μ; μ is a label which runs over 0−, 0+, 1−,
1+, and 2, regardless of the number of particles in the system
(see Refs. [13,15] in Ref. [22]), and vo is a constant. The
multiplicities of the five roots are: d0+ = 1, d0− = 1, d1+ =
N − 1, d1− = N − 1, d2 = N (N − 3)/2.

A character analysis of the normal modes reveals that the
2 normal modes are phonon, i.e., compressional modes; the
1± modes show single-particle character, and the 0± modes
describe center-of-mass and breathing motions.

II. ENFORCING THE PAULI PRINCIPLE

To generalize SPT from quantum systems of bosons to
quantum systems of fermions, we must enforce the Pauli
principle, thus requiring the N -body wave function to be totally
antisymmetric. This is enforced by placing certain restrictions
on the occupancies of the normal modes, i.e., on the values
of the normal mode quantum numbers, nμ, μ = 0±,1±,2 in
Eq. (4) [17]. The possible assignments can be found by relating
the normal mode states |n0+ ,n0− ,n1+ ,n1− ,n2〉 to the states of
the confining potential, which is a spherically symmetric three-
dimensional harmonic oscillator [Vconf(ri) = 1

2mω2
hori

2] for
which the restrictions imposed by antisymmetry are known.
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These two series of states can be related in the double limit
D → ∞, ωho → ∞, where both representations are valid.

For large D, the normal mode description given by Eq. (4)
is exact. Applying the large ωho limit results in

E = N
D

2
�ωho + (2n0+ + 2n0− + 2n1+ + 2n1− + 2n2)�ωho.

(5)

Now consider ωho → ∞ first and then D → ∞. The
harmonic oscillator levels are exact:

E =
N∑

i=1

[
(2νi + li) + D

2

]
�ωho

= N
D

2
�ωho +

N∑
i=1

(2νi + li)�ωho, (6)

where νi is a radial quantum number and li the orbital angular
momentum quantum number. Equating these two expressions,
which are equal in the double limit, the quantum numbers
in the two representations can now be related to show the
restrictions on normal mode states imposed by antisymmetry.
Because of the clean separation of radial and angular motions,
two conditions result:

2n0− + 2n1− =
N∑

i=1

2νi,

(7)

2n0+ + 2n1+ + 2n2 =
N∑

i=1

li .

These equations determine a set of possible normal mode
states |n0+ ,n0− ,n1+ ,n1− ,n2〉 from the known set of permissible
L = 0 harmonic oscillator configurations.

III. APPLICATION: THE UNITARY GAS

The Schrödinger equation for an N -body system of
fermions, N = N1 + N2 with N1 spin-up and N2 spin-down
fermions, confined by a spherically symmetric potential is

H	 =
⎡
⎣ N∑

i=1

hi +
N1∑
i=1

N2∑
j=1

gij

⎤
⎦	 = E	, (8)

where hi and gij are the single-particle Hamiltonian and
the two-body interaction potential, respectively. We assume
a T = 0 K condensate with N1 = N2 confined by an isotropic,
harmonic trap with frequency ωho.

To study the unitary regime, we replace the actual atom-
atom potential by an attractive square-well potential of
radius R:

Vint(rij ) =
{−Vo , rij < R

0, rij � R
. (9)

For fixed range R, the potential depth V0 is adjusted so
the s-wave scattering length, as , is infinite. The range is
selected so R << aho [aho = √

�/(mωho)] and can be sys-
tematically reduced to extrapolate to zero-range interaction.
We dimensionally continue the square-well potential so that it
is differentiable away from D = 3, allowing us to perform the

FIG. 1. (Color online) Energies of the harmonically trapped uni-
tary Fermi gas (units �ωho = 1). Our first-order perturbation results
(filled diamonds) are compared to GFMC (+’s) [27], fixed-node DMC
(open circles) from Ref. [8], and AFMC results (filled circles, N =
6, 8, 14, 20, and 30 only) [28].

dimensional perturbation analysis [13,14]. Thus, we take the
interaction to be

Vint(rij ) = V0(δ)

{
1 − tanh

[
1

1 − 3δ
(rij − 3δR)

]}
, (10)

where Vo(δ) = 1
1−3bδ

. The potential depth Vo is adjusted by
adjusting the value of b so the scattering length is infinite when
δ = 1

3 . This interaction becomes a square well of radius R in
the physical D = 3 limit. The functional form of the potential
at D �= 3 is not unique. Other forms could be chosen with
equal success as long as the form is differentiable and reduces
to a square-well potential at D = 3 . We simply choose a form
that allows a gradual softening of the square well.

In Fig. 1 we plot the lowest L = 0 energies from N = 6
to N = 30 and compare to Green’s function Monte Carlo
(GFMC) energies [27], to fixed-node diffusion Monte Carlo
(DMC) energies [8], which provide accurate upper bounds and
to recent benchmark auxiliary field Monte Carlo calculations
(AFMC) [28], which are exact but subject to finite lattice-size
errors for which corrections have been made. The AFMC
results are currently the most accurate results available.
Our energies, which include full many-body effects through
harmonic order, compare well to these AFMC results and
except for N = 8 they are slightly closer to the AFMC results
than the GFMC and DMC results shown in Fig. 1. Our
numbers, as well as the GFMC and DMC numbers from
Refs. [8,27], show a distinct odd-even oscillation, but no
obvious shell effects. Obtained from analytic building blocks
that have been calculated and stored previously, our numerical
requirements take a few seconds on a work station.

No parameters are used to obtain these results other than
those used to produce a square-well potential with infinite
scattering length. For the GFMC and DMC studies shown in
Fig. 1, no results exist for values of N higher than shown.
Accurate results for higher N are, of course, increasingly
difficult to achieve. In Fig. 2 we compare our results at
first order above N = 30 with available DMC results from
Ref. [28]. Our first-order results show the expected increase in
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FIG. 2. (Color online) Energies of the harmonically trapped uni-
tary Fermi gas (units �ωho = 1). Our first-order perturbation results
(filled diamonds) are compared to DMC results Ref. [28] (open
squares).

error as N increases, suggesting that for larger N , higher-order
terms may be necessary.

IV. CONCLUSIONS

In this paper we have extended the symmetry-invariant
perturbation method from bosons to fermions, applying the
Pauli principle “on paper” to avoid heavy numerical expense.

The method has been tested in the unitary regime, which is of
particular interest for many-body methods since its infinite
scattering length and the lack of a natural scale typically
require intensive numerical simulation for an accurate descrip-
tion. Our analytic results through first order yield energies that
are comparable in accuracy with recent Monte Carlo results.
As N increases, our error increases, suggesting the need for
higher-order terms. It may also be possible to rearrange the
perturbation series to minimize the importance of higher-order
terms.

The theory applied in this paper is applicable to L = 0
states of spherically confined systems with general attractive
or repulsive interparticle interactions and is also applicable to
both weakly and strongly correlated systems. The fact that γ ∞
is not zero is an indication that beyond-mean-field effects are
included in this result even in the D → ∞ limit. This theory
is readily generalizable to systems with a cylindrical confining
potential.

Higher-order calculations may be required for larger N . A
detailed program for calculating higher-order DPT corrections
to N -body systems has been laid out [15] and applied to high
order for small-N systems [34]. For large-N systems the SN

point-group symmetry greatly simplifies the calculation of
these higher-order terms.
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