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Generating, dragging, and releasing dark solitons in elongated Bose-Einstein condensates
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We theoretically analyze quasi-one-dimensional Bose-Einstein condensates under the influence of a harmonic
trap and a narrow potential defect that moves through the atomic cloud. Performing simulations on the mean-field
level, we explore a robust mechanism in which a single dark soliton is nucleated and immediately pinned by the
moving defect, making it possible to drag it to a desired position and release it there. We argue on a perturbative
level that a defect potential which is attractive to the atoms is suitable for holding and moving dark solitons. The
soliton generation protocol is investigated over a wide range of model parameters and its success is systematically
quantified by a suitable fidelity measure, demonstrating its robustness against parameter variations, but also the
need for tight focusing of the defect potential. Holding the soliton at a stationary defect for long times may give
rise to dynamical instabilities, whose origin we explore within a Bogoliubov–de Gennes linearization analysis.
We show that iterating the generation process with multiple defects offers a perspective for initializing multiple
soliton dynamics with freely chosen initial conditions.
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I. INTRODUCTION

Solitonic wave excitations that maintain their shape during
propagation are found in a large variety of physical systems,
ranging from hydrodynamics to modern telecommunication
systems and even biological molecules [1]. The enormous
technological advance of recent years has made it possible to
prepare and observe solitons in ultracold-atom experiments,
primarily (but not only, see e.g. [2]) in condensed bosonic
ensembles near zero temperature [3,4]. On the mean-field
level, a Bose-Einstein condensate (BEC) is described by the
Gross-Pitaevskii equation (GPE) [3], a nonlinear Schrödinger
equation with cubic nonlinearity induced by the interatomic
interaction. In one spatial dimension (1D), this equation is
well known to feature dark (bright) solitons for defocusing
(focusing) nonlinearities, respectively [4,5]. Experimentally, a
highly elongated quasi-1D regime can be reached by tightly
confining the atoms in the radial direction, effectively freezing
out the transverse dynamics. Early experiments succeeded in
preparing bright [6,7] and dark [8,9] matter-wave solitons.
Dark solitons (which are in the focus of this work) are
characterized by a localized density minimum across which
the phase changes by π . These can be created by manipulating
the condensate phase [8–11] or density [12] using external
potentials (see also the discussion in [5]). They can also form in
the wake of a repulsive barrier dragged through the condensate
[13–15] or in collisions of initially separated atomic clouds
[16]. Still, controllably creating a dark soliton at a desired
position in a Bose-Einstein condensate is a challenging task in
experiments.

Once a soliton has formed, its dynamics can again be
influenced with external potentials. A dark soliton in a harmon-
ically trapped BEC performs particlelike harmonic oscillations
around the trap center [10,11,16,17]. The emission of sound
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waves due to acceleration of a soliton has been studied in
[18–21]. Thinking of the external force as a handle for control-
ling the soliton dynamics, a direct manipulation of the soliton
motion with narrow potential defects has been suggested in
[22], where the interaction of a dark soliton with a pointlike
impurity was analyzed within perturbation theory (see also
[23–25] and the corresponding studies for bright [26] and dark-
bright solitons [27]). Moreover, the possibility of dragging
along dark solitons in a moving optical lattice potential has
been demonstrated in [28,29]. In a similar spirit, dragging of
bright solitons in a discrete lattice model has been discussed
recently [30], while pinning and transporting quantum vortices
with focused external potentials has been shown in [31,32].

Here, we describe a method for controllably creating,
dragging, and releasing a dark soliton in a repulsively inter-
acting Bose-Einstein condensate employing a tightly focused
red-detuned laser beam (acting as an attractive potential for the
atoms via the dipole force). Specifically, we study a trapped
quasi-1D BEC under the influence of a moving Gaussian po-
tential defect of attractive sign. When entering the atomic cloud
from outside with this defect, a dark soliton can be created
and at the same time pinned by the defect, such that it can
subsequently be placed and released at an arbitrary position.
Motivated by an analysis of the instantaneous energy levels in
a single-particle model, a similar scheme for exciting nodes in
the condensate wave function by traversing it with an attractive
defect has been proposed in [33,34]. A related protocol for
the extraction of bright solitons from an attractive BEC has
been suggested in [35] (see also [36]), but there the defect
was not assumed to act as an external potential, but instead
to cause a local variation of the effective atomic interaction
through the mechanism of optical Feshbach resonance [37]. In
our work, the defect acts as a single-particle potential for the
atoms. Dynamically manipulating (e.g., splitting) the entire
BEC cloud with such optical “tweezers” is nowadays well
established [38,39]. If, instead, the light is focused to the
comparably short length scale of a dark soliton, the same type
of technology can be employed to manipulate the dynamics of
a localized solitonic excitation.
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Our presentation is structured as follows. In Sec. II, we
introduce the theoretical mean-field framework our study
is based on and give a discussion of the results from a
perturbative treatment of the potential defect, revealing in
particular that a potential that is attractive to the individual
atoms is effectively also attractive to a dark soliton. In Sec. III,
we show results from numerical simulations, demonstrating
the robust creation, dragging, and release of a dark soliton. We
quantify the fidelity of the creation process and vary the defect
parameters to explore the robustness of this protocol. If the
dark soliton is pinned to the defect for long times, a dynamical
instability may occur which we address in Sec. IV, making the
connection to a Bogoliubov–de Gennes linearization around
the corresponding stationary solution of the GPE. We briefly
conclude and point to further perspectives in Sec. V. Details
of the perturbation theory are deferred to the Appendix.

II. SETUP AND RESULTS
FROM PERTURBATION THEORY

We investigate a quasi-1D Bose-Einstein condensate of a
single atomic species with repulsive interaction at zero tem-
perature, described by the Gross-Pitaevskii equation [3]. We
assume strong harmonic confinement in two spatial directions,
taking the trapping potential to be of the form V3D(r,t) =
mω2

⊥
2 (y2 + z2) + V (x,t), where m denotes the atomic mass, ω⊥

the frequency of the transverse oscillator potential, and V (x,t)
models a potential in the longitudinal direction. Assuming
that the transverse dynamics is fully frozen out and thus
transversally the condensate wave function remains in the
oscillator ground state, one can integrate out the y and z

directions and is left with the effectively 1D Gross-Pitaevskii
equation [4]

− �
2

2m
∂2
xψ + V (x,t)ψ + g1D|ψ |2ψ = i�∂tψ, (1)

where ψ = ψ(x,t) denotes the longitudinal part of the wave
function and the nonlinearity coefficient g1D = 2α�ω⊥ with
the s-wave scattering length α > 0 [3]. Measuring length,
time, energy, and density |ψ(x,t)|2 in units of a⊥ = √

�/mω⊥,
ω−1

⊥ , �ω⊥, and (2α)−1, respectively, Eq. (1) is cast into the
dimensionless form

−1

2
∂2
xψ + V (x,t)ψ + |ψ |2ψ = i∂tψ (2)

which we will work with in the following.
The corresponding stationary equation is obtained by

factorizing ψ(x,t) = φ(x) exp(−iμt) with μ the chemical
potential. Our focus here will be on a longitudinal potential that
consists of a static harmonic part (whose frequency ω‖ is small
compared to that of the transverse trap) plus a Gaussian of fixed
height and width, but moving in time, i.e., in dimensionless
units:

V (x,t) = 1

2
�2x2 + V0 exp

{
−1

2

[x − xG(t)]2

σ 2

}
. (3)

Here, xG(t) specifies the trajectory of the Gaussian impurity,
while σ and V0 set its width and amplitude, respectively.
For convenience, the aspect ratio will be fixed to �2 =
ω2

‖/ω
2
⊥ = 0.04 in the following. Our results can be transferred

to other aspect ratios by a straightforward rescaling of Eqs. (2)
and (3). We simulate the time evolution of the condensate
by propagating Eq. (2) with a fourth-order Runge-Kutta
integrator. The initial state is chosen to be the ground state
at a given μ, obtained from the stationary 1D GPE by an
adapted Newton method [40].

The main objective of this work is the controlled formation
and dragging of a dark soliton. By analogy with previous work
on vortices in 2D [32], and the somewhat intuitive picture that a
density dip such as the dark soliton may offer the possibility of
pinning it with a narrow repulsive barrier in its center, one may
conjecture that V0 > 0 will be the favorable parameter regime
for our purposes. It turns out, however, that this is not the
case and an attractive Gaussian impurity with V0 < 0 is much
more adequate to drag along the soliton. This can be seen on
the level of dark soliton perturbation theory [23], resulting in
an approximate particlelike equation of motion for the soliton
center in the presence of a weak external potential. This has
been worked out for a dark soliton perturbed by a δ-shaped
impurity potential in [22], with the result that the impurity is
attractive (repulsive) to the soliton if it is attractive (repulsive)
to the atoms in the condensate. We have extended this analysis
to our impurities of Gaussian shape (see Appendix for the
details) and find that the overall result persists: dark solitons
are effectively attracted by a Gaussian of V0 < 0. Specifically,
the soliton center x0 follows the equation of motion

d2x0

dt2
= −dW

dx0
, (4)

where the effective potential W (x0) is predicted from pertur-
bation theory (see Appendix for the details). Figure 1 shows
the resulting effective potentials for varying widths of the
Gaussian impurity (located at x = 0), keeping the amplitude
fixed. Clearly, a potential minimum for the soliton dynamics
is found for all cases with V0 < 0, while it turns into an

FIG. 1. (Color online) Effective potentials W (x0) for the soliton
position coordinate x0 as obtained from soliton perturbation theory.
In each case, the underlying atomic potential consists of a harmonic
trap and a Gaussian of variable width σ and fixed attractive amplitude
V0 = −1 centered at x = 0 (black circles for repulsive potential
V0 = 1), μ = 1 throughout.
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unstable maximum for V0 > 0 (black circles in Fig. 1). In
the vicinity of the fixed point x = 0, the effective potential is
strongly shaped by the Gaussian, while further away from the
center it asymptotes to �2x2/4, half the bare potential of the
trap, yielding the characteristic soliton oscillation at �/

√
2 as

expected in the absence of the Gaussian [5,17].
This perturbative treatment suggests that for dragging along

a dark soliton with a Gaussian impurity, one should choose the
impurity as attractive for the atoms. Consequently, we will
focus on V0 < 0 in the following. It should be noted that the
parameters used in the rest of this work are mostly out of the
range of validity of the soliton perturbation theory.

III. GENERATING, PINNING,
AND DRAGGING A DARK SOLITON

In this section, we demonstrate the possibility to generate,
pin, and drag along a dark soliton with an attractive Gaussian
impurity entering the BEC cloud from outside. An example
of this is shown in Fig. 2(a), displaying the spatiotemporal
evolution of the atomic density under the influence of the
impurity potential. The dimensionless chemical potential is
chosen as μ = 1, corresponding for instance to a condensate
of around 3300 sodium atoms under a transverse confinement
of ω⊥ = 2π × 200 Hz. For these parameters, the resulting
healing length in the center of the cloud is close to 1 μm. The
white line indicates the trajectory of the Gaussian that moves
linearly into the BEC cloud towards x = 1. After staying

(b)

(a)

FIG. 2. (Color online) Generating, dragging, and releasing a dark
soliton. The white line indicates the trajectory of the Gaussian
impurity (parameters V0 = −12, σ = 0.1). At t = 129 the impurity
is switched off. (a) Density |ψ(x,t)|2. (b) Snapshots of the phase
angle profile at different times.

stationary at this point for a time interval of �t = 10, it is
switched off. The generated soliton can be identified already
at an early stage. When the impurity enters the cloud, the
characteristic density minimum as well as the phase shift
close to π [see Fig. 2(b)] are created almost immediately.
The soliton follows the motion of the impurity and is dragged
along towards x = 1 where it is held for �t = 10. When the
Gaussian potential is switched off, the soliton is released
and starts to oscillate in the harmonic trap. On a perfect
Thomas-Fermi background, the frequency of this solitonic
oscillation is expected to be �/

√
2 [5,17]. In the present

simulation, the Gaussian impurity also slightly excites the
collective dipole mode, causing a center-of-mass oscillation
of the entire cloud at the trap frequency �. A two-sine fit
to the soliton trajectory reveals a superposition between the
particlelike soliton oscillation at �/

√
2 and the collective

dipole oscillation at �, validating the dark soliton character
of the created excitation.

We have confirmed in our simulations that the generation,
immediate pinning, and dragging of a dark soliton as shown
in Fig. 2 are successful in a wide range of parameters.
Specifically, while the velocity of the impurity is relevant (see
also following), the exact trajectory is not, and the process
works equally well with curved trajectories of the impurity
and shorter or longer hold times prior to release (see, however,
the discussion in Sec. IV).

To develop a fidelity measure for the dark soliton generation
process, we need to identify a scenario in which a precise
definition of the ideal desired outcome can be given. While
on a homogeneous background there is a notion of a perfect
gray (moving) soliton, an extension of this accounting for
the inhomogeneous density induced by the trap is available
on an approximate level only. In contrast, the profile of a
fully stationary (black) soliton in the trap can be obtained
unambiguously by solving the stationary GPE. Moreover, it
can be expected that at parameters, at which an undisturbed
initialization of a black soliton is possible, an off-center release
from the impurity and the subsequent acceleration due to the
trap (similar as seen in Fig. 2) will produce a clean gray soliton.
Thus, we proceed to quantitatively evaluate the success of the
soliton generation process by focusing on the preparation of a
black soliton in the trap center. To do so, we choose Gaussians
of different parameters that enter the cloud at a given velocity
and move towards x = 0, are held there for a while, and then
turned off. For each of these runs, we compare the resulting
final state to that of a stationary black soliton, our target state.
This target state φBS(x) (with the same squared norm N as the
wave function in the simulation) is computed separately by
numerically solving the time-independent GPE. Then, for any
time t after the potential has been turned off, we can calculate
the overlap

S(t) = 1

N2

∣∣∣∣
∫

dx φ∗
BS(x)ψ(x,t)

∣∣∣∣
2

. (5)

This quantity is then averaged over a time interval [tr ,tf ],
ranging from the release time tr (when the impurity is switched
off) to a final time tf :

S = 1

tf − tr

∫ tf

tr

dt S(t). (6)
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FIG. 3. (Color online) Black soliton generation fidelity S as a
function of the potential strength V0 and width σ . The Gaussian
enters the cloud at a velocity v = 0.0925, the initial chemical potential
μ = 1.

By the Cauchy-Schwarz inequality, 0 � S � 1. If the
dynamics caused by the impurity results in a perfect stationary
black soliton, one has |ψ(x,t)| = |φBS(x)| for all t > tr (taking
advantage of the fact that the target state is stationary), and thus
S = 1 would correspond to a perfect fidelity of the creation
process. Smaller deviations from this indicate dynamics of the
soliton and/or the bulk of the cloud after the impurity has been
turned off, while S � 1 suggests that the generation of a single
dark soliton has completely failed. Figure 3 shows results for
the fidelity S as a function of width σ and height V0 < 0
of the Gaussian impurity. The 1/e2 width of the Gaussian
is given by w = 4σ and ranges from 0.24 to 1.2 here. This
is to be compared to the healing length in the center of the
cloud given by ξ ≈ 0.7. The impurity moves towards the trap
center on a linear trajectory, as in Fig. 2, at a velocity that
is fixed to v = 0.0925 in this set of simulations (measured in
units of a⊥/ω⊥). It is then suddenly stopped and held at x = 0
for �t = 10, before being switched off. The quantity S is then
obtained by averaging S(t) from the subsequent dynamics over
an interval tf − tr = 481.

Most notably, there is an extended parameter region of
substantial fidelity S � 0.9. A small or intermediate potential
width σ together with a large or intermediate potential strength
|V0| is applicable for the controlled generation, dragging, and
holding of a single dark soliton. An exemplary plot at the
same parameter values as in Fig. 2 (but now with the final
position of the Gaussian at x = 0) is shown in Fig. 4(a) for
the parameter set (V0 = −12, σ = 0.1). For this comparably
narrow impurity, the final state is close to a stationary black
soliton, but both the dipole mode and the soliton oscillation
mode are slightly excited. In contrast, turning to the param-
eters (V0 = −7, σ = 0.28), the fidelity is roughly the same,
S ≈ 0.94, but the deviations from the black soliton state are
of a different kind [see Fig. 4(b)]. Here, the soliton itself

FIG. 4. (Color online) Density evolution |ψ(x,t)|2 for some of
the simulations underlying Fig. 3. The parameters of the Gaussians
are (V0,σ ) = (−12,0.1) (a), (−7,0.28), (b) and (−8,0.19) (c),
respectively.

is closer to stationary than in Fig. 4(a), but the background
is excited at higher frequency modes and more disturbed
by density waves. The comparison of Figs. 4(a) and 4(b)
illustrates that the fidelity S is sensitive to different types of
remaining excitations around the target state (both particlelike
oscillations of the soliton and collective oscillations in the
bulk), and that one has some freedom in reducing either the
particle-type soliton dynamics or the background excitations
by tuning the parameters of the Gaussian. In both regions
of parameter space, the dark soliton characteristics of the
induced density minimum are clearly observed; specifically,
we have checked the oscillation at �/

√
2 for off-centered

release. Finally, Fig. 4(c) shows a simulation at parameters
(V0 = −8, σ = 0.19) that yields a particularly large fidelity
of S ≈ 0.98. Here, the evolution is similar to that shown
in Fig. 4(b), but the background excitations are further
suppressed.
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FIG. 5. (Color online) Black soliton creation fidelity as a func-
tion of the impurity velocity for two different sets of parameters of
the Gaussian potential.

So far, we have not addressed the role of the velocity at
which the Gaussian defect is moved through the condensate.
For the two parameter sets (V0,σ ) = (−12,0.1),(−7,0.28), we
have performed simulations for a range of defect velocities v.
The resulting fidelity S for varying v is shown in Fig. 5.

For both parameter sets, we find a robust plateau of
large S at small v. In particular, for the deep and narrow
Gaussian with (V0,σ ) = (−12,0.1) the fidelity is close to 1 for
v � 0.08. Increasing the velocity, for this parameter set a
sharp drop of S is observed at v ≈ 0.16. Beyond this velocity,
in addition to a rather strong excitation of the background,
further dark solitons are generated of which at most one
is pinned by the Gaussian, which drastically reduces the
overlap with the single black soliton state. This parameter
regime could be of interest in its own right when moving the
focus towards multiple soliton physics, but the high degree of
control over the single soliton creation process is lost there.
In contrast, a comparable critical drop in the fidelity is not
observed for the Gaussian with (V0, σ ) = (−7,0.28), where S

remains relatively large for an extended range of v. For these
parameters, going to even larger velocities than shown in Fig. 5
we observe a trend of decreasing S, but caused by enhanced
excitation of the background and the soliton oscillation mode,
instead of multiple soliton formation.

In this work, we do not aim to explore the full velocity
dependence and the dynamical details of the nucleation process
in which the dark soliton is created when the defect enters the
cloud. Generally, the formation of excitations in a superfluid
simultaneously exposed to a moving defect and a trapping
potential (which leads to an inhomogeneous background
density) is an interesting and timely subject to study in its own
right (see for instance the recent experiment on vortex shedding
in quasi-2D condensates [41]). Even on a homogeneous
background, predicting the critical velocity above which a
defect causes the creation of nonlinear excitations is an
intricate problem (see for instance the extensive discussion of
vortex nucleation in [42]) that is subject to ongoing research
[43,44]. Some related results on soliton formation in 1D
(mostly focusing on repulsive defects) are available, e.g.,
[13,14,45,46], but in our setup additional complications due
to the inhomogeneous background density traversed by the
defect, the attractive sign and the comparably soft boundary of
the Gaussian potential [41] and possibly also the 1D reduction
[47] will require separate investigations that are beyond the
scope of this study.

IV. INSTABILITIES FOR LONG HOLD TIMES

In the above simulations, the soliton was created and
dragged by the moving impurity, then placed at a desired
position in the trap and held there for a comparably short time
(�t = 10) before being released. Substantially extending this
hold time reveals an additional effect. For certain parameter
values, we observe instability phenomena in the dynamics
of the pinned soliton (see Fig. 6). We find that the soliton
performs micro-oscillations around the Gaussian potential
during the hold interval (similar oscillations are observed in
all our simulations). Here, however, at t ≈ 140 the amplitude
of the micro-oscillations starts to increase strongly, before it
decays again after t ≈ 210. A similar increase and decrease is
observed again at around t � 300. We conclude from this that
long hold times may give rise to undesired effects when aiming
for a stationary soliton. Inadvertently releasing the soliton
during a period of enhanced micro-oscillation will yield a
comparably large momentum of its particlelike motion and cor-
respondingly a large amplitude of its subsequent oscillations
in the trap. Thus, the hold interval may crucially affect the final
state of the soliton preparation process. Comparable dynamical
instabilities of a dark soliton under the influence of a narrow
external potential have been related to sound emission caused
by the repeated asymmetric deformation of the oscillating
soliton due to the impurity [18] (see also [19,28,48–51]).

(a)

(b)

FIG. 6. (Color online) Controlled creation of a dark soliton,
followed by a long hold time. The parameters of the Gaussian
are V0 = −12, σ = 0.08, v = 0.0925 (before reaching x = 0).
(a) Density evolution |ψ(x,t)|2. The piecewise linear trajectory of
the impurity is marked by a white line. The white box highlights
the first region of dynamical instability. (b) Position of the density
minimum (as a measure of the soliton center) as a function of time in
the time interval marked by the box in (a).
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FIG. 7. (Color online) BdG linearization spectra of the dark
soliton state in the presence of a Gaussian potential in its center.
All BdG frequencies are given in units of ω⊥. Blue crosses, red
circles, and green asterisks denote the normal, anomalous, and
complex modes, respectively. The chemical potential is fixed at
μ = 1.15, yielding the same norm as the ground state at μ = 1.
(a) V0 = −12, revealing a complex mode at σ = 0.08, corresponding
to the parameter set of Fig. 6. (b) V0 = −0.25, including also the
linearization frequency predicted from the soliton perturbation theory
(black dots).

To obtain further insights into the dynamical instabilities
due to the Gaussian potential, we employ a linearization
analysis. Let us assume that the state that originates from
the Gaussian entering the cloud and moving towards x = 0 is
close to the corresponding stationary black soliton state (now
in the presence of the Gaussian). Then, information about
its stability is encoded in the Bogoliubov–de Gennes (BdG)
excitation spectrum, obtained by adding a small deviation
δψ(x,t) = e−iμt [u(x)e−iωt + v∗(x)eiω∗t ] to the stationary dark
soliton state, linearizing the GPE in δψ and solving the
ensuing eigenvalue problem for ω [4]. Here, μ denotes the
chemical potential of the stationary solution. Frequencies
having nonzero imaginary part indicate an instability of the
initial state as they induce exponential growth of a generic
small perturbation. Such complex modes may emerge from
collisions of normal and anomalous modes (modes with
positive or negative energy and Krein signature, respectively)
[4,52]. Here, the BdG spectrum of the dark soliton state is
expected to exhibit a single anomalous mode that is related to
its particlelike motion [5]. If this becomes resonant with one
of the background modes as a parameter is tuned (for instance,
the width of the Gaussian), this may lead to instability of the
state. Indeed, we observe these effects in the BdG spectrum
of the black soliton state with a Gaussian potential placed
in its center. We fix the norm of the wave function and the
amplitude V0 = −12 of the Gaussian to the same values as in
Fig. 6 and scan σ . The resulting spectrum as a function of σ

is shown in Fig. 7(a) (by the Hamiltonian symmetry, if ω is
in the BdG spectrum, then so are −ω, ω∗, and −ω∗, so we

can restrict to positive real and imaginary parts in the figure).
Here, even for moderately small σ the large amplitude of the
Gaussian strongly shifts the anomalous solitonic oscillation
mode away from its value �/

√
2 expected in the harmonic

trap only. Increasing σ leads to a further increase of the
anomalous mode frequency, causing subsequent collisions
with background modes that result in complex quartets,
signaling oscillatory instability. The width σ = 0.08, as used in
the simulation of Fig. 6, indeed lies at the edge of such a region
of instability. Let us at this point return to the perturbative
regime of small |V0| that was discussed in Sec. II. Numerically
calculating the BdG spectrum as a function of σ also reveals the
emergence of complex instability bubbles in this regime [see
Fig. 7(b) for an example]. The solitonic perturbation theory
does not account for background excitation modes and is not
capable of predicting these instabilities. Interestingly, however,
the linearization frequencies predicted from the perturbation
theory [by linearizing the effective potential W (x0) around
x0 = 0] quite accurately capture the real part of the unstable
BdG modes even in the instability regions. In regions of
stability, the frequency from the perturbative approach is close
to the anomalous mode in the BdG spectrum, as expected.
As is to be expected, the agreement slightly deteriorates for
large σ , where the overall perturbation due to the Gaussian
effectively becomes stronger.

V. PERSPECTIVES AND CONCLUSIONS

We theoretically investigated the possibility to controllably
generate, drag, hold, and release a dark soliton in a quasi-1D
Bose-Einstein condensate using a Gaussian-shaped impurity
as could be implemented with a focused laser beam. The
time-dependent Gross-Pitaevskii equation containing the trap
potential as well as the Gaussian impurity was propagated in
time to obtain the spatiotemporal evolution of the condensate
wave function when disturbed by the moving defect. On a
perturbative level, we found that if the Gaussian is attractive
(repulsive) to the atoms, then it is effectively attractive
(repulsive) to the dark soliton as well, thus suggesting the
use of an attractive impurity (red-detuned focused laser) for
holding and dragging dark solitons, in contrast to the pinning
of vortices at repulsive barriers.

We demonstrated that by entering the atomic cloud with
an attractive Gaussian one can create a single dark soliton
that immediately sticks to the defect and can be controllably
placed and released at a desired position in the condensate,
showing the expected characteristics of a dark soliton after
release. Detailed investigations revealed an extended range of
model parameters (such as the width and amplitude of the
Gaussian) for which this mechanism is successful, thereby
underlining its robust nature. As a drawback, the width of the
Gaussian must be relatively small, comparable in size to the
soliton healing length, requiring a much tighter focus than in
previous experiments [15]. For instance, in the case of 23Na
atoms and a transverse confinement of ω⊥ = 2π × 200 Hz,
a dimensionless value of σ = 0.2 in our simulations (for
which we observe particularly successful soliton generation
and control) translates into a 1/e2 beam width of w = 4σa⊥ ≈
1.2 μm, close to the central healing length, while the wave-
function norm in our simulations translates into a relatively
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FIG. 8. (Color online) Generating two solitons with two impurity
potentials moving independently on the trajectories indicated by
white lines. Colors encode the density |ψ(x,t)|2. For both Gaussian
potentials, V0 = −14, σ = 0.09.

small number of around 3300 atoms. This is a challenging
requirement, but not out of reach, given that optical systems
with submicron resolution are already employed in present-day
cold-atom experiments [53,54].

Moreover, our studies suggest that long stationary hold
times of the defect are not favorable for the controlled
generation of black solitons, due to the possibility of dynamical
instabilities that may lead to a spontaneous increase of the
micro-oscillation amplitude of the soliton around the Gaussian.
This was related to corresponding complex modes arising
in the Bogoliubov–de Gennes spectra, and linked to the
linearization results from the perturbative approach.

The protocol for simultaneous generation and holding
of the dark soliton as described here is appealing since
capturing an existing soliton in a BEC cloud would be a
much more difficult task. Even if a suitable pinning potential
is available, catching the soliton requires information about
its time-dependent position, which is hard to obtain given
the destructive measurement schemes. Furthermore, we point
out that if more than one laser beam is available, the soliton
creation scheme described herein can immediately be cascaded
to generate two or more dark solitons at predefined positions
as shown in Fig. 8 (cf. also [34]). The two dark solitons are
created and trapped by their respective defect potential, and
when released they exhibit the expected particlelike collision
dynamics (cf. [16,55]).

In this work, we have not addressed the details of the soliton
nucleation process occurring in the low-density wings of the
cloud and its dependence on the defect velocity. This aspect
of the problem promises to be an interesting topic for future
studies. Also, it would be desirable to perform simulations of
the soliton creation and dragging protocol in the framework of
the full three-dimensional Gross-Pitaevskii equation, checking
for possible transverse excitation effects that are not captured
within the dimensional reduction.
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APPENDIX: SOLITON PERTURBATION THEORY

In this Appendix, we outline the derivation of the effective
potential for the soliton in the harmonic trap, perturbed by
a Gaussian impurity. We follow the presentation in [22], but
generalize the Dirac δ potential used in that work to a Gaussian
as in Eq. (3). By the same arguments as in [22], the Thomas-
Fermi–type background profile ub(x) of the condensate ground
state is approximated by ub(x) = u0 + ftrap(x) + fg(x), where
u0 is the maximum background amplitude (u0 = √

μ in the
Thomas-Fermi limit considered here), ftrap(x) accounts for
the modified shape due to the harmonic trap, and fg(x) incor-
porates the perturbation by the Gaussian impurity. Explicitly,
ftrap(x) = − 1

2u0
Vtrap(x) with Vtrap = �2x2/2, as in [22], and

fg(x) = V0σ

2

√
π

2
e2u2

0σ
2

×
({

− 1 + erf

[
σ√

2

(
2u0 + x

σ 2

)]}
e2u0x

+
{

− 1− erf

[
σ√

2

(
− 2u0 + x

σ 2

)]}
e−2u0x

)
. (A1)

Here, we can recover the result of [22] by taking the Dirac
limit V0 = b/(

√
2πσ ) and σ → 0 for a fixed b, resulting in

fg(x) = −(b/2) exp(−2u0|x|).
With the generalized ub(x), we follow the further steps in

[22]. The dynamics of the dark soliton on top of the Thomas-
Fermi–type background is investigated with the ansatz

ψ(x,t) = ub(x)e−iu2
0t v(x,t), (A2)

where v(x,t) represents a dark soliton on this background.
Inserting Eq. (A2) into the time-dependent GPE leads to a
perturbed defocusing nonlinear Schrödinger equation for the
soliton function v, with a perturbation term that depends on
ftrap and fg . Making an ansatz for v in the form of a dark soliton
solution of the defocusing nonlinear Schrödinger equation, but
with its position and phase angle slowly varying in time, one
can employ the adiabatic perturbation theory for dark solitons
of [23] to obtain the desired equation of motion of the soliton
center x0(t), which in our case reads as

d2x0

dt2
= −1

2

dVtrap

dx

∣∣∣∣
x=x0

+ u3
0e

2u2
0σ

2

√
π

2

V0σ

2

∫ ∞

−∞
dx[F1(x)

+F2(x)] =: −dW

dx0
, (A3)

where the integrands

F1(x) =
{

− 1 − erf

[
σ√

2

(
− 2u0 + x

σ 2

)]}
e−2u0x

×{tanh[u0(x − x0)] − 1}sech4[u0(x − x0)],

F2(x) =
{

− 1 + erf

[
σ√

2

(
2u0 + x

σ 2

)]}
e2u0x

×{tanh[u0(x − x0)] + 1}sech4[u0(x − x0)].

From Eq. (A3), we can numerically compute the effective
potential W (x0) (as shown in Fig. 1) and the linearization
frequency around its fixed point at x0 = 0.
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