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Second-order response theory of radio-frequency spectroscopy for cold atoms
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We present a theoretical description of the radio-frequency (rf) spectroscopy of fermionic atomic gases, based
on the second-order response theory at finite temperature. This approach takes into account the energy resolution
due to the envelope of the rf pulse. For a noninteracting final state, the momentum- and energy-resolved rf
intensity depends on the fermion spectral function and pulse envelope. The contributions due to interactions
in the final state can be classified by means of diagrams. Using this formalism, as well as the local density
approximation in two and three dimensions, we study the interplay of inhomogeneities and Hartree energy in
forming the line shape of the rf signal. We show that the effects of inhomogeneities can be minimized by taking
advantage of interactions in the final state, and we discuss the most relevant final-state effects at low temperature
and density, in particular the effect of a finite lifetime.
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I. INTRODUCTION

In many-fermion systems, the low-energy properties are
often determined by single-particle excitations across the
Fermi surface. The character of these excitations depends
on the nature of the ground state, which itself depends on
the interactions. The study of single-particle excitations is
therefore a key to understanding the ground state and the role
of interactions. In superconductors, for instance, a gap in the
single-particle excitation spectrum reveals the condensation
of Cooper pairs in the ground state. In a large class of
materials, the interactions bring only quantitative changes with
respect to a noninteracting ground state. The single-particle
excitations are then similar to uncorrelated particles, albeit
with a renormalized mass and a finite lifetime. The collection
of these “quasiparticles” forms a Fermi liquid, which can be
characterized by a small number of effective parameters [1].
For strong interactions and/or reduced dimensionality, qualita-
tive changes may occur in the ground state, leading to the disap-
pearance of the quasiparticles and the emergence of more com-
plex, sometimes mysterious, excitations [2,3]. The absence of
quasiparticles in a fermion system is a hallmark of non-Fermi
liquid physics, indicating an unconventional ground state.

For electronic materials, angle-resolved photoemission
spectroscopy (ARPES) gives access to the single-particle
excitations and allows one to probe the existence of quasi-
particles [4]. The signature of quasiparticles is a peak at
low energy in the spectral function, which is the momentum-
energy distribution of the single-particle excitations, denoted
A(k,ε). Conversely, a structureless spectral function signals
the absence of quasiparticles. ARPES experiments require
clean surfaces and ultrahigh vacuum, and an energy resolution
below the typical excitation energy of the quasiparticles.
Steady improvements in recent years and the development
of laser ARPES have made it possible to measure the spectral
function with excellent resolution in several condensed-matter
systems [5–7]. When it is present, the quasiparticle peak and its
dispersion anomalies can help in identifying the interactions
that determine the quasiparticle dynamics.

Fermionic cold-atom gases open new avenues in the study
of quasiparticles, especially thanks to the possibility of tuning

both the dimensionality and the strength of interactions.
Radio-frequency (rf) spectroscopy is presently the best method
to measure the spectral function of cold-atom systems.
Unlike in conventional ARPES, photoemission spectroscopy
in ultracold atoms is performed using rf photons, which carry
negligible momentum but only supply an energy hν. The
momentum of the extracted atoms is then measured using the
time-of-flight technique. If the particles are decoupled in the
final state, their energy and momentum distributions follow
the spectral function of the photon-induced hole, which is the
occupied part of the spectral function, i.e., A(k,ε)f (ε), where
f (ε) is the Fermi function [8,9].

The interpretation of photoemission and rf experiments may
be complicated by the unavoidable interaction in the final
state, as well as several other difficulties. In ARPES, these
are, for instance, the sample surface, which breaks inversion
symmetry and produces interference, or the screening of
the electromagnetic field, which prevents light from entering
the bulk of the material. In rf spectroscopy of cold atoms, the
main concern is the inhomogeneity of harmonically trapped
gases. When interactions and excitation energies are not
too low, as in the studies of the BCS-BEC crossover [10],
some of these difficulties may turn out to be irrelevant.
For weak interactions, however, they will eventually become
important. If the signal is broadened by final-state effects,
averaging over inhomogeneities, and finite energy resolution,
a precise modeling is necessary in order to recover the crucial
information about the quasiparticles.

In the established theory of rf spectroscopy, one computes
the instantaneous transition rate to the final state. This can
be done either by linear response [8], which provides the
current Ṅf of particles transferred to the final state, or by
time-dependent perturbation theory (Fermi golden rule) [9].
At leading order, Ṅf is related to a response function, which
can be represented by bubblelike Feynman diagrams [11]. In
this approach, the effect of inhomogeneities has been inves-
tigated at the mean-field level [12] or using the local-density
approximation (LDA) [9,13]. To circumvent the difficulties
raised by inhomogeneity, a Raman local spectroscopy was
proposed theoretically [9], while a tomographic technique
[14] and a method to selectively address the cloud center
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[15] were demonstrated. Final-state effects have been treated
in the mean-field approximation [16] by sum-rule arguments
[17,18], within a reduced basis [19], a 1/N expansion
[20], diagrammatically [11,21], or through self-consistency
requirements [22]. Most of these studies have focussed on the
BCS-BEC crossover problem.

For intermediate or weak interactions, the finite energy
resolution must be considered. The relevant quantity to
calculate is no longer Ṅf , but the total population Nf of
the final state, created over the duration of the rf pulse.
Momentum-resolved rf experiments indeed measure the mo-
mentum distribution nf (k,t) at a time t after the extinction
of the rf pulse. If atoms were excited at a constant rate, Ṅf

and Nf would carry the same information, but this is not the
case in practice. In this paper, we present the calculation of
nf (k,t) within equilibrium response theory. The derivation
is performed in the finite-temperature Matsubara framework.
Unlike Ṅf , nf vanishes at first order in the atom-light coupling.
At second order, the momentum distribution is related to
a three-point response function, whose contributions can be
classified using Feynman diagrams. These diagrams have three
external vertices, unlike the bubble diagrams of the established
theory, which have only two. The leading contribution repro-
duces the known result [8,9], albeit convolved with a resolution
function, which depends on the envelope of the rf pulse and
on the spectral function in the final state.

Simulations based on this formalism have been presented
earlier [23] and compared with measurements for 40K atoms
in two-dimensional harmonic traps with a weak attractive in-
teraction. In this work it was shown that inhomogeneities must
be considered for a correct determination of the quasiparticle
effective mass. Here we discuss the role of inhomogeneities
in this experiment in more detail and propose ways to reduce
their effect. We also show that, in the experiments of Ref. [24]
made with 6Li atoms in three-dimensional harmonic traps,
the inhomogeneity sets the line shape of the integrated rf
intensity and should be considered for the precise experimental
determination of the scattering length.

The paper is organized as follows. In Sec. II A, we present
the model and the calculation of nf (k,t). The generic diagrams
giving the momentum distribution are shown in Sec. II B, and
the leading contribution is evaluated in Sec. II C. Without
interaction in the final state, the analysis simplifies as shown
in Sec. III, where we discuss the interplay between the
inhomogeneity and the Hartree shifts. We study final-state
effects in Sec. IV: the effect of a finite lifetime, the effect
of inhomogeneous Hartree shifts, and other final-state effects
which correspond diagrammatically to vertex corrections.
Conclusions and perspectives are given in Sec. V.

II. FINITE-TEMPERATURE, SECOND-ORDER RESPONSE
THEORY FOR THE MOMENTUM DISTRIBUTION

A. Description of the model

The atoms are modeled as three-level systems with internal
states |α〉, α = 1,2,3. States |1〉 and |2〉 are assumed to interact
most strongly, while state |3〉 has higher energy and will be
the final state of the rf experiment; see Fig. 1. We consider
that the three levels have the same dispersion; our results

FIG. 1. (Color online) Rf spectroscopy of ultracold atoms. The
hyperfine atomic levels |1〉, |2〉, and |3〉 are split by the Zeeman
effect, such that a rf transition is allowed between states |2〉 and
|3〉. The tunable many-body interaction between atoms of the cloud
in states |1〉 and |2〉 shifts and broadens the level |2〉. The effects
of this interaction are probed by comparing the frequency ν of the
rf transition with the frequency ν0 of the noninteracting transition.
Spin relaxation from |2〉 to |1〉 is forbidden by conservation of spin,
meaning that the energy splitting between |1〉 and |2〉 is irrelevant.
Levels |1〉 and |3〉 may be renormalized by interactions as well.

are readily generalized to the case where the dispersions are
different in the initial and final states. These levels correspond,
in practice, to atomic hyperfine states. The interaction between
|1〉 and |2〉 is resonant and can be tuned by means of a
Feshbach resonance [25]. Once the field is set, the interactions
between |1〉 and |3〉 and between |2〉 and |3〉 are also set.
Ideally, the latter interactions are small compared with the
former. We consider hereafter fermionic atoms, and we assume
translation invariance for simplicity. The extension to bosons
is straightforward, and the formalism can be developed in real
space if needed. Let c

†
αk be the creation operator for an atom

in the state |α〉 with momentum �k. The low-energy effective
Hamiltonian is H = H0 + V , with

H0 =
∑

k

[εk(c†1kc1k + c
†
2kc2k) + (εk + hν0)c†3kc3k], (1)

V = 1

2

∑
kk′q
αβ

Vαβ(q)c†αkc
†
βq−kcαk′cβq−k′ . (2)

We consider here the case of a local interaction between two
atoms with center-of-mass momentum q. The detailed form
of the interaction plays no role in our derivation, which is also
valid for more general momentum-dependent interactions. For
a contact interaction, the Pauli principle prevents atoms in the
same internal state from interacting, and we can set Vαα = 0.

The level separation ν0 is typically in the 100-MHz range,
and the rf radiation at this frequency has a wavelength of the
order of meters. The rf pulse therefore induces momentum-
conserving transitions. Let H ′(t) be the time-dependent
interaction between the rf radiation and the atoms, and let
us assume that the allowed transition is between states |2〉 and
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|3〉. We have

H ′(t) = E(t)
∑

k

(c†3kc2k + H.c.) = E(t)
∑

k

γk . (3)

The function E(t) gives the time envelope and strength of the
coupling. For later convenience, we define the operator

γk = γ
†
k = c

†
3kc2k + H.c. (4)

B. Generic diagrams for the momentum distribution

We now expand the momentum distribution in the final
state, nk ≡ c

†
3kc3k, in powers of H ′. In the grand-canonical

ensemble, and in the interaction picture, we have

〈nk(t)〉 = Tr ρnk(t), (5)

with ρ = e−β(H−μN)/Tr e−β(H−μN), β = 1/(kBT ), μ the
chemical potential, and N the number operator. Since we work
in equilibrium, the chemical potential μ sets the populations
of the three levels, and N is the total atom number. The
evolution is given by nk(t) = U−1(t)nkU (t) with U (t) the
interaction part of the evolution operator. The zeroth-order
term is obviously

〈nk(t)〉(0) = Tr ρnk ≡ 〈nk〉H , (6)

which gives the equilibrium thermal population of the final
state. For a noninteracting system, this becomes

〈nk〉H0 = f (εk + hν0 − μ), (7)

where f (ε) = (eβε + 1)−1 is the Fermi distribution function.
The usual setup is that the final state is initially empty, such that
this contribution is negligible at low temperatures, kBT � hν0.
The first-order term in H ′ is known, from standard linear-
response theory, to be

〈nk(t)〉(1) = − i

�

∫ t

−∞
dt ′ 〈[nk(t),H ′(t ′)]〉H

=
∫ ∞

−∞

dω

2π
e−iωtE (ω)

∑
k′

CR
nkγk′ (ω) = 0.

At the second line, we have introduced E (ω), the Fourier
transform of E (t), and the equilibrium retarded correlation
function of the operators nk and γk′ in the system described by
H . In the time domain, this correlation function is

CR
nkγk′ (t) = − i

�
θ (t)〈[nk(t),γk′(0)]〉H , (8)

with the time dependence of the operators governed by the
evolution e−i(H−μN)t/�. Because H , N , and nk all conserve the
number of atoms in the states |2〉 and |3〉, while the two terms
in γk′ do not, the correlation function (8) vanishes identically.

The second-order response involves a double commuta-
tor and can be expressed in terms of a double-time re-
tarded correlation function of the three operators nk, γk′ ,

and γk′′ :

〈nk(t)〉(2) =
(

− i

�

)2 ∫ t

−∞
dt ′

×
∫ t ′

−∞
dt ′′〈[[nk(t),H ′(t ′)],H ′(t ′′)]〉H

=
∫ ∞

−∞

dω

2π

dω′

2π
e−i(ω+ω′)tE (ω)E (ω′)

×
∑
k′k′′

CR
nkγk′γk′′ (ω,ω′). (9)

This contribution can be evaluated within the Matsubara
formalism. We find that the double-time correlation function
in Eq. (9) is given by the analytic continuation to real frequen-
cies of an imaginary-frequency function Cnkγk′ γk′′ (i�n,i�

′
n),

according to (see Appendix A)

CR
nkγk′ γk′′ (ω,ω′)

= 1

2
Cnkγk′ γk′′ (i�n → �ω + i0+,i�′

n → �ω′ + i0+). (10)

i�n = 2nπkBT with integer n denote the even Matsubara
frequencies. In the imaginary-time domain, the double-time
function is defined as

Cnkγk′ γk′′ (τ,τ
′) = 〈Tτnk(τ )γk′(0)γk′′(τ − τ ′)〉H , (11)

with Tτ the imaginary-time ordering operator, nk(τ ) =
eτ (H−μN)nke

−τ (H−μN), and similarly for γk′′ (τ − τ ′). The
imaginary-time and imaginary-frequency functions are related
by

Cnkγk′γk′′ (i�n,i�
′
n) =

∫ β

0
dτdτ ′ei�nτ ei�′

nτ
′
Cnkγk′γk′′ (τ,τ

′).

(12)
The correlation function (11) is nonzero, because the two
crossed terms in the product γk′γk′′ conserve the number of
atoms of each flavor. Gathering these two terms, we get

Cnkγk′ γk′′ (τ,τ
′)

= 〈Tτ c
†
3k(τ )c3k(τ )c†3k′(0)c2k′(0)c†2k′′ (τ − τ ′)c3k′′ (τ − τ ′)〉H

+〈Tτ c
†
3k(τ )c3k(τ )c†2k′(0)c3k′(0)c†3k′′ (τ −τ ′)c2k′′ (τ −τ ′)〉H .

(13)

The two terms can be represented by Feynman diagrams, as
shown in Fig. 2. These diagrams have three entry points, one
representing the measurement of the momentum distribution
and two representing the transitions induced by H ′ between
states |2〉 and |3〉. Similar diagrams arise in the response theory
of electron photoemission [26–30]. This is to be contrasted
with the bubble-type diagrams representing the transition rate
Ṅf (see, e.g., Ref. [11]).

C. Leading contribution

We can distinguish two categories of diagrams, as illustrated
in Fig. 3. The justification for separating the diagrams of type I
from “vertex corrections” of type II stems from the fact that, in
usual experimental conditions, the interactions in the final state
are small compared with the other interactions. If the former
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FIG. 2. Diagrammatic representation of the double-imaginary
time function (11). Diagrams (R) and (L) correspond to the first
and second terms of Eq. (13), respectively, up to a minus sign
(the correlation function equals minus the diagram, if standard
diagrammatic rules are used). The two diagrams are identical, except
for the direction of the arrows (R, right-handed, L, left-handed).
The white dots denote the interaction of atoms with light, leading
to transitions between internal states |2〉 and |3〉; the black dots
denote the measured momentum distribution, and the hatched regions
represent all interactions, including interactions with the state |1〉.

are exactly zero (V13 = V23 = V33 = 0), all vertex corrections
of type II disappear. Then, the two diagrams of type I′ (right-
and left-handed) are the only nonvanishing terms, with the
two propagators in state 3 given by free propagators. Since
diagram (I′) can be derived from diagram (I) by taking the ap-
propriate limit, we shall evaluate here diagram (I) and discuss
the case of a noninteracting final state in the next section.
Final-state effects are present in both type-I and type-II
diagrams. We discuss final-state effects of type I in Secs. IV A
and IV B and those of type II in Sec. IV C.

The two diagrams of type I involve a single momen-
tum, i.e., C (I)

nkγk′γk′′ (τ,τ
′) ∝ δkk′δkk′′ . They can be expressed

in terms of the Green’s functions for each atomic state.
We define the fermionic Green’s function as Gα(k,τ ) =
−〈Tτ cαk(τ )c†αk(0)〉H . In imaginary frequency, they are

G1,2(k,iωn) = 1

iωn − ξk − �1,2(k,iωn)
, (14)

G3(k,iωn) = 1

iωn − ξk − hν0 − �3(k,iωn)
, (15)

where iωn = (2n + 1)πkBT , ξk = εk − μ, and �α(k,iωn)
is the self-energy. Translating the two diagrams using the
conventions of Fig. 2 gives

C (I)
nkγkγk

(τ,τ ′) = G2(k,τ ′ − τ )G3(k,τ )G3(k, − τ ′)

+G2(k,τ − τ ′)G3(k,τ ′)G3(k, − τ ). (16)

FIG. 3. Leading term (I) and an example of vertex correction (II).
In both cases, the two topologically inequivalent diagrams of kinds R
and L must be considered. For a noninteracting final state, diagrams
of type I′ are the only nonvanishing contributions. Double lines
denote the Green’s function, and single lines denote the noninteracting
Green’s function in the final state.

The minus sign associated with the fermion loop is canceled
because the correlation function equals minus the diagram. We
perform the Fourier transform in Eq. (12) using the spectral
representation of the Green’s function,

Gα(k,τ ) =
∫ ∞

−∞
dεAα(k,ε)

1

β

∑
iωn

e−iωnτ

iωn − ε
, (17)

where Aα(k,ε) = −Im Gα(k,iωn → ε + i0+)/π is the single-
particle spectral function. This leads to

C (I)
nkγkγk

(i�n,i�
′
n)

=
∫ ∞

−∞
dεdε′dε′′A2(k,ε)A3(k,ε′)A3(k,ε′′)

× 1

β

∑
iωn

1

iωn − ε

[
1

iωn + i�n − ε′
1

iωn − i�′
n − ε′′

+ 1

iωn − i�n − ε′
1

iωn + i�′
n − ε′′

]
. (18)

The frequency sums are evaluated in the usual manner [31]
and yield terms proportional to either f (ε), f (ε′), or f (ε′′).
For weak interactions in the final state, A3(k,ε) peaks near
ε = ξk + hν0. The terms proportional to f (ε′), and f (ε′′) are
therefore small at low temperature, like the zeroth-order term
(6). We denote C (Ia)

nkγkγk
the contribution of the dominant terms

proportional to f (ε) and C (Ib)
nkγkγk

the contribution of the other
terms. We have

C (Ia)
nkγkγk

(i�n,i�
′
n)

=
∫ ∞

−∞
dεdε′dε′′A2(k,ε)A3(k,ε′)A3(k,ε′′)

× f (ε)

[
1

i�n + ε − ε′
−1

i�′
n − ε + ε′′

+ −1

i�n − ε + ε′
1

i�′
n + ε − ε′′

]
. (19)

Making the analytic continuation as in Eq. (10), and inserting
in Eq. (9), we obtain the leading contribution to the momentum
distribution:

〈nk(t)〉(Ia) =
∫ ∞

−∞
dεA2(k,ε)f (ε)

×
∣∣∣∣
∫ ∞

−∞
dε′A3(k,ε′)Ft (ε − ε′)

∣∣∣∣
2

. (20)

The dimensionless function F accounts for the broadening
effect due to the rf pulse:

Ft (ε) =
∫ ∞

−∞

dω

2π

e−iωtE (ω)

�ω − ε + i0+ = −i

�

∫ t

−∞
dt ′ei ε

�
(t ′−t)E (t ′).

(21)

The main goal of rf spectroscopy is to determine the spectral
function A2(k,ε). For weak interactions, this function is
peaked near ε = εk − μ = ξk. On the other hand, since the
dispersions in the initial and final states are the same and
only q = 0 transitions are possible, one expects to observe, by
varying the frequency ν of the rf radiation, a signal peaking
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close to the frequency ν0 of the noninteracting transition. In
order to make this more apparent, we introduce the detuning
ν̃ = ν0 − ν, we change variables in Eq. (20), and rewrite it in
the form

〈nk(t)〉(Ia) =
∫ ∞

−∞
dεR(Ia)

k (ε)A2(k,ξk + hν̃ − ε)

× f (ξk + hν̃ − ε). (22a)

This shows that the measured momentum distribution is the
convolution of the occupied part of the spectral function
with a dimensionless resolution function R(Ia)

k . Under ideal
conditions, the resolution function is proportional to δ(ε), and
the momentum distribution peaks near ν = ν0, as expected.
The expression of the resolution function resulting from
Eq. (20) is

R(Ia)
k (ε) =

∣∣∣∣
∫ ∞

−∞
dε′A3(k,ε′)Ft (ε + ε′ − ξk − hν̃)

∣∣∣∣
2

. (22b)

It takes into account the renormalization of the final state by
interactions, as well as the broadening due to the time envelope
of the rf pulse. For a noninteracting final state with a spectral
function A3(k,ε) = δ(ε − ξk − hν0), the resolution function
simplifies to

R(I′)(ε) = 1

�2

∣∣∣∣
∫ t

−∞
dt ′ei(ε+hν)t ′/�E (t ′)

∣∣∣∣
2

. (23)

Equations (22) are one central result of this work. We use them
to study the interplay of Hartree shifts and inhomogeneity in
two-dimensional 40K (Sec. III B) and three-dimensional 6Li
(Sec. III C) and to study the effect of a finite lifetime in the
final state (Sec. IV A).

The terms resulting from the frequency sum in Eq. (18),
which have not been retained in Eq. (19), are

C (Ib)
nkγkγk

(i�n,i�
′
n) =

∫ ∞

−∞
dεdε′dε′′A2(k,ε)A3(k,ε′)A3(k,ε′′)f (ε′)

[(
1

i�n + ε − ε′ + 1

i�′
n + ε − ε′

)
1

i�n + i�′
n − ε′ + ε′′

+
(

1

i�n − ε + ε′ + 1

i�′
n − ε + ε′

)
1

i�n + i�′
n + ε′ − ε′′

]
. (24)

We have rearranged the terms by exchanging ε′ and ε′′ in half
of them. We proceed as above, and introduce again a resolution
function:

〈nk(t)〉(Ib) = −f (ξk + hν0)

×
∫ ∞

−∞
dεR(Ib)

k (ε)A2(k,ξk + hν̃ − ε). (25a)

We have pulled out a minus sign, because this term is negative:
It corresponds to a reduction of the thermal population in the
final state as given by Eq. (6), induced by transitions to the
initial state. These terms describe an inverse rf spectroscopy
analogous to the inverse photoemission in condensed-matter
systems. In the usual experimental practice, they do not
contribute because the atom cloud is prepared in a slightly out-
of-equilibrium state, where level |3〉 is empty. The resolution
function in Eq. (25) is

R(Ib)
k (ε) = 2

�2

∫ ∞

−∞
dε′dε′′ f (ξk + hν̃ − ε′)

f (ξk + hν0)

×A3(k,ξk + hν̃ − ε′)A3(k,ξk + hν̃ − ε′′)

× Re
∫ t

−∞
dt ′ei ε−ε′′

�
(t−t ′)E (t ′)

×
∫ t ′

−∞
dt ′′e−i ε−ε′

�
(t−t ′′)E (t ′′). (25b)

For a noninteracting final state, ε′ and ε′′ are both equal to
−hν. The upper limit of the t ′′ integral can be extended from
t ′ to t , correcting with a factor 1/2. This shows that Eq. (25b)
reduces to Eq. (23) and that the two resolution functions are
equal for a noninteracting final state. We finally note that, if
t = +∞—i.e., if the measurement of the momentum distri-

bution is performed after the extinction of the rf pulse—the
resolution functions are simply given by

R(I′)(ε) = 1

�2
|E (ε/� + 2πν)|2, (26)

with E (ω) the Fourier transform of E (t).

III. NONINTERACTING FINAL STATE

In this section, we neglect the interaction between the final
state |3〉 and states |1〉 and |2〉 (V13 = V23 = V31 = V32 = 0).
We furthermore restrict to a short-range interaction such that
Vαα = 0. The atoms are free fermions in the final state, and the
nonzero matrix elements are V12 = V21, describing the short-
range interaction between the states |1〉 and |2〉. In this limit,
diagram (I′) in Fig. 3 gives the whole second-order response,
and the momentum distribution is the sum of Eqs. (7), (22),
and (25). Because the spectral function in the final state is a δ

function, both resolution functions are given by Eq. (23). In the
context of electron photoemission, an analogous model known
as the “sudden approximation” assumes a free-electron final
state. In contrast to rf spectroscopy for cold atoms, however,
this remains an approximation even in the ideal situation of
a truly noninteracting final state, because other effects (in
particular the surface) are usually neglected as well.

We consider a monochromatic radiation of frequency ν with
a slowly varying envelope, such that the coupling in Eq. (3)
is E (t) = Ē (t) cos(2πνt). Assuming that the momentum
distribution is measured after the end of the pulse, and that the
duration of the pulse is much longer than 1/ν, the resolution
function is R(I′)(ε) = |Ē (ε/�)|2/(4�

2) with Ē (ω) the Fourier
transform of Ē (t). For a square pulse of intensity E0 and
duration �ν−1 in the limit ν 
 �ν, the resolution function
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FIG. 4. (Color online) Resolution function for a rf pulse with a
square (dashed line) and Gaussian (solid line) envelope in the case
of a noninteracting final state. The width of the envelope in the time
domain is fixed by �ν−1 in both cases (full width at half maximum in
the Gaussian case). The curves are normalized to the peak maximum
for easier comparison.

is

R(I′)(ε) =
(

πE0

h�ν

)2[ sin(πx)

πx

]2

, x = ε

h�ν
. (27)

For a Gaussian pulse of the same intensity at the maximum
and a full width at half maximum �ν−1 we have

R(I′)(ε) =
(

πE0

h�ν

)2
π

4 ln 2
exp

[
− (πx)2

ln 4

]
. (28)

The two functions are compared in Fig. 4. The validity of
any approach based on equilibrium response is limited to a
regime where the fraction of atoms transferred to the final
state is small, or equivalently, the time t of the measurement
is short compared with 2h/E0, which is the period of Rabi
oscillations between the states |2〉 and |3〉. Since, on the other
hand, t � �ν−1, this regime corresponds to E0/(2h�ν) � 1.
Our formalism is therefore valid as long as the amplitude of
the resolution function is much smaller than unity.

A. Free and nearly free fermions in a harmonic trap

If all interactions are turned off, the spectral function is
A2(k,ε) = δ(ε − ξk). For a homogeneous fermion gas, the
momentum distribution is therefore simply

〈nk〉 = R(I′)(hν̃)f (ξk) + [1 − R(I′)(hν̃)]f (ξk + hν0). (29)

The first term corresponds to the atoms excited from the initial
state, while the second term corresponds to the equilibrium
thermal population of the final state, reduced by the transitions
to the initial state. From here on, we assume that hν0

is large enough for the second term in Eq. (29) to be
negligible. Equation (29) indicates that one can, in principle,
determine the frequency ν0 of the noninteracting transition,
the resolution �ν, and the temperature T by measuring the
momentum distribution with all interactions suppressed: the
energy-distribution curve (EDC) is just the resolution function,
while the momentum-distribution curve (MDC) is controlled
by the Fermi function. Experiments with homogeneous Fermi
gases have not been conducted yet (for bosons, see Ref. [32]).
In this section, we study within LDA the modifications of

Eq. (29) due to the nonhomogeneous distribution of atoms
trapped in a harmonic potential, in two and three dimensions.
The resulting equations provide a way of determining the total
number of atoms, in addition to ν0, �ν, and T , by fitting
experimental EDCs and MDCs.

Consider a harmonic trap described by the potential V (r) =
(1/2)mω2

r r
2. In dimension d, the number of atoms in state |1〉

is related to the chemical potential by

N1 =
∫

ddr

∫
ddk

(2π )d
1

eβ(εk−μ+ 1
2 mω2

r r
2) + 1

. (30)

For free particles with a dispersion εk = �
2k2/(2m), the

evaluation of the integrals gives

N1 = −
(

kBT

�ωr

)d

Lid
( − e

μ

kBT
)
, (31)

where Li2 and Li3 are the di- and trilogarithm, respectively.
Note that, unlike Eq. (31) suggests, μ does depend on the
particle mass m, because ωr = (κ/m)1/2, where κ is the
strength of the harmonic potential. To estimate the trap-
averaged momentum distribution, we replace f (ξk) in Eq. (29)
with f [εk − μ + V (r)], and we perform a spatial integration.
The result is

〈nk〉LDA = −
(

2πkBT

mω2
r

) d
2

Li d
2

( − e
μ−εk
kBT

)
R(I′)(hν̃). (32)

Note that 〈nk〉LDA is extensive and has the units of a normal-
ization volume. Equation (32) shows that for free particles in
the LDA, the EDCs are not affected by the inhomogeneities,
because the latter do not change the energy of the |2〉 → |3〉
transition. The measured EDC line shape depends neither on
the details of the density distribution in the trap nor on the
momentum, but is entirely determined by the properties of the
rf pulse.

A qualitative understanding of the effects of interactions on
the EDC and MDC curves may be gained by considering nearly
free fermions. The simplest model is that of free fermions with
an effective mass m∗. With the caveat that such a model can
only be envisioned as a low-energy idealization, this effective
mass can be simulated by assuming for the bare fermions a
self-energy,

�k = �
2k2

2

(
1

m∗ − 1

m

)
, (33)

such that εk + �k = �
2k2/(2m∗) ≡ Ek, and the spectral

function of the initial state is A2(k,ε) = δ(ε − ξk − �k).
Neglecting the population of the final state, the corresponding
momentum distribution for a homogeneous gas is

〈nk〉 = R(I′)(hν̃ − �k)f (Ek − μ). (34)

The maximum of the EDC is at h(ν0 − ν) = �k, and tracks
the difference in the dispersions of the initial and final states.
The dispersion of the EDC maximum is given by Emax(k) =
(�2k2/2)(1/m∗ − 1/m). This means that, for m∗ > m, the
peak moves towards lower values of the detuning ν0 − ν with
increasing momentum k.

Like for free fermions, the inhomogeneities due to trapping
do not affect the EDC line shape for nearly free fermions,
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because the self-energy (33) does not depend on the local
atom density. In such a gas, a plot of the quadratic EDC peak
dispersion as a function of k gives the effective mass. The
MDC profile also reflects the effective mass. Equation (31)
gets corrected by a factor (m∗/m)d/2 because ωr is defined
in terms of the bare mass; in Eq. (32), the changes εk →
Ek and hν̃ → hν̃ − �k must be made in order to describe
harmonically trapped nearly free fermions.

B. EDC dispersion due to inhomogeneity and Hartree shifts

For free and nearly free fermions, the EDC line shape is not
modified by the inhomogeneity, and the dispersion of the EDC
peak tracks the intrinsic quasiparticle dispersion. However, if
the self-energy depends on density, these convenient properties
are lost. In order to illustrate this in the simplest model,
we consider the case of fermions subject to a short-range
interaction, which is treated to lowest order, by keeping only
the Hartree term. The momentum- and energy-independent
Hartree self-energy in state |2〉 is given by

�2 = (g/N0)n1, (35)

with n1 the density of atoms in state |1〉. The state |1〉
experiences a similar shift �1 = (g/N0)n2. The dimensionless
coupling g is positive (negative) for repulsive (attractive)
interaction, and N0 is the Fermi-level DOS, given by
mkF/(2π2

�
2) and m/(2π�

2) in three and two dimensions,
respectively. The coupling g is related to the scattering length
via g/N0 = 4π�

2a3D/m and g = −1/ ln(kFa2D) in three and
two dimensions, respectively. Equation (35) means that the
energy of the transition is reduced (increased) with respect
to the noninteracting value hν0 for a repulsive (attractive)
interaction. In a harmonic trap, the modification varies from the
center to the periphery, and this contributes to a broadening and
a momentum dependence of the EDC, resulting in a dispersion
of the EDC peak, as we shall see. This dispersion may by
qualified “spurious,” because it is observed in a system where
the transition does not actually disperse with momentum.

With the Hartree term (35), the spectral function is
A2(k,ε) = δ(ε − ξk − �2). For a homogeneous gas of density
n1, the chemical potential is set by the self-consistency
condition

n1 =
∫

ddk

(2π )d

∫ ∞

−∞
dεA1(k,ε)f (ε)

= −
(

mkBT

2π�2

) d
2

Li d
2

( − e
μ−(g/N0)n2

kBT
)
, (36)

and the momentum distribution (22) becomes

〈nk〉 = R(I′)(hν̃ − �2)f (ξk + �2). (37)

In a harmonic trap, the local self-consistency condition reads

n1(r) = −
(

mkBT

2π�2

) d
2

Li d
2

( − e
μ− 1

2 mω2
r r2−(g/N0)n2(r)

kBT
)
, (38)

where μ is fixed by the condition N1 = ∫
ddr n1(r).

FIG. 5. (Color online) Energy-distribution curves for harmoni-
cally trapped 40K atoms in two dimensions: effect of the Hartree shift.
The EDC (39) for a Gaussian pulse with �ν = 5 kHz are normalized
and shown at different momenta (thick lines), for attractive (left) and
repulsive (right) interaction. The thin lines show the intrinsic EDC
corresponding to each curve [�ν = 0, Eq. (40)], divided by two for
clarity. The other parameters are ωr/2π = 127 Hz, N1 = 2000, and
T = 100 nK.

The explicit expression for the momentum distribution in
the harmonic trap is therefore

〈nk〉LDA =
∫

ddr
R(I′)[hν̃ − (g/N0)n1(r)]

exp
[ εk−μ+ 1

2 mω2
r r

2+(g/N0)n1(r)
kBT

] + 1
. (39)

Figure 5 shows the EDCs calculated using Eq. (39), in a
two-dimensional gas of 40K atoms with n1 = n2 ≡ n, and
using parameters typical for the experiment of Ref. [23]. The
maximum of the EDC disperses towards lower (higher) values
of ν0 − ν for attractive (repulsive) interaction. The width of the
EDC varies with momentum and is larger than the expected
resolution, which is �ν

√
2 ln 4/π = 3.12 kHz.

The curves for attractive and repulsive interaction look
similar in Fig. 5; however, the magnitudes of g are different.
In fact, there is a systematic asymmetry between positive
and negative g, because an attractive interaction tends to
gather atoms near the center of the trap, leading to a more
inhomogeneous density [see Fig. 7(a)]. The width of the
EDC reflects the distribution of densities in the trap. This
distribution is defined as D(n) = ∫

ddrδ[n − n(r)], and takes
nonzero values for densities n between 0 and n(0). As shown
in Appendix B, it is possible to rewrite the momentum
distribution (39) as an integral over densities involving D(n)
[Eq. (B1)]. In dimension d = 2, the distribution D(n) can be
evaluated explicitly (see Appendix B). For an ideal resolution,
the resulting momentum distribution is

〈nk〉LDA ∝

⎧⎪⎨
⎪⎩

1+g+b

(
hν̃
g

)
1+eβεk b

(
hν̃
g

) 0 � hν̃
g

� n(0)
N0

,

0 otherwise,

(40)
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FIG. 6. (Color online) Convergence of the measured EDC to-
wards the intrinsic EDC (thin line) with improving the resolution
by increasing the duration �ν−1 of the Gaussian pulse. The EDCs
are shown for g = −0.35 and k = 6 μm−1, with the same parameters
as in Fig. 5.

with b(ε) = (eβε − 1)−1. This is shown as the thin lines in
Fig. 5 and corresponds to the �ν → 0 limit of Eq. (39). The
peculiar line shape (40), which depends on both the density
distribution D(n) and the Fermi occupation factors, could be
revealed experimentally by a moderate improvement of the
resolution. Figure 6 shows the evolution of a typical line shape,
as the full width at half maximum of the Gaussian rf pulse is
increased from 0.2 to 1.0 ms.

The dispersion of the EDC maximum with increasing
momentum is plotted in Fig. 7(b) for various interaction
strengths and temperatures. This “spurious” dispersion may be
understood as follows. At each point in the trap, the minimum
of the local energy band is the sum of the harmonic potential
and the Hartree term. The k = 0 states are occupied throughout
the trap and give contributions to the EDC with a Hartree
shift ranging between 0 at the periphery and (g/N0)n(0)
at the center. The EDC for k = 0 extends therefore from
ν̃ = 0 to ν̃ = (g/N0)n(0)/h. As the momentum increases,
the corresponding k states in the low-density regions at
the periphery are above the chemical potential, and their
thermal population contributes less to the intrinsic EDC.
The latter is depressed near ν̃ = 0 and becomes asymmetric.
Once filtered with the resolution function, the observed EDC
disperses as seen in Fig. 5. We can be more quantitative in
the limit T → 0, where the intrinsic EDC (40) becomes a
rectangular distribution, constant for εk � hν̃/g � n(0)/N0,
and zero otherwise. Convolved with the resolution function,
this distribution gives a peak whose maximum disperses
quadratically: Emax(k) = (g/2)[εk + n(0)/N0]. This disper-
sion can be parametrized by a Hartree “effective mass” mH as
Emax(k) − Emax(0) = (�2k2/2)(1/mH − 1/m). We then find
mH/m = 1/(1 + g/2). This is compared in Fig. 7(c) with
the mass calculated numerically for various temperatures.
The density at the trap center can also be evaluated at
T = 0: n(0)/N0 = �ωr

√
2N1/(1 + g) [33]. With this, we can

calculate the full T = 0 dispersion, which is shown as thin
lines in Fig. 7(b).

At finite T , the dispersion is not quadratic, except close
to k = 0, and for g not too close to −1. As temperature
increases, the particle cloud spreads more across the trap [see

FIG. 7. (Color online) (a) Radial density, (b) dispersion of the
EDC maximum as a function of momentum, (c) Hartree “effective
mass” as a function of g, and (d) width of the EDC. In all graphs,
dotted lines correspond to T = 150 nK, dashed lines to T = 100 nK,
thick solid lines to T = 50 nK, and the thin solid lines give the
analytical result for T = 0 (see text). In (d), the width is shown as a
function of g for three momenta; the colors correspond to those used
in Fig. 5. The model parameters are ωr/2π = 127 Hz, N1 = 2000,
and �ν = 5 kHz. The minimum at g = 0 in (d) corresponds to the
resolution of 3.12 kHz.

Fig. 7(a)], the density distribution D(n) sharpens, and the peak
dispersion therefore gets weaker. The asymmetry between
repulsive and attractive interaction is strongest at T = 0 and is
reduced as temperature increases. The finite-T Hartree mass
mH, deduced from the curvature of the dispersion at k = 0,
is shown in Fig. 7(c). The relative mass is larger than unity
for attractive interaction and smaller than unity for repulsive
interaction. Its dependence on temperature is linear for g > 0,
but more complicated for g < 0; in particular, nonlinearities
in the temperature dependence get stronger as g approaches
−1, as can be seen in Figs. 7(b) and 7(c).

As seen in Fig. 5, the EDC not only disperses due to
inhomogeneity, but also narrows with increasing momentum.
At zero temperature, the width of the EDC has a complicated
dependency on �ν, which approaches a linear function
of |g| as �ν → 0, namely |g/h(εk − n(0)/N0)|. At finite
temperature and finite resolution, however, the EDC width
behaves more like ∼g2, as shown in Fig. 7(d). At k = 0, the
width reflects the radial density distribution of Fig. 7(a): It is
larger for attractive than for repulsive interaction of the same
magnitudes and decreases with increasing temperature. The
rounded behavior at g = 0 transforms into a linear behavior
∼|g|/√1 + g as �ν is reduced [33]. At large momenta, the
width is controlled by the Fermi edge rather than by D(n):
It is resolution-limited at low temperature and increases with
increasing T .
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FIG. 8. (Color online) (a) Evolution of the Hartree “effective
mass” with ωr for attractive (top curves) and repulsive (bottom
curves) interaction and for three different temperatures. (b) Hartree
“effective mass” as a function of g for a r4 trap and three temperatures.
The thin solid line shows 1/(1 + g/2) for easier comparison with
Fig. 7(c). (Inset) Radial density for two values of g and the same
three temperatures.

The dispersion displayed in Figs. 5 and 7(b), as well as
a width looking like ∼g2 as seen in Fig. 7(d), could easily
be mistaken as a signature of dynamical interactions, since
this is the expected behavior in a homogeneous Fermi liquid.
Even the narrowing of the EDC with increasing k could
evoke the sharpening of quasiparticles when approaching
the Fermi momentum. One feature, however, among these
inhomogeneity-driven effects is contrary to the expected
signature of interactions: The sharpening of the k = 0 EDC
with increasing T , due to the flattening of the atom cloud in
the trap, cannot be reconciled with the expected increase of
the scattering rate with T in an interacting system.

An obvious way to reduce the spurious mass mH in
experiments is to achieve a more homogeneous density. In
three dimensions, this can be realized by means of a weaker
confining harmonic potential. It does not work well in two
dimensions, though, because the density distribution D(n) is
flat at zero temperature: All densities between zero and the
maximum density are equally represented, irrespective of the
potential strength. This is illustrated by the fact that mH is given
by 1/(1 + g/2) at zero temperature, which does not depend
on ωr . At finite T , D(n) does depend on n (see Appendix B),
and thus mH/m approaches unity as ωr is reduced, as shown in
Fig. 8(a). Alternatively, one may obtain a more homogeneous
density by means of a quartic trapping potential. Figure 8(b)
shows mH as a function of g when the harmonic trap is replaced
by a r4 trap. The latter was defined such that the potential
equals the harmonic potential with ωr/2π = 127 Hz at a
distance r = 10 μm. The inset shows that the density profile
is flatter than in Fig. 7(a), and as a result mH is significantly
reduced as compared to Fig. 7(c). The spurious dispersion can
also be reduced, and in some cases even suppressed, by taking
advantage of interactions in the final state; this is discussed in
Sec. IV B.

C. Inhomogeneity and momentum-integrated rf intensity

In this paragraph we briefly discuss the effect of Hartree
shifts and inhomogeneity on the momentum-integrated rf
intensity. In the particular case of a Gaussian density profile,
which is a good approximation for three-dimensional gases

at not too low temperature, and a Gaussian rf pulse, the trap-
averaged integrated intensity takes a universal form depending
on a single parameter ∝a3Dn(0)/(m�ν). We compare this form
with the measurements of Ref. [24], where Hartree shifts in
6Li mixtures were studied by rf spectroscopy as a means to
determine the scattering length.

The momentum integration of the rf intensity (39) yields

ILDA =
∫

ddrn2(r) R(I′)[hν̃ − (g/N0)n1(r)]. (41)

For a balanced gas with n1 = n2 = n, this becomes a one-
dimensional integral involving the density distribution:

ILDA =
∫ ∞

−∞
dnD(n)nR(I′)[hν̃ − (g/N0)n]. (42)

We are interested in comparing this expression with the
data of Ref. [24], which were obtained at T ∼ 0.7TF. At
such temperatures, the density profile given by Eq. (38)
is very close to a Gaussian in three dimensions: n(r) ≈
n(0) exp { − π [n(0)/N1]2/3r2}. For this Gaussian profile, the
density distribution is

D(n) =
{

2N1
√

ln[n(0)/n]/π
n(0)n 0 � n � n(0),

0 otherwise.
(43)

If the rf pulse has a Gaussian envelope, Eq. (42) becomes

ILDA ∝ I

(
gn(0)

h�νN0
,

ν̃

�ν

)
= I

(
2�a3Dn(0)

m�ν
,

ν̃

�ν

)
, (44)

where the function I is given by

I (α,x) =
∫ ∞

0
du

√
ue−u exp

[
− π2

ln 4
(x − αe−u)2

]
. (45)

This function is displayed in Fig. 9(a). For α = 0, it is a
Gaussian, and for α �= 0 it has an asymmetric shape with a
cutoff at x ≈ α. Note that I (α,x) = I (−α, − x), so that
symmetric curves are expected for attractive and repulsive
interactions corresponding to identical values of the product
|a3D|n(0).

Equation (44) can be fit to the 6Li data as shown in Fig. 9(b).
The function I captures remarkably well the peculiar asym-
metry of the line shape in the presence of interactions (white
dots), in contrast to the Gaussian used in Ref. [24], resulting in
an excellent fit. We have set �ν = 7.1 kHz, which corresponds
to the Gaussian rf pulse of 140 μs used in this experiment.
For the data without interaction (black dots), there is no
further adjustable parameter, apart from the amplitude and
a constant background. For the curve with interaction, the
fit yields α = −7.15 ± 0.34. Considering that the average
density is n̄ ∼ 2.4 × 1013 cm−3 and that n̄ = n(0)/23/2 for
a Gaussian profile, this corresponds to a scattering length
a3D = −35.4 ± 1.7 nm. The analysis of Ref. [24] yields a
value consistent within the error bars, −31 ± 2.7 nm, but
we believe that Eq. (44) provides a more accurate way of
measuring the scattering length.
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FIG. 9. (Color online) (a) The function I (α,x) defined in
Eq. (45) for various values of α. Note that the cutoff is at x ≈ α.
(b) Data of Ref. [24] (dots) and fits to Eq. (44) with �ν fixed to
7.1 kHz (lines). A constant background was added to Eq. (44) for
fitting.

IV. DISCUSSION OF FINAL-STATE EFFECTS

A. Resolution function for a Lorentzian final state

We start this section by deriving the modifications due to
the resolution functions (23) and (28), in the situation where
interactions lead to a shift and a lifetime for the final state
of the rf transition. We introduce these effects by means of
a phenomenological self-energy �3 − i�3 in the final state,
where �3 is the energy shift and �3 is the scattering rate. These
two quantities are, in principle, related by causality and should
be of the same order of magnitude for weak interactions. The
corresponding lifetime of the final state is τ3 = �/(2�3), and
the spectral function reads

A3(k,ε) = �3/π

(ε − ξk − hν0 − �3)2 + �2
3

. (46)

The noninteracting result (23) gets modified like this:

R(Ia)(ε) = e−2�3t/�

�2

∣∣∣∣
∫ t

−∞
dt ′ei(ε+hν+�3−i�3)t ′/�E (t ′)

∣∣∣∣
2

. (47)

The overall magnitude of the resolution function vanishes
on time scales larger than τ3, because atoms in the final
state decay. Besides, the energy dependence of the resolution
function is also affected. In order to find out how, we perform
the time integration explicitly for the case of a Gaussian pulse
of full width at half maximum �ν−1. In the relevant limit

FIG. 10. (Color online) (a) Energy dependence of the resolution
function (48) for a final-state scattering rate �3 = h�ν, correspond-
ing to a lifetime τ3 = �ν−1/(4π ), and for increasing measurement
times (broader to narrower). The time t is measured from the
maximum of the Gaussian pulse envelope, such that t = �ν−1

corresponds to a measurement time one full width after the pulse
maximum. (b) Full width at half maximum of the resolution function
relative to the Fourier limited value and (c) maximum intensity as
a function of the measurement time and scattering rate. The arrows
pointing to the left in (c) indicate the time τ3, and those pointing to
the right the time 1

16 ln 2 τ3�ν
�ν−1.

�ν � ν, the formula replacing Eq. (28) is

R(Ia)(ε)

=
(

πE0

h�ν

)2
π

16 ln 2
exp

[
π2

ln 4

(
�3

h�ν

)2

− 2�3t

�

]

× exp

[
− π2

ln 4

(
ε + �3

h�ν

)2
]

×
∣∣∣∣1 + erf

(
2
√

ln 2�νt − iπ

2
√

ln 2

ε + �3 − i�3

h�ν

)∣∣∣∣
2

.

(48)

This complicated expression has an interesting time depen-
dence (Fig. 10). The resolution function is even and centered at
the energy ε = −�3, and it is significantly non-Gaussian when
the time delay t of the measurement—counted in Eq. (48) from
the maximum of the pulse envelope—is comparable to the
width of the pulse. For large times t 
 �ν−1, the erf function
approaches one, and the energy dependence of Eq. (48)
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measured from ε = −�3 is identical to the noninteracting
result (28), shown in Fig. 10(a) as “Fourier limited.” The
width of the resolution function takes off for measurement
times of the order of �ν−1 and increases roughly linearly
with decreasing t [Fig. 10(b)]. The peak intensity of R(Ia)(ε)
is largest shortly after the pulse maximum and decreases for
longer times [Fig. 10(c)].

Measurements can be done in the regime where the
resolution function is Fourier limited, provided that the time
t is smaller than the lifetime τ3, but sufficiently large, that
the real part of the argument in the erf function is large and
positive. These requirements read

1

16 ln 2 τ3�ν
�ν−1 < t < τ3. (49)

Clearly, such a regime does not exist unless τ3 

�ν−1/(4

√
ln 2) or �3 � (

√
ln 2/π )h�ν, as illustrated in

Fig. 10(c).

B. Hartree shifts in the final state

In Sec. III B, we assumed n1 = n2, which is justified if
the fraction of atoms transferred to the final state is small.
A more accurate modeling of experiments on balanced gases
would be to take n2 = n1 − n3, where n3 is the number of
atoms in the final state. If n3 is a fraction f of n1, we may
write n2 = (1 − f )n1 and n3 = f n1. Let us furthermore take
into account the interactions g13 and g23 between states |1〉
and |3〉 and states |2〉 and |3〉, respectively, in addition to the
interaction g12 (which was denoted g in Sec. III B). Treating all
interactions at first order, we find that the level |α〉, α = 1,2,3,
is shifted by the self-energy

�α = (g∗
α/N0)n1, (50)

with g∗
1 = g12(1 − f ) + g13f , g∗

2 = g12 + g23f , and g∗
3 =

g13 + g23(1 − f ). The shift �3 of the final state is larger
at the center of the trap than at the periphery and will
therefore contribute to the spurious mass mH. We assume that
|�3| remains much smaller than hν0, such that interaction
effects related to the thermal population of the final state are
negligible.

The resolution function reflects the shift of the final state:
R(Ia)

k (ε) = R(I′)(ε + �3). As a result, Eq. (39) is replaced with

〈nk〉LDA =
∫

ddr
R(I′)

[
hν̃ − g∗

2−g∗
3

N0
n1(r)

]
exp

[ εk−μ+ 1
2 mω2

r r
2+(g∗

2/N0)n1(r)
kBT

] + 1
. (51)

One sees that the width of the rf signal is now controlled by
g∗

2 − g∗
3 instead of g12. If the parameters (interactions and/or

transferred fraction f ) can be arranged such that g∗
2 = g∗

3 , then
the dispersion of the final state locally follows the dispersion
of the initial states, and no spurious dispersion should be
observed.

An explicit expression for the Hartree “effective mass”
in the presence of final-state shifts can be derived in two
dimensions: The ideal momentum-distribution line shape (40)

is replaced with

〈nk〉LDA ∝

⎧⎪⎪⎨
⎪⎪⎩

1+g∗
1+b

(
hν̃

g∗
2 −g∗

3

)
1+e

β(εk− g∗
1 −g∗

2
g∗

2 −g∗
3

hν̃)
b

(
hν̃

g∗
2 −g∗

3

) 0 � hν̃
g∗

2−g∗
3

� n(0)
N0

,

0 otherwise.
(52)

In the limit T → 0, this becomes again a steplike distribu-
tion, whose center disperses quadratically with momentum.
Proceeding as in Sec. III B, we find

mH

m
= 1 + g∗

1 − g∗
2

1 + g∗
1 − (g∗

2 + g∗
3 )/2

, (53)

which is indeed unity if g∗
2 = g∗

3 .

C. Vertex corrections at low temperature and density

The vertex corrections of type II describe final-state effects
going beyond the self-energy renormalizations of the final
state. We estimate such effects in this section and indicate
how they could be implemented to improve the theoretical
description of rf measurements. In the context of electron
photoemission, specific vertex corrections were shown to
describe the production of plasmons [28] or phonons [27]
during the photoexcitation process. These phenomena are
not relevant for cold-atom systems, but other interesting
effects take place, related to the spatial correlations among
the dilute atoms. We proceed in two steps, in order to
identify the important vertex diagrams. First, we consider the
regime kBT � hν0 and eliminate all diagrams that require a
thermal population of the final state. Then we organize the
remaining diagrams according to the number of hole lines in
the initial states in the spirit of the low-density expansion for
the self-energy [34]. We furthermore assume a short-range
potential, such that the interactions Vαα are blocked by the
Pauli principle.

This analysis, outlined in Appendix C, shows that the most
important vertex diagrams are those represented in Fig. 11.
Diagram (II.R1) describes the correlated state of three atoms
during the rf conversion. Before the conversion, the atom
in state |2〉 is entangled with an atom in state |1〉. This

FIG. 11. Dominant vertex corrections in the low-temperature
low-density limit. The shaded boxes represent a particle-particle
ladder series (pseudopotential). 1p and 1h stand for a particle or
a hole in state |1〉, respectively, and similarly for the other states. The
diagrams give a significant contribution only if the time ordering of
the various vertices is such that all lines marked as particles go to the
right (see Appendix C). The diagrams shown are right handed; there
are two equivalent left-handed terms.
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entanglement is preserved once the atom |2〉 is excited by
the rf radiation to state |3〉. If the interaction V12 is attractive,
this process enhances the effect of the final-state interaction
V13 by increasing the probability that the excited atom has
an atom in state |1〉 nearby. If V12 is repulsive, this process
keeps the excited atom away from atoms in state |1〉, reducing
the effect of V13. The effect of the final-state interaction V23,
on the other hand, is limited by the Pauli principle: Just after
the conversion, the atom |3〉 sits in the correlation hole of the
former atom |2〉 and is kept away from other atoms in state
|2〉. The exclusion principle indeed forbids any contribution
like (II.R1), where the atom |1〉 would be replaced by an atom
|2〉. The converted atom can nevertheless interact with atoms
in state |2〉, either directly (self-energy corrections of the 3p

line) or via the exchange process represented by the diagram
(II.R2). In this process, the converted atom interacts with an
atom in state |2〉 that is present above the Fermi energy, such
that the interaction does not produce a new hole. The atom
|2〉 eventually recombines with the hole left by the conversion,
while the atom |3〉 is converted back to an atom |2〉 above the
Fermi sea.

In the experimental setup of Ref. [23], the scattering length
a12 measuring the interaction V12 between states |1〉 (|F =
9/2,mF = −9/2〉) and |2〉 (|F = 9/2,mF = −7/2〉) is close
to a Feshbach resonance and was tuned on the attractive side
from 0 to −300, in units of the Bohr radius aB. The interactions
V13 and V23 between states |1〉 and |3〉 (|F = 9/2,mF =
−5/2〉) and |2〉 and |3〉 are both nonresonant and repulsive
and correspond to scattering lengths a13 = +250aB and a23 =
+130aB. In this configuration, we expect that the effect of V13

is enhanced by the attractive V12 in the correction (II.R1), while
V23 only contributes through the exchange process (II.R2). We
speculate that most of the extra broadening observed in the
measurements, with respect to the theory including V12, but
neglecting final-state interactions [23], is the result of these
processes. A self-energy broadening due to the direct interac-
tion between |2〉 and |3〉 in the initial state (accounted for in the
type-I diagram of Fig. 3) is unlikely because such contributions
require at least two holes in the final state and are suppressed
by a factor e−hν0/kBT (see Appendix C). If the number of atoms
excited in the final state is not too small, the self-energy in the
final state associated with both V13 and V23 may also induce,
in addition to energy shifts at lowest order, some broadening
of type I, which enters the resolution function, as shown in
Sec. IV A. Explicit evaluations of the vertex corrections in
Fig. 11 and of other self-energy effects are left for future
works. It will be interesting to see whether and how these
final-state effects change the line shape of the rf signal.

V. CONCLUSION

We have presented a theoretical description of the rf
spectroscopy of cold-atom systems, based on the second-order
response theory at finite temperature. The difference between
the usual golden-rule approach and this new description is
that the latter focuses on the number Nf of atoms transferred
to the final state, while the former focuses on the transition
rate Ṅf . The second-order response approach accounts for
the finite energy resolution implied by the envelope and the
finite duration of the rf pulse and allows one to classify the

various contributions using Feynman diagrams. The issue of
inhomogeneity represents a challenge for the interpretation of
rf experiments performed on interacting Fermi systems. Due
to the density dependence of the self-energy, the rf line shape
varies across the cloud. We have studied this effect at leading
order in the density within the LDA and found that the static
local Hartree shifts induce an apparent dispersion of the rf
signal, similar to the dispersion expected in a homogeneous
interacting Fermi gas from dynamical effects of higher order
in the density. For three-dimensional gases with a Gaussian
density profile, we have derived a simple expression for the
momentum-integrated rf line shape, which takes into account
the finite resolution and the inhomogeneous Hartree shifts.

Final-state effects are another challenge for rf experiments.
We have considered the simplest of them, resulting either from
a lifetime or from the interplay of inhomogeneity and Hartree
shifts in the final state. More subtle final-state effects, such as
those resulting from the spatial correlations between atoms, are
described by vertex corrections. We have proposed a scheme
to classify these terms and identified those which dominate
at low temperature and low density. A numerical evaluation
of the corresponding diagrams is needed to tell whether these
effects change significantly the line shape of the rf signal.
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APPENDIX A: ANALYTIC CONTINUATION OF
SECOND-ORDER RESPONSE FUNCTIONS

In this Appendix, we show that the second-order retarded
susceptibility, defined in terms of the double commutator
in Eq. (9), corresponds by analytical continuation to the
imaginary-time correlator (11). We switch to a slightly lighter
notation, set � = 1, and compute the second-order change of
the expectation value of an observable A, in the presence of a
perturbation H ′ = BF (t), where B is an observable and F (t)
is a classical field. The second-order correction is

〈A(t)〉(2) = (−i)2
∫ t

−∞
dt1

∫ t1

−∞
dt2

×〈[[A(t),H ′(t1)],H ′(t2)]〉H . (A1)

The ensemble average is taken over the eigenstates of
the time-independent Hamiltonian H , such that invariance
by translation in time applies: 〈[[A(t),H ′(t1)],H ′(t2)]〉H =
〈[[A(t − t1),H ′(0)],H ′(t2 − t1)]〉H . Using this, and the expres-
sion of H ′, we can write

〈A(t)〉(2) =
∫ ∞

−∞
dt1dt2 χ

(2)
AB(t − t1,t − t2)F (t1)F (t2), (A2)

with the second-order susceptibility defined as

χ
(2)
AB(t,t ′) = (−i)2θ (t)θ (t ′ − t)

×〈[[A(t),B(0)],B(t − t ′)]〉H . (A3)
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Introducing the Fourier transform of the various quantities in
the integrand of Eq. (A2) leads to the analogous of the second
line in Eq. (9):

〈A(t)〉(2) =
∫ ∞

−∞

dω

2π

dω′

2π
e−i(ω+ω′)t

×χ
(2)
AB(ω,ω′)F (ω)F (ω′). (A4)

Out task is to show that

χ
(2)
AB(ω,ω′) = 1

2C (2)
AB(i� → ω + i0+,i�′ → ω′ + i0+),

(A5)

where C (2)
AB(i�,i�′) is the Fourier transform of the imaginary-

time correlator

C (2)
AB(τ,τ ′) = 〈TτA(τ )B(0)B(τ − τ ′)〉H . (A6)

For this purpose, we show that the spectral representations of
the functions χ

(2)
AB(ω,ω′) and 1

2C (2)
AB(i�,i�′) are identical.

Let us start with C (2)
AB . Splitting the imaginary-time integrals

to take into account the time ordering, we have

C (2)
AB(i�,i�′)

=
∫ β

0
dτdτ ′ei�τ ei�′τ ′

C (2)
AB(τ,τ ′)

=
∫ β

0
dτei�τ

[∫ τ

0
dτ ′ei�′τ ′ 〈A(τ )B(τ − τ ′)B(0)〉H

+
∫ β

τ

dτ ′ei�′τ ′ 〈A(τ )B(0)B(τ − τ ′)〉H
]
. (A7)

To perform the time integrations, we introduce a complete set
of eigenstates of H , H |a〉 = Ea|a〉, we use the expression of
the thermal average, 〈(· · · )〉 = Z−1Tr e−βH (· · · ), we insert two
times the identity 1 = ∑

a |a〉〈a|, and we use the expression
of the imaginary-time operators, e.g., A(τ ) = eτHAe−τH . The
averages in the square brackets of (A7) become

〈A(τ )B(τ − τ ′)B(0)〉H = 1

Z

∑
abc

〈a|A|b〉〈b|B|c〉〈c|B|a〉eEa (τ−β)e−Ebτ
′
eEc(τ ′−τ ),

〈A(τ )B(0)B(τ − τ ′)〉H = 1

Z

∑
abc

〈a|A|b〉〈b|B|c〉〈c|B|a〉eEa (τ ′−β)e−Ebτ eEc(τ−τ ′).

The τ and τ ′ integrations in (A7) are now elementary and yield, after making use of the property ei�β = ei�′β = 1,

C (2)
AB(i�,i�′) = 1

Z

∑
abc

〈a|A|b〉〈b|B|c〉〈c|B|a〉 1

i� + i�′ + Ea − Eb

(
e−βEa − e−βEc

i� + Ea − Ec

+ e−βEb − e−βEc

i� − Eb + Ec

+ e−βEa − e−βEc

i�′ + Ea − Ec

+ e−βEb − e−βEc

i�′ − Eb + Ec

)
. (A8)

A similar calculation leads to the spectral representation of the real-time susceptibility. We start from

χ
(2)
AB(ω,ω′) = −

∫ ∞

−∞
dtdt ′ eiωt eiω′t ′θ (t)θ (t ′ − t)〈[[A(t),B(0)],B(t − t ′)]〉H . (A9)

The four terms of the double commutator are expressed as

〈A(t)B(0)B(t − t ′)〉H = 1

Z

∑
abc

〈a|A|b〉〈b|B|c〉〈c|B|a〉e−βEa eiEat
′
e−iEbt eiEc(t−t ′),

〈B(t − t ′)A(t)B(0)〉H = 1

Z

∑
abc

〈a|A|b〉〈b|B|c〉〈c|B|a〉e−βEceiEat
′
e−iEbt eiEc(t−t ′),

〈B(0)A(t)B(t − t ′)〉H = 1

Z

∑
abc

〈a|A|b〉〈b|B|c〉〈c|B|a〉e−βEceiEat e−iEbt
′
eiEc(t ′−t),

〈B(t − t ′)B(0)A(t)〉H = 1

Z

∑
abc

〈a|A|b〉〈b|B|c〉〈c|B|a〉e−βEbeiEat e−iEbt
′
eiEc(t ′−t).

We perform the time integrations in (A9) with the help of the identity∫ ∞

−∞
dteiωt θ (t) = i

ω + i0+ ,

and obtain, using the notations ω+ = ω + i0+ and ω′+ = ω′ + i0+,

χ
(2)
AB(ω,ω′) = 1

Z

∑
abc

〈a|A|b〉〈b|B|c〉〈c|B|a〉 1

ω+ + ω′+ + Ea − Eb

(
e−βEa − e−βEc

ω′+ + Ea − Ec

+ e−βEb − e−βEc

ω′+ − Eb + Ec

)
.
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By exchanging the dummy variables t1 and t2 in the expression (A2), we see that the susceptibility (A3) can also be defined with
the arguments t and t ′ exchanged. We could therefore use an alternate definition of the susceptibility, which shows explicitly the
symmetry under the exchange of the time arguments, e.g., 1

2 [χ (2)
AB(t,t ′) + χ

(2)
AB(t ′,t)] instead of Eq. (A3). Exchanging the time

arguments in Eq. (A3) is equivalent to exchanging the two frequencies ω and ω′ in Eq. (A9). After performing this symmetrization,
we obtain the alternate definition of the susceptibility:

χ
(2)
AB(ω,ω′) = 1

2

1

Z

∑
abc

〈a|A|b〉〈b|B|c〉〈c|B|a〉 1

ω+ + ω′+ + Ea − Eb

(
e−βEa − e−βEc

ω+ + Ea − Ec

+ e−βEb − e−βEc

ω+ − Eb + Ec

+ e−βEa − e−βEc

ω′+ + Ea − Ec

+ e−βEb − e−βEc

ω′+ − Eb + Ec

)
. (A10)

Comparison of Eqs. (A8) and (A10) proves (A5).

APPENDIX B: MOMENTUM DENSITY AND DENSITY
DISTRIBUTION

By inverting the analog of Eq. (38) for n2(r), one obtains an
expression for μ − (1/2)mω2

r r
2 − (g/N0)n1(r) as a function

of n2(r). Inserting this expression into Eq. (39) gives

〈nk〉LDA =
∫

ddr
R(I′)[hν̃ − (g/N0)n1(r)]

1 − eβεk
/

Li−1
d/2

[ − (
2π�2

mkBT

)d/2
n2(r)

] ,

where Li−1
n is the inverse of the polylogarithm function. If

n1(r) = n2(r) ≡ n(r), the r dependence of the integrand stems
from n(r), and the spatial integration can be converted into
a density integration by introducing the density distribution
D(n) = ∫

ddrδ[n − n(r)]:

〈nk〉LDA =
∫ ∞

−∞
dn

D(n)R(I′)[hν̃ − (g/N0)n]

1 − eβεk
/

Li−1
d/2

[ − (
2π�2

mkBT

)d/2
n
] . (B1)

For an ideal resolution, R(I′)(ε) ∝ δ(ε), we have simply

〈nk〉LDA ∝ D(hν̃N0/g)

1 − eβεk
/

Li−1
d/2

[ − (
2π�2

mkBT

)d/2 hν̃N0
g

] .

This expression can be made more explicit in dimension d = 2.
On the one hand, Li−1

1 (x) = 1 − e−x , and on the other hand,
the density distribution can be evaluated explicitly. We have

D(n) =
{ 2πr0

|n′(r0)| 0 � n � n(0),

0 otherwise,

where n′(r) is the derivative of the radial density n(r), n(0)
is the density at the trap center, and n(r0) = n. Differentiating
Eq. (38) with respect to r , one finds

2πr

|n′(r)| = 2π

mω2
r N0

[
1 + g + e

− μ− 1
2 mω2

r r2−(g/N0)n(r)

kBT
]
.

The exponential in the square brackets can be expressed as
a function of n(r) only, by inverting Eq. (38) as above. For
r = r0, on thus gets

2πr0

|n′(r0)| = 2π

mω2
r N0

[
1 + g + b

(
n

N0

)]
,

where b(ε) = 1/(eε/kBT − 1). The resulting expression for the
momentum distribution in two dimensions, and for an ideal

resolution, is given in Eq. (40). Interestingly, the functional
dependence of the density distribution on n, and consequently
the dependence of the momentum distribution (40) on ν̃,
does not involve the total particle number N1; only the cutoff
depends on N1 via n(0).

APPENDIX C: CLASSIFICATION OF VERTEX
CORRECTIONS

The upper line in the diagram of type R in Fig. 2 corresponds
to a hole in the final state |3〉, as implied by the ordering of
the times, e.g., τ − τ ′ < τ . The lower line corresponds to a
particle in the final state. Conversely, in the diagram of type L,
the lower line corresponds to a hole (0 < τ ) and the upper line
to a particle. In both cases, the vertical line describes either a
particle or a hole in the initial state |2〉, depending upon the
ordering of the times τ − τ ′ and 0. This is illustrated in Fig. 12
in the case of type-I diagrams. Each hole in the state |3〉 entails
an occupation factor f (ε3) ∼ e−βhν0 , which is negligible if the
thermal population of the final state is negligible. One such
factor is canceled if—and only if—the time τ ′ − τ can reach
the value β. (This applies to R diagrams; the same statement
with τ ′ − τ replaced with τ − τ ′ applies to L diagrams.)
The reason is as follows. The Green’s function for a free

FIG. 12. Contributions to the right-handed (R) and left-handed
(L) diagrams of zeroth order in the interaction. The vertices are
ordered horizontally by increasing imaginary time from left to right.
2p and 3p indicate particle lines in states |2〉 and |3〉, respectively,
while 2h and 3h indicate hole lines.
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hole propagating between times τ1 and τ2 is f (ε3)e−ε3(τ2−τ1),
whereas for a free particle it is −f (−ε3)e−ε3(τ2−τ1). All time
dependencies from the various particle and hole lines in state
|3〉 cancel, except at the two conversion vertices (◦), leaving
only the dependence e−ε3(τ−τ ′). Upon performing the time
integrations as specified by Eq. (12), a factor eβhν0 is generated
if the time τ ′ − τ (τ − τ ′ for L diagrams) is allowed to reach
the value β. This explains the behaviors indicated in Fig. 12.
In all cases, there is one hole in the final state (3h line)—hence
a factor e−βhν0 —that is canceled for right-handed diagrams if
τ − τ ′ < 0 and for left-handed ones if τ − τ ′ > 0. The two
types of contributions were denoted (Ia) and (Ib) in Sec. II C.

Since the cancellation of the final-state hole occupation
factor can only work once, we conclude that any diagram with
more than one hole in the state |3〉 carries at least one factor
e−βhν0 and is exponentially small if kBT � hν0. In particular,
all corrections of the density vertex (•) imply a connection
between the lines 3p and 3h that cuts the 3h line and thus
contains at least two holes in the final state. The first-order
corrections of the conversion vertices (◦) which survive in the
limit kBT � hν0 are displayed in Fig. 13.

At higher orders in the interaction, we classify the vertex
corrections like in the low-density expansion of the self-energy
[34]. A self-energy diagram containing p hole lines, for
instance a particle-hole ladder at order p + 1, is proportional
to epβμ. Since μ → −∞ as the density n → 0 at any finite
temperature, the contributions with one single hole dominate in
this limit. These contributions are given by the particle-particle

FIG. 13. First-order right-handed (R) and left-handed (L) con-
tributions to the ◦-vertex corrections, which survive in the limit
kBT � hν0. The imaginary times τ − τ ′, 0, τ ′′, and τ are ordered
horizontally as in Fig. 12. Any modification in the ordering of times
produces at least one factor e−βhν0 .

ladder series. Similarly, the vertex corrections with one single
hole in either of the initial states |1〉 or |2〉 are expected to
dominate at low density. Figure 11 shows the two contributions
which we consider as the most important vertex corrections at
low density. Both contain a single hole in the final state and a
single hole in one of the initial states. Any further decoration
of these diagrams with interaction lines introduces new hole
lines. The two right-handed first-order terms of Fig. 13 may
be obtained from the diagram (II.R2) by removing one of the
interaction boxes and evaluating at first order.
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