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Quantum dynamics generated by the two-axis countertwisting Hamiltonian
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We study the quantum dynamics generated by the two-axis countertwisting Hamiltonian from an initial spin
coherent state in a spin-1/2 ensemble. A characteristic feature of the two-axis countertwisting Hamiltonian
is the existence of four neutrally stable and two saddle unstable fixed points. The presence of the latter is
responsible for a high level of squeezing. The squeezing is accompanied by the appearance of several quantum
states of interest in quantum metrology with Heisenberg-limited sensitivity, and we show fidelity functions for
some of them. We present exact results for the quantum Fisher information and the squeezing parameter.
Although the overall time evolution of both changes strongly with the number of particles, we find that
they have regular dynamics for short times. We explain scaling with the system size by using a Gaussian
approach.
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I. INTRODUCTION

Kitagawa and Ueda in their pioneering work [1] have pro-
posed the one-axis twisting (OAT) and two-axis countertwist-
ing (TACT) Hamiltonians for dynamical generation of spin-
squeezed states. The Bose-Einstein condensate of ultracold
atoms offers an exceptional tool for experimental realization
of the one-axis twisting Hamiltonian and investigation of
the many-particle entanglement. Several experiments have
reported the creation of spin-squeezed states, by manipulation
of internal states of multicomponent condensates [2–4], or
alternatively in a single-component condensate in a double-
well potential [5,6]. In contrast, the two-axis countertwisting
Hamiltonian cannot be simply realized by interatomic interac-
tions among ultracold atoms. Therefore several schemes were
proposed to transform the one-axis twisting Hamiltonian into
an effective two-axis countertwisting Hamiltonian [7–11] or
implement the TACT model in other realistic systems [12–15].
Actually, there is growing interest in quantum states generated
by the TACT Hamiltonian since they support Heisenberg-like
sensitivity of high-precision measurements and a much higher
level of squeezing that is unachievable by OAT interactions
[1,16].

In this paper, we study in great detail the quantum dynamics
generated by the two-axis countertwisting Hamiltonian from
an initial spin coherent state in a spin-1/2 ensemble. We start
with the mean-field description, which identifies a convenient
location of the initial coherent spin state. A characteristic
feature of the two-axis countertwisting Hamiltonian is the
existence of the four neutrally stable and two saddle unsta-
ble fixed points. The presence of the latter is responsible
for the high level of squeezing. On the other hand, the
quantum dynamics around a stable fixed point generates
states that support shot-noise limited sensitivity for quantum
metrology.

The location of the initial spin coherent state on an unstable
fixed point leads to strong stretching of the state along a
meridian resulting in highly reduced variance of the spin
operator. It has to be noted that the angle between the
inflowing and outflowing trajectories in the phase space is π/2,
thus the squeezing is optimal. The high level of squeezing
is accompanied by the presence of several quantum states

of interest in quantum metrology with Heisenberg-limited
sensitivity. We will show high fidelity to the Berry-Wiseman,
equally-weighted superposition and Yurke states, and a bit
worse to the twin-Fock state, as it was partially reported in
Ref. [16]. We show that better sensitivity can be reached by
using states produced by the dynamics at later times than the
time for the optimal squeezing.

We calculate the quantum Fisher information in order to
quantify the amount of quantum correlations generated in
time that are useful for precision measurements. Although
the overall time evolution of the quantum Fisher information
changes strongly when one changes the number of particles
N , we find that it has regular dynamics for short times of
interest. In this regime, the time scales like ∼ ln(2πN )/N , and
we explain the scaling using a Gaussian approach within the
Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy [13,17],
as well as the known scaling of the variance of the spin
operator. Our results show that the quantum dynamics with
the two-axis countertwisting Hamiltonian creates quantum
correlations in a regular way on a short time scale. This time
scale is reduced with an increased number of particles.

II. MODEL

We consider a collection of N qubits, e.g., particles in
two modes. The system is conveniently described using the

collective spin operator �̂S, whose components written in the
Schwinger representation are

Ŝx = 1

2
(â†b̂ + b̂†â), (1a)

Ŝy = 1

2i
(â†b̂ − b̂†â), (1b)

Ŝz = 1

2
(â†â − b̂†b̂), (1c)

where â†, b̂† are creation operators associated with two
modes. The two-axis countertwisting Hamiltonian proposed
by Kitagawa and Ueda [1] is

ĤTACT = �χ

2i
(Ŝ2

+ − Ŝ2
−), (2)
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where Ŝ± = Ŝx ± iŜy . Nevertheless, we will operate on the
rotated Hamiltonian Ĥ = ÛĤTACTÛ

† with Û = e−i(π/2)Ŝy ,

Ĥ = −�χ (Ŝy Ŝz + ŜzŜy). (3)

Although, the action of a SU(2) group element on (2) does
not change the overall result, it describes a distinct physical
system. In our case, the Hamiltonian (3) simplifies the form of
observables of interest.

The Schrödinger equation

i�∂t |�(t)〉 = Ĥ|�(t)〉 (4)

cannot be solved analytically. We solve it numerically in the
Fock-state basis with fixed number of particles N . A pure
state can be decomposed in the Fock-state basis |�(t)〉 =∑N

k=0 ck(t)|k,N − k〉, and then coupled first-order differential
equations for the coefficients ck can be solved using matrix
exponential. In this way, one can forget about an abstract
Hilbert space and consider only the representation of operators
and states in a more familiar vector space. Operations such
as dot product, addition, and multiplication transfer into the
vector space. Observables are represented as square Hermitian
matrices, and ket states as column vectors.

The initial state for the evolution is a spin coherent state
written in the Fock basis [18],

|θ,ϕ〉 =
N∑

k=0

(
N

k

)1/2[
cos

(
θ

2

)]k[
sin

(
θ

2

)
eiϕ

]N−k

× |k,N − k〉, (5)

and is parametrized by the two real variables 0 � θ < π and
−π � ϕ < π .

In what follows, we will concentrate on two physical
quantities: (i) the spin-squeezing parameter and (ii) the
quantum Fisher information.

The spin-squeezing parameter, for mixed and pure states,
is defined as [19]

ξ 2 = N〈	Ŝ2
⊥〉min

|〈 �̂S〉|2
, (6)

where N is the total atom number and 〈	Ŝ2
⊥〉min is the minimal

variance of the spin component normal to the mean spin vector

〈 �̂S〉. The state is referred as the spin-squeezed state when
ξ 2 < 1.

The quantum Fisher information is an important quantity
in interferometry. In general, the output state ρ̂out of an
interferometer is

ρ̂out = e−iθ Ŝ�n ρ̂ine
iθŜ�n , (7)

where Ŝ�n = �̂S · �n and �n is a unit vector representing the
effective rotation axis in a given interferometric sequence. The
precision of the phase shift 	θ depends on the input state ρ̂in,
chosen estimator and measurement performed on the output
state [20]. According to the Cramér-Rao inequality, there is
a lower bound on the precision with which the phase shift
can be determined 	θ � 1/

√
mF

Q
, where m is the number

of measurements and F
Q

is the quantum Fisher information.
The quantum Fisher information, for a pure state, is given

by [20]

F
Q

= 4
〈
	Ŝ2

�n
〉
max, (8)

with 〈	Ŝ2
�n〉max being the maximal variance of the spin

component optimized over all possible directions �n. The
quantum Fisher information is equal to F

Q
= N for the spin

coherent state, and corresponds to the shot-noise limit of
the phase estimation precision in optical interferometry or
to the projection noise in the atomic equivalent. The highest
possible precision one can achieve is the Heisenberg limit
	θ � 1/

√
mN , with F

Q
= N2. This limit can be reached

using only a highly entangled state, for example the NOON
state.

Both quantities we are interested in are linked to the
multiparticle entanglement. If the spin-squeezing parameter
is smaller than unity, or if the quantum Fisher information
is larger than the particle number, then the state of the
system is entangled [20–23]. Moreover, the quantum Fisher
information recognizes all entangled states, which are useful
for high-sensitivity interferometry.

Before we proceed to analyze the quantum dynamics, let us
focus on the mean-field approximation. Although quantum
fluctuations are lost in this description, we argue that the
knowledge of the classical phase space dynamics provides
an invaluable tool for the detection of useful states in quantum
metrology.

III. MEAN-FIELD PHASE SPACE

The mean-field phase space dynamics is a good navi-
gator for the dynamical spin squeezing. It was shown that
quantum evolution distinguishes between stable and unstable
classical fixed points [24,25], and quantum Hamiltonian
eigenstates localize on classical phase space energy contours
[26].

In the limit of large system size N � 1, we replace bosonic
creation and annihilation operators by c numbers [27]

â →
√

N
√

ρae
iϕa , b̂ →

√
N

√
ρbe

iϕb . (9)

The fixed number of particles N = a†a + b†b, dictates the nor-
malization condition ρa + ρb = 1. Two canonical variables,
the population difference z = ρa − ρb and the relative phase
ϕ = ϕb − ϕa , are sufficient to describe classical dynamics
[28]. Notice, when one of the modes is fully populated
(z = 1 or z = −1), the relative phase is not well defined. Spin
operators become

Ŝx → N

2

√
1 − z2 cos ϕ, (10a)

Ŝy → N

2

√
1 − z2 sin ϕ, (10b)

Ŝz → N

2
z, (10c)

with the mean-field Hamiltonian

H = 〈Ĥ〉 → −�χ
N2

2
z
√

1 − z2 sin ϕ. (11)
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FIG. 1. (Color online) Mean-field trajectories of the two-axis
countertwisting Hamiltonian Ĥ = −�χ (ŜzŜy + Ŝy Ŝz). Two unstable
saddle fixed points are located at z = 0 and ϕ = 0,π . Four neutrally
stable center fixed points correspond to (ϕ,z) = (±π/2, ±1/

√
2).

Colored spots visualize the spin coherent states around the classical
unstable (red) and stable (green) fixed points.

Equations of motion for the canonical position ϕ and the
conjugate momentum z can be derived from quantum mechan-
ical Heisenberg equations or classical Hamilton equations,

dϕ

dt
= 2

�N

∂H

∂z
= −Nχ

1 − 2z2

√
1 − z2

sin ϕ , (12a)

dz

dt
= − 2

�N

∂H

∂ϕ
= Nχz

√
1 − z2 cos ϕ . (12b)

Instead of solving these coupled differential equations we
will analyze the topology of the phase portrait. The phase
portrait is just a geometrical representation of trajectories of a
dynamical system in the phase space. In our case, trajectories
are tangent to the velocity field (ϕ̇,ż).

The phase portrait in the two-dimensional system consists
of fixed points or closed orbits. Fixed or equilibrium points
correspond to a steady state, and satisfy

1 − 2z2

√
1 − z2

sin ϕ = 0,

z
√

1 − z2 cos ϕ = 0. (13)

Close to a stationary point, equations of motion (12) can be
linearized and solved exactly. Information about stability of
fixed points can be determined from a stability matrix [29].
Depending on eigenvalues and eigenvectors of the stability
matrix one can classify fixed points according to the behavior
of nearby trajectories. The phase portrait for (11) presented
in Fig. 1 consists of two unstable saddle fixed points located
at z = 0 and ϕ = 0,π , and four stable center fixed points at
(ϕ,z) = (±π/2,±1/

√
2).

IV. DYNAMICS AROUND AN UNSTABLE FIXED POINT

We start with the spin coherent state located at an unstable
saddle fixed point on the equator, |π/2,0〉 = e−i π

2 Ŝy |N,0〉 =

|N,0〉x , being the eigenstate of the Ŝx operator with eigenvalue
N/2. The location of the initial state in corresponding mean-
field phase space is sketched in Fig. 1. The red spot represents
the initial spin coherent state, black lines are mean-field
trajectories of the Hamiltonian, while the arrows indicate
the direction of the evolution. The angle between inflowing
and outflowing trajectories in the phase space is π/2. The
regular dynamics takes place for short times. The initial state
is stretched along the meridian of the Bloch sphere leading to
the highly reduced variance of the Ŝy component of the spin
operator and highly increased variance of the Ŝz component.
The best squeezing occurs at this stage of the evolution, and
useful states for high-precision measurements are generated.
Moreover, the squeezing parameter is determined by the
variance of the Ŝy component of the spin operator, while the
quantum Fisher information is determined by the variance
of the Ŝz component. Later, the variances of the Ŝy and Ŝz

components of the spin become once again of the same order
with 〈Ŝx〉 
 −N/2. Next, stretching of the state takes place
but the direction of the evolution is along equator towards
the saddle fixed point located at (ϕ,z) = (0,0). The dynamics
becomes irregular, and results depend on the total number of
particles.

A. Scaling with the system size

In order to analyze scaling of the spin squeezing parameter
and the quantum Fisher information with the system size we
use a general theory developed in Refs. [13,17]. One starts
with equations of motion for operators of spin components
〈 ˙̂Sj 〉, which involve terms that depend on the first-order
moment 〈Ŝj 〉 and second-order moments 〈Ŝj Ŝk〉. Then, the
time evolution of the second-order moments depends on
themselves and on third-order moments, and so on. It leads
to the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy of equations of motion for expectation values of
operator products. We truncate the hierarchy by keeping the
first- and the second-order moments,

〈Ŝi Ŝj Ŝk〉 
 〈Ŝi Ŝj 〉〈Ŝk〉 + 〈Ŝj Ŝk〉〈Ŝi〉 + 〈ŜkŜi〉〈Ŝj 〉
− 2〈Ŝi〉〈Ŝj 〉〈Ŝk〉. (14)

Let us first introduce a small parameter ε = 1/N and trans-
form spin components into ĥj = √

εŜj ; then the Hamiltonian
reads

Ĥ = χ

ε
(ĥy ĥz + ĥzĥy), (15)

and commutation relations are [ĥi ,ĥj ] = iεĥkεijk .
Equations of motion for expectation values sj = 〈ĥj 〉

and second-order moments δjk = 〈ĥj ĥk + ĥkĥj 〉 − 2〈ĥj 〉〈ĥk〉
relevant for our purposes are

ṡx = 2(δyy − δzz), (16a)

δ̇yy = −4 δyy sx, (16b)

δ̇zz = 4 δzz sx, (16c)

where we have introduced the dimensionless time τ = χt/
√

ε.
The initial coherent state at the unstable saddle fixed
point, |π/2,0〉, gives the following initial conditions:

013623-3



DARIUSZ KAJTOCH AND EMILIA WITKOWSKA PHYSICAL REVIEW A 92, 013623 (2015)

sx(0) = 1/2
√

ε and δyy(0) = δzz(0) = 1/4. Equation (16a)
takes the form ṡx(τ ) = − sinh [f (τ )] with f (τ ) =
4
∫ τ

0 sx(τ ′)dτ ′, which has an analytical solution when
one expands the function f up to the first order in Taylor
series, f (τ ) 
 f (0) + f ′(0)τ . This requires τ � 1 or
χt � 1/

√
N . The self-consistency condition gives f (0) = 0

and f ′(0) = 4sx(0), and the approximated solution for sx

takes the form

sx(τ ) = sx(0) − cosh[4sx(0)τ ] − 1

4sx(0)
. (17)

The above expression together with Eqs. (16b) and (16c) gives
the squeezing parameter

ξ 2 = e−4sx (0)τ+(sinh[4sx (0)τ ]−τ )/4sx (0)2
, (18)

and the time-dependent quantum Fisher information

F
Q

(τ ) = 1

ε
e4sx (0)τ−(sinh[4sx (0)τ ]−τ )/4sx (0)2

. (19)

Notice, two approximations were made to obtain solutions
(17)–(19). The first is the truncation of the BBGKY hierarchy,
which is equivalent to the Gaussian approximation, and the
second is the short-time expansion, which limits the validity
of the solution to τ � 1.

Minimization of the squeezing parameter (18) over the time
gives scaling of the best squeezing time τbest 
 ln(8sx(0)2)/
4sx(0) or χtbest 
 ln(2N )/2N . The same holds for the first
maximum of the quantum Fisher information. Expansion of
the squeezing parameter at the best squeezing time τbest in
terms of the small parameter ε gives

ξ 2
best 
 e

2
ε, (20)

which reproduces the known result ξ 2
best ∝ N−1. Leading terms

of the maximum of the quantum Fisher information at the best
time are

F
Q, best 
 2

e

1

ε2
, (21)

and provide the Heisenberg-like scaling F
Q, best 
 0.73N2.

In Fig. 2 we show the squeezing parameter and the quantum
Fisher information for different number of particles N in the
rescaled time. We have shown only a small period of time
where scaling with the number of particles may agree with our
simulations. For further moments there is no time regularity.

The scaling prediction for the squeezing parameter is
surprisingly correct, the minima of ξ 2 nicely coincide for
different particle numbers. The prediction of the model for
the time scaling of the first maximum of the quantum Fisher
information is not perfect. First of all, the simple model
predicts the position of the first maximum of the quantum
Fisher information at the same time as the minimum of the
squeezing parameter, since we know from the exact numerical
calculations that the maximum is located at later times.
Nevertheless, the time scaling of type χtbest ∼ ln(aN )/(bN )
survives, and we find values of a = 2π and b = 2 giving
the best result. The first maximum of the quantum Fisher
information is achieved at F

Q,best ∼ 0.67N2 in numerical
simulations, the width of the peak decreases with larger
number of particles.

(a)

(b)

FIG. 2. (Color online) Scaling of (a) the squeezing parameter
and (b) the quantum Fisher information with the total number of
particles N .

In addition, the level of squeezing achieved by the two-axis
countertwisting model is always better than the squeezing
generated by the one-axis twisting Hamiltonian, the last scales
like ∼N−2/3. The first maximum of the quantum Fisher
information given by the two-axis countertwisting model
appears before the characteristic plateau of the quantum Fisher
information generated by the one-axis twisting Hamiltonian,
which occurs at χt ∼ 1/

√
N .

B. Quantum states for high-precision measurements

States produced by the two-axis countertwisting Hamilto-
nian, even if they may not have a simple analytical form, are
particularly useful for high-precision measurements since they
provide Heisenberg-like scaling of the phase sensitivity 	θ .
Here and below, we list a few particular states, expanded in the
Fock-state basis, that are generated by the TACT Hamiltonian:

(i) the Berry-Wiseman state (BW) [30]

|BW〉 = 1√
1 + N/2

N∑
k=0

cos

[
(k − N/2)π

N + 2

]
|k,N − k〉, (22)

which gives the quantum Fisher information

F
Q

= 2

2 + N

N∑
k=0

cos2

[
(k − N/2)π

N + 2

]
(2k − N )2,

which for N � 1 is F
Q

≈ 0.13N2;
(ii) the equally weighted superposition state (EWSS) [16]

|EWSS〉 = 1√
N + 1

N∑
k=0

|k,N − k〉 (23)

with F
Q

= (N2/3)(1 + 2/N) ≈ 0.33N2;
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(iii) the Yurke state (Y) for even number of particles [31]

|Y〉 = sin α√
2

|N/2 + 1,N/2 − 1〉 + cos α|N/2,N/2〉

+ sin α√
2

|N/2 − 1,N/2 + 1〉, (24)

with some real parameter α and the quantum
Fisher information of the form FQ = (N/2)
[(N/2 + 1)(2 − sin2 α) − 2 sin2 α];

(iv) the twin-Fock state (TF) for even number of particles
[16]

|TF〉 = |N/2,N/2〉 (25)

with F
Q

= (N2/2)(1 + 2/N ) ≈ 0.5N2.
In order to demonstrate their appearance during the evolu-

tion, in Fig. 3 we show fidelity functions defined as

FA(t) = |〈A|e−iĤt |N,0〉x |2, (26)

where A is one of the states of interest (22)–(25). The
Twin-Fock and Yurke states were rotated with Û = e−iπŜx/2

to maximize F . In addition, in Figs. 3(a)–3(d) we also show

(a)

(d)

(b)

(c)

BW

Y

EWSS

TF

FIG. 3. (Color online) Top: Time evolution of the fidelity (26) to
the EWSS, Twin-Fock, Berry-Wiseman, and optimized over α Yurke
states. The maxima of respective fidelity functions are: FBW, max =
0.9999 for the BW state; FEWSS, max = 0.9965 for the EWSS state;
FY, max = 0.9936 for the Yurke state with α = 0.678; and FTF, max =
0.8732 for the twin-Fock state. Bottom: Probability distributions (27)
with Fock states at the maximum of the respective fidelity function for
(a) Berry-Wiseman, (b) EWSS, (c) Yurke, and (d) Twin-Fock states.
Red crosses correspond to the ideal case given by Eqs. (22)–(25). The
total number of particles is N = 50.

the probability distribution with Fock states

Pk = |〈k,N − k|�〉|2, (27)

calculated at the maximum of respective fidelity functions (in
gray) compared to the exact probability of the respective state
(in red).

The two-axis countertwisting Hamiltonian produces almost
ideal Berry-Wiseman, EWSS, and Yurke states, since the
maximum of the fidelity function is one, see the top panel
in Fig. 3. Nevertheless, the probability distribution with Fock
states is exact only for the BW state [31,32], while for
the EWSS and Yurke states very small differences can be
found. The maximum of the fidelity to the twin-Fock state
is FTF, max = 0.8732, showing that the generated state is not
the perfect TF state. The Yurke state becomes the twin-Fock
state for α = 0, which explains their equal fidelities F at
χt = 0.065. Notice the maxima of the fidelity functions for the
BW, EWSS, and Yurke states are reached at times very close
to the best squeezing times (just before the first maximum
of the quantum Fisher information). The maximum of the
fidelity function for the TF state is located at times larger
than the first maximum of the quantum Fisher information.
The maxima of fidelity functions of particular states support
the scaling of type ∼ ln(aN )/(bN ), where the coefficients a,b

may depend on the state [16]. Another interesting observation
is near the unity value of the fidelity function for the NOON
state (not shown in figures). Position of the maximum is
not regular and shifts in time as the number of particles
changes.

In order to get a better insight into the regular part of the
quantum dynamics we plot the Husimi distribution function
[33]

Q(t,θ,φ) = |〈θ,φ|�(t)〉|2, (28)

and the Wigner function W (θ,φ) [34] at different moments
of time. The top panel in Fig. 4 shows a location of particular
states on the time evolution of the quantum Fisher information,
while the bottom panels present their Husimi (in the left
column) and Wigner (in the right column) function maps. The
Husimi distribution function is unique, regular, and positive
definite. Moreover, the position and number of zeros of the
Husimi function contains all information about a pure quantum
state [35,36]. This structure is visible in the logarithmic
scale only under the quite high precision of calculations,
and is invisible in Fig. 4. The Wigner function of a quantum
state, in addition to localized maxima, may have interference
fringes of negative value. We observe increasing formation
of the interference fringes during quantum evolution, even
if their details may not be visible on a linear scale in
Fig. 4. The number of fringes is equal to the total particle
number N . Moreover, the position of the maxima is the
same starting from EWSS till TF states. It is the amplitude
of the interference fringes that distinguish particular states.
Negativity of the Wigner function was shown to be an indicator
of nonclassicality of a quantum state [37]. Thus, it is a
convenient tool for detection of useful states for precision
measurements.

The Wigner function can be used to justify the large value
of the quantum Fisher information. Typically, the presence of
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A
B

CD
E

GF

H

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 4. (Color online) Top: Arrows indicate the locations of
quantum states that are plotted in bottom panels on the time evolution
of the quantum Fisher information. Bottom: The Husimi (left column)
and Wigner (right column) functions at particular moments of time:
(a) the initial coherent spin state; (b) the maximum of the BW fidelity
function; (c) the maximum of the EWSS fidelity function; (d) the best
spin squeezing; (e) the maximum of the Yurke fidelity function; (f)
the maximum of the quantum Fisher information; (g) the maximum
of the twin-Fock fidelity function; and (h) the second local minimum
of the quantum Fisher information. The total number of particles
is N = 50.

oriented fringes in the Wigner map increases its value. It will
be clear when we recover that the Fisher information has its
geometrical interpretation [20,38,39]. If one takes

ρ̂out = e−idθŜ�n ρ̂ine
idθŜ�n (29)

with infinitesimal angle dθ then the Bures-Riemannian metric
becomes

d2(ρ̂in,ρ̂out) = FQ[ρ̂in,Ŝ�n]dθ2. (30)

The larger the quantum Fisher information, the faster the state
ρ̂out becomes distinguishable from ρ̂in. Because the Wigner
function is a bijective mapping we can capture sensitivity
to rotations of a given quantum state. The Wigner function
graphically justifies which measurement S�n optimizes the
quantum Fisher information. If we look at the Wigner function
of some state, it will be apparent that the rotation of the state
through an infinitesimal angle dθ around Ŝ�n shifts minima
and maxima of interference fringes making the Bures distance
large.

V. DYNAMICS AROUND A STABLE FIXED POINT

The initial spin coherent state located at the classical
stable fixed point is visualized in Fig. 1 by a green spot.
The state is slightly deformed in time leading to the Husimi
function that changes regularly between the circular and
elliptic shape. The frequency can be easily estimated within
the frozen spin approximation [40,41]. In this case it is
more convenient to analyze an equivalent to (3) Hamiltonian,
namely,

ˆ̃H = �χ
(
Ŝ2

x − Ŝ2
y

)
, (31)

because stable fixed points are located on the equator and

calculations simplify significantly, ˆ̃H = ÛĤÛ † with Û =
e−i(π/2)Ŝy e−i(π/4)Ŝx .

In the frozen spin approximation one starts with equations
of motion for spin operators

d

dt
Ŝx = χ (Ŝy Ŝz + ŜzŜy), (32a)

d

dt
Ŝy = −χ (Ŝx Ŝz + ŜzŜx), (32b)

d

dt
Ŝz = 2χ (Ŝx Ŝy + Ŝy Ŝx). (32c)

The initial condition |π/2,0〉 corresponds to 〈Ŝx〉 = N/2 and
the dynamics will be captured around this point. In the
frozen spin approximation one replaces the operator Ŝx by
its mean value 〈Ŝx〉 = N/2, and ends up with equations for
the remaining operators

d

dt
Ŝy = −χNŜz, (33a)

d

dt
Ŝz = 2χNŜy. (33b)

One can easily solve these coupled differential equations

Ŝy(t) = Ŝy(0) cos(ωt) − 1√
2
Ŝz(0) sin(ωt), (34a)

Ŝz(t) = Ŝz(0) cos(ωt) +
√

2Ŝy(0) sin(ωt), (34b)
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(a)

(b)

FIG. 5. (Color online) (a) The spin squeezing parameter and (b)
the quantum Fisher information for different numbers of particles N

around a stable fixed point. Here: solid red line is for N = 100, dotted
black line for N = 50 and dot-dashed blue line for N = 20.

with ω = √
2Nχ . The spin-squeezing parameter ξ 2 and the

optimized quantum Fisher information are

ξ 2 = N〈	Ŝ2
y〉

|〈Ŝx〉|2
= 1 − 1

2
sin2(ωt), (35a)

FQ = 4〈	Ŝ2
z 〉 = N [1 + sin2(ωt)]. (35b)

Results of the frozen spin approximation can be compared to
the exact numerical simulations presented in Fig. 5. Although
the overall shape of the function slightly deviates from
sin2(ωt), extreme values and the frequency are in a good
agreement. Now it is clear why the initial spin coherent states

located at classical stable fixed points give shot-noise limited
sensitivity for quantum metrology. The maximal value of the
Fisher information scale linearly with the particle number N .
It is not possible to improve on the shot-noise limit in this
configuration.

VI. SUMMARY

We have discussed the quantum dynamics generated by
the two-axis countertwisting Hamiltonian in the context of
quantum metrology. We have started the analysis within the
mean-field description, which identifies a convenient location
of the initial spin coherent state. The quantum dynamics around
a stable fixed point supports the shot-noise-limited sensitivity
for precision measurements. On the other hand, the quantum
dynamics around an unstable fixed point generates quantum
states that give Heisenberg-like scaling. We have calculated the
spin-squeezing parameter and the quantum Fisher information
explaining their scaling with the system size. Our results show
that the quantum dynamics with the two-axis countertwisting
Hamiltonian creates quantum correlations in a regular way
on a short time scale. In addition, a characteristic feature of
the output of the TACT Hamiltonian are concentric fringes
of negative values in the Wigner functions of states located
around the first maximum of the quantum Fisher information.
It may be difficult to identify an efficient interferometric
strategy and measurement to fully recover this part of the
quantum Fisher information. In the OAT model, for instance,
the quantum Fisher information can be retrieved by a standard
measurement of the population imbalance [42,43].
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Sinatra, R. Long, J. Estéve, and J. Reichel, Phys. Rev. Lett. 105,
080403 (2010).

[7] H. T. Ng, C. K. Law, and P. T. Leung, Phys. Rev. A 68, 013604
(2003).

[8] Y. C. Liu, Z. F. Xu, G. R. Jin, and L. You, Phys. Rev. Lett. 107,
013601 (2011).

[9] C. Shen and L. M. Duan, Phys. Rev. A 87, 051801 (2013).

[10] J.-Y. Zhang, X.-F. Zhou, G.-C. Guo, and Z.-W. Zhou, Phys. Rev.
A 90, 013604 (2014).
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