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A model for studying atomtronic devices and circuits based on finite-temperature Bose-condensed gases is
presented. The approach involves numerically solving equations of motion for atomic populations and coherences,
derived using the Bose-Hubbard Hamiltonian and the Heisenberg picture. The resulting cluster expansion is
truncated at a level giving balance between physics rigor and numerical demand mitigation. This approach allows
parametric studies involving time scales that cover both the rapid population dynamics relevant to nonequilibrium
state evolution, as well as the much longer time durations typical for reaching steady-state device operation. The
model is demonstrated by studying the evolution of a Bose-condensed gas in the presence of atom injection and
extraction in a double-well potential. In this configuration phase locking between condensates in each well of the
potential is readily observed, and its influence on the evolution of the system is studied.
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I. INTRODUCTION

In many respects atomtronic devices and circuits [1,2] can
be understood using the same framework applicable to their
electronic counterparts. Analytical tools such as Kirchhoff’s
voltage and current laws, for example, are simply circuit-
relevant statements about energy and particle conservation,
which apply equally well to electronic and atomtronic systems.
Operating in the ultracold regime, two aspects of atomtronic
circuits make them both interesting and very different from
classical electronics. First, quantum coherence can be long
lived compared with other circuit time scales of interest.
Second, atomtronic circuits are typically decoupled from a
thermal reservoir [3]. An active circuit is by definition a
non-thermal-equilibrium dynamical system and any useful
circuit will generate heat for both fundamental and technical
reasons. In general, this means that the temperature will vary
from place to place across the circuit. Thermal coupling
to the environment enables an electronic circuit to reach
thermal steady state (not thermal equilibrium) and finite device
temperature. However, heat has no thermal bath to flow to in
an atomtronic circuit. While doubling its temperature often
leads to permanent failure of a nominal room-temperature
electronic device, the same is not true of an atomtronic device.
Yet such significant changes in temperature can certainly have
an impact on the quantum character of devices operating in the
ultracold regime. The interplay between the thermal-statistical
and quantum aspects of atomtronic circuits at the physical
level is profoundly related to circuit functionality through
entropy—physical entropy on the one hand and information
entropy on the other. For example, if a circuit function
corresponds to the lowering of information entropy, as is often
the case, this must correspond to a lowering of physical entropy
in some region of the circuit, which demands that there is a
corresponding increase in entropy in another region of the
circuit if the second law of thermodynamics is to be upheld.
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Electronic circuits are challenging from an analytical
standpoint and atomtronic circuits are dramatically more so.
Only the most elementary electronic circuits can be treated
from first principles; complex circuits are designed using
heuristic principles and analyzed using parametrized device
models and highly optimized numerical solvers. Our purpose
in this work is to make some headway along these same lines
in the atomtronics domain. We motivate our objective with a
few simple questions regarding a conceptually simple system.
As it turns out, the questions are very difficult to answer.

Consider the double-potential-well system of Fig. 1(a).
The right-hand well is initially devoid of atoms while the
left-hand well holds a Bose-Einstein condensate (BEC) at,
or very near to, absolute zero. The BEC is characterized
by a chemical potential μL, while the empty right well has
a chemical potential equal to its ground-state energy. For
this discussion we take μL to be large compared to the
single-particle energy level spacing near the ground state of
the well, but considerably less than the barrier height between
the wells. Our first question is: “Does this (isolated) system
come to thermal equilibrium and, if so, by what route does
it do so?” By thermal equilibrium we mean the system is
described by a single, time-independent temperature T and
chemical potential μ, as illustrated in Fig. 1(b). We note that
the equilibrium state must have finite temperature to maintain
fixed total internal energy, even if the initial left-hand BEC is at
zero temperature. Thus, by whatever route the system arrives
at equilibrium, heating must take place. The energy associated
with the temperature rise comes at the expense of chemical
potential, which necessarily decreases from its initial value
in the left-hand well. Supposing that parameters are chosen
such that thermal equilibrium supports a condensate in both
wells, then their chemical potentials must be equal in thermal
equilibrium. This implies that their respective wave functions
have a well-defined relative phase which, ignoring fluctuations,
is constant in time. Our second question is: “Can the two
condensates phase lock, and if so, under what conditions does
this occur?” By “phase lock” we mean that if the relative
phase is perturbed it subsequently returns to a fixed equilibrium
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FIG. 1. (Color online) Schematic representation of a BEC heat-
ing as it comes to thermal equilibrium in a double-well potential.
(a) Initially, the state of the system is highly nonequilibrium as
demonstrated by the empty states in the population distribution at
energies corresponding to levels in the right well. (b) In thermal
equilibrium the population has been redistributed via elastic collisions
between atoms because population of lower lying states in the right
well are always accompanied by population of higher lying states.
The net result is heating of the initial distribution as depicted by the
change in color from (a) (blue, colder) to (b) (red, hotter).

value. Phase locking is a ubiquitous phenomenon in nature (see
[4] for a number of examples), and more to our point, it is an
important functional primitive among electronic circuits—it
lies at the heart of every modern radio receiver, for example.
In the circuit context, questions regarding thermal equilibrium
can similarly be asked regarding dynamical equilibrium.

To make an attempt at answering both questions in the cir-
cuit context, we developed a model of an atomtronic circuit op-
erating with finite-temperature BECs in the presence of atomic
current flows, which are determined by atom injection and
extraction processes, as well as collisions. The model draws
upon a wealth of theoretical developments involving weakly
interacting Bose gases [5–8]. Past studies of phenomena
occurring in multiwell potentials include atom interferometry
[8], the bosonic Josephson effect [9], dynamical phase locking

of BECs [10], and transistorlike behavior of ultracold atoms
[11]. They typically involve solutions of the time-independent
Schrödinger equation, or the more general von Neumann
equation for the Bose-Hubbard Hamiltonian [12], and treat
collision effects at the level of the Boltzmann equation [7,13].
In these studies, detailed analyses were performed, sometimes
under restrictive experimental conditions, such as for a
microcanonical ensemble with a fixed total number of atoms
to isolate the phenomenon of interest in order to understand
its underlying physics. The methods are effective at extracting
intrinsic and extrinsic parameters that characterize the gas,
such as damping rates for various collective excitations. These
parameters provide good anchors for our model, which is more
phenomenologically based for two reasons. First, the number
of atoms in an atomtronic circuit is not known a priori and
is likely not conserved. Therefore, one has to solve the more
general time-dependent problem accounting for the influence
of atom injection and extraction on BEC dynamics. Second, the
necessary computations cannot be so demanding as to prevent
timely and comprehensive parametric studies.

Our starting point remains the Bose-Hubbard Hamiltonian.
However, we choose to work in the Heisenberg picture and use
a cluster expansion approach to circumvent the complication
of a rapidly increasing configuration space with an increasing
number of atoms. The approach involves tracking the time evo-
lution of atomic populations in the stationary states of the con-
fining potential. Many-body equations of motion for atomic
populations and coherences are derived. They contain hopping
effects, energy renormalizations, and coherences within the
context of a mean-field approximation. Collisions giving rise
to relaxation and dephasing are modeled phenomenologically
using an effective relaxation rate approximation, with the
effective relaxation rates obtained from experiment or quantum
kinetic calculations [7], for example. This type of treatment is
common in quantum electronics [14]. Beyond the investigation
of phase locking, our interest is to understand the extent
to which the considerable body of work in many-body
semiconductor laser theory [15,16] can provide tools for
designing and analyzing atomtronic devices and circuits.

Within our model a tradeoff is made between rigor and
mitigation of numerical demands. The result is an approach
allowing parametric studies involving time scales spanning
over three orders of magnitude. With this dynamical range
rapid population dynamics relevant to nonequilibrium effects
can be modeled, as well as the long time durations typical
of steady-state device operation. The tracking of slow device
dynamics is extremely challenging for the rigorous quantum
kinetic approaches. Lastly, limiting the computational demand
allows other details of an atomtronic circuit to be included,
such as those involving atom injection and extraction pro-
cesses, as well as complex confinement potentials. The end
product is a predictive and flexible model that can be used for
designing atomtronic devices and analyzing experimental data.

Using the model, we address BEC phase locking in a system
that is simplified, but also geared more towards circuitry than
the fully isolated system of Fig. 1. Figure 2 shows the model
potential used for our current study. The system consists of two
weakly coupled harmonic wells of different frequency where
atoms are injected into the left-hand well and extracted from
the right-hand well. Additionally, atoms are extracted from the
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FIG. 2. (Color online) Confining potential (solid, black) for the
double-well geometry being studied. The parabolas (dashed, black)
represent the potentials for the uncoupled wells. Also plotted are the
eigenfunctions (solid, blue and red) of each well displaced vertically
according to energy.

highest energy states in each well analogous to the process of
evaporative cooling used in typical BEC experiments. Notably,
establishment of a phase relationship between coupled BECs
has been studied previously in a similar geometry [17] where
dissipation and atomic interactions were found to play a key
role in the phase-locking mechanism. In this work we study
this phase evolution under the influence of atom injection; and,
as will be shown below, the strength of coupling between the
ground states of each well strongly dictates the steady-state
behavior of the system.

The remainder of the paper is organized as follows.
Section II provides a description of the theory and model
development. The working many-body equations of motion
are presented and the collision model described. Section III
illustrates an application of the model to study atom transport
between two adjacent harmonic potentials in the presence
of atom injection and extraction. The simulations show two
distinct dynamical scenarios involving the phase locking of
states in the different wells. Section IV summarizes the results
and discusses future improvements to the model.

II. THEORY

The system Hamiltonian can be written as the sum of two
parts:

H =
∑

i

[
p2

i

2m
+ V (ri)

]
+

∑
i>j

V (ri ,rj ), (1)

where pi is the momentum of the ith atom (all with mass
m), V (ri) is the confining potential, and V (ri ,rj ) describes
interatomic interactions, which play an important role in the
population dynamics of the system and are often described by a
contact interaction [6,7]. Although the model readily describes
an arbitrary number of wells, for brevity we present the
derivation assuming a double-well potential. In this case, we
introduce the Hamiltonians for the uncoupled well potentials

Va(r) and Vb(r):

HA = p2

2m
+ Va(r), HB = p2

2m
+ Vb(r), (2)

which have the solutions

HAφA
i (r) = εA

i φA
i (r), HBφB

i (r) = εB
i φB

i (r). (3)

With Va(r) and Vb(r) given by the dashed parabolas depicted
in Fig. 2, Eq. (3) describes the familiar eigenvalue equation of
the quantum harmonic oscillator.

Using these eigenstates, we introduce the second-quantized
wave function of the double-well system:

ψ̂(r) =
∑

i

aiφ
A
i (r) +

∑
j

bjφ
B
j (r), (4)

where φA
i (r) and φB

j (r) are localized in the left- and right-hand
wells, respectively, and ai and bj are the annihilation operators
for atoms in the ith and j th state of the left- and right-hand
wells, respectively. The creation and annihilation operators
obey the commutation relations

[ai,aj ] = [bi,bj ] = 0, (5)

[ai,bj ] = [ai,b
†
j ] = 0, (6)

[ai,a
†
j ] = [bi,b

†
j ] = δi,j . (7)

Thus, in second-quantized form,

H =
∫

d3rψ̂†(r)

[
p2

2m
+ V (r)

]
ψ̂(r)

+
∫

d3r′
∫

d3rψ̂†(r′)ψ̂†(r)V (r,r′)ψ̂(r)ψ̂(r′), (8)

giving essentially the two-site Bose-Hubbard Hamiltonian [12]

H =
∑

i

εA
i a

†
i ai +

∑
j

εB
j b

†
j bj +

∑
i,j

(gij a
†
i bj + H.a.)

+
∑

i,j,k �=0

(
vAA

ijk a
†
i−ka

†
j+kajai + H.a.

)

+
∑

i,j,k �=0

(
vAB

ijk a
†
i−kb

†
j+kbjai + H.a.

)

+
∑

i,j,k �=0

(
vBB

ijk b
†
i−kb

†
j+kbjbi + H.a.

)
, (9)

where gij describes a direct coupling between the two wells
and vijk accounts for interatomic correlations. These two
coefficients are given by

gij =
∫

d3rφA
i (r)

[
p2

2m
+ V (r)

]
φB

j (r), (10)

v
α,β

ijk =
∫

d3r′
∫

d3rφα
i−k

(
r′)φβ

j+k(r)V (r,r′)φβ

j (r)φα
i (r′),

(11)

where α,β = A,B.
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A. Equations of motion and collision effects

Using Eq. (9) and commutation relations for the atomic
creation and annihilation operators, we arrive at the following
equations of motion for the system:

i�
d

dt
〈a†

i ai〉 = −
∑

j

gij (〈b†j ai〉 − 〈a†
i bj 〉), (12)

i�
d

dt
〈b†j bj 〉 =

∑
i

gij (〈b†j ai〉 − 〈a†
i bj 〉), (13)

i�
d

dt
〈a†

i bj 〉 =
⎡
⎣�ji +

∑
k �=0

(
σB

jk〈b†j+kbj+k〉

−σA
ik〈a†

i+kai+k〉
)⎤⎦〈a†

i bj 〉

− gij (〈b†j bj 〉 − 〈a†
i ai〉), (14)

where �ji = εB
j − εA

i is the energy shift between the left-
and right-hand wells, and σα

nk = vαα
n+k,n,k + vαα

n,n+k,−k , with α =
A,B, is the coefficient for the energy renormalization.

The final step in developing our model is to include the
effects of collisions. Following a treatment that has been
successful in describing collisional effects in semiconductor
devices, in terms of reproducing the results of quantum
kinetic methods [18,19], we make an effective relaxation rate
approximation and write

dnσ
i

dt

∣∣∣∣
col

= −γ
[
nσ

i − f
(
εσ
i ,μ,T

)]
, (15)

where γ is an effective collision rate that drives the system
towards an equilibrium distribution. Here, nσ

i is the actual
population of the ith level in the σ well and f (εσ

i ,μ,T ) is the
equilibrium population that it relaxes to in the limit γ → ∞. In
our case, f (εσ

i ,μ,T ) is the Bose-Einstein distribution function
for a given chemical potential μ and temperature T , which are
determined by number and energy conservation:

∑
σ=A,B

∑
i

nσ
i =

∑
σ=A,B

∑
i

f
(
εσ
i ,μ,T

)
, (16)

∑
σ=A,B

∑
i

εσ
i nσ

i =
∑

σ=A,B

∑
i

εσ
i f

(
εσ
i ,μ,T

)
. (17)

To picture the collision effects described by Eq. (15),
consider again the scenario of Fig. 1(a). Assuming the system
is completely isolated, the energy of the atoms can only be
redistributed by interatomic collisions. Initially, the atomic
distribution is far from equilibrium as is evident from the
right-hand plot in Fig. 1(a), where there are empty states
in the population distribution of the two-well system at
energies corresponding to levels in the right-hand well (e.g.,
at ER1). As the system evolves, collisions drive the system
towards equilibrium by redistributing the population among
the available states. The end result is an equilibrium population
distribution with higher lying states populated (i.e., at a
higher effective temperature [see Fig. 1(b)] because of energy
conservation. This is the role of the collisions represented by
Eqs. (15)–(17).

III. APPLICATION OF THE MODEL

To illustrate the application of the above model, we consider
what might represent a portion of a device that is used in
an atomtronic circuit. It consists of an asymmetric double
well [20,21] in which atom flux arrives at one well and
leaves through the other. Of interest is the path by which this
simple system arrives at a dynamical steady state, while also
remaining out of thermal equilibrium.

For this example, a further simplification is made by using
the following relations:

〈a†
i ai〉 = nA

i , (18)

〈b†j bj 〉 = nB
j , (19)

〈a†
i bj 〉 =

√
nA

i nB
j exp [−iθij ], (20)

where θij = θA
i − θB

j is the relative phase between states of
the left- and right-hand wells. Inclusion of collision effects,
as well as source and extraction contributions, Pi and γ

A,B
i ,

respectively, gives

dnA
i

dt
= −2

�

∑
j

gij

√
nA

i nB
j sin θij + dnA

i

dt

∣∣∣∣
col

+ Pi − γ A
i nA

i ,

(21)

dnB
j

dt
= 2

�

∑
i

gij

√
nA

i nB
j sin θij + dnB

i

dt

∣∣∣∣
col

− γ B
j nB

j , (22)

dθij

dt
= 1

�

⎡
⎣�ji +

∑
k �=0

(
σB

jkn
B
j+k − σA

ikn
A
i+k

)⎤⎦

− gij

�

(
nB

j − nA
i

)
√

nA
i nB

j

cos θij , (23)

In the simulations we consider the ground state of the
left-hand well initially occupied together with a negligible
background population in the other states (i.e., initially an
essentially zero-temperature BEC exists in the left-hand well).
We consider six energy levels in the left-hand well and four in
the right-hand well. The initial populations are nA

1 = 0.08 and
nA

i = 10−6 for i > 1 in the left-hand well, and nB
1 = 0.001

in the right-hand well. We use an effective collision rate
of γ = 4 s−1. Atoms are injected into the fifth level of the
left-hand well at a rate of P5 = 0.1 s−1, and evaporated
from the highest levels at a rate of γ A

6 = γ B
4 = 4 s−1. The

population in the lowest three energy levels of the right-hand
well are outcoupled at a rate of γ B

1,2,3 = 0.1 s−1. The temporal
evolution of the populations in each well are studied in the
presence of collisions and a direct coupling between the ground
states of each well as described by Eq. (10) for g11.

In this double-well system the presence of a relative
phase between BECs in the left- and right-hand wells is of
particular interest. Based on Eq. (23), phase locking (i.e.,
dθ11/dt ≡ dϕ/dt → 0) can occur when the term containing
g11 in Eq. (23) is larger than the first term on the right-hand side
of the same equation. The effect of phase locking on this system
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FIG. 3. (Color online) Time evolution of the relative phase
(solid, blue) and detuning (solid, red) between ground-state popu-
lations of the two wells for the unlocked case.

is discussed in more detail below where the time evolution of
the system is studied for different coupling strengths between
the two wells of the potential.

A. Unlocked operation

We begin by considering a ground-state coupling parameter
of g11/� = 1 s−1. Figure 3 shows the temporal evolution of
ϕ. Also plotted is the ground-state frequency difference, or
detuning, which is given by

� = 1

�

⎡
⎣�11 +

∑
k �=0

(
σB

1,kn
B
1+k − σA

1,kn
A
1+k

)
⎤
⎦, (24)

where σA
1,k/� = σB

1,k/� = 0.2 s−1 for all k �= 0. For g11/� =
1 s−1, the BEC phases are unlocked and the relative phase
between the two wells exhibits rapid oscillations. Additionally,
the detuning remains nearly constant in time.

Figure 4 shows the time evolution of the spatial distribution
of the ensemble-averaged atomic population, which is given
by

〈ψ̂†ψ̂〉 = ∣∣φA
1

∣∣2
nA

1 + ∣∣φB
1

∣∣2
nB

1

+2
√

nA
1 nB

1 Re
{
φA

1 φB
1 exp[iϕ]

}
. (25)

The initial population distribution is localized in the left
well as depicted by the t = 10−6 s curve. The remaining curves
show the temporal evolution of the population distribution
where small oscillations between the nondegenerate eigen-
states φA

1 and φB
1 occur, as depicted by the t = 624.5 s and

626.4 s curves.

B. Locked operation

System behavior becomes distinctly different when g11/�

increases to 2 s−1. Figure 5 explicitly shows the phase locking,
which occurs after a time t > 2 s. The locking arises from an
increase in the ground-state population, nA

1 , of the left-hand
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FIG. 4. (Color online) Spatial distribution of the ensemble-
averaged atomic population 〈ψ †ψ〉 in the unlocked case for t = 10−6 s
(solid, black), 1 s (dotted, blue), 624.5 s (dash-dotted, green), and
626.4 s (dashed, red). At large times the population distribution
undergoes small oscillations between the two wells as depicted by
the dash-dotted (green) and dashed (red) curves.

well due to the pump and extraction processes. This in turn
causes the exchange shift to decrease the detuning between
left- and right-hand well ground states (red curve, Fig. 5).
When the detuning becomes sufficiently small, phase locking
occurs (compare blue curves, Figs. 3 and 5).

Figure 6 shows the evolution of the same initial atomic
spatial distribution as in the unlocked case. Here, the popu-
lations in both wells continue to grow during the transfer of
atoms from the left to the right well, until a time-independent
distribution is reached, with substantially higher populations
in both wells than in the unlocked situation (compare to Fig. 4).
Underlying the time independence and population growth is
the formation of a composite eigenstate, resulting from the
phase locking of the ground states in both wells.
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FIG. 5. (Color online) Time evolution of the relative phase
(solid, blue) and detuning (solid, red) between ground-state popu-
lations of the two wells for the locked case.
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FIG. 6. (Color online) Spatial distribution of the ensemble-
averaged atomic population 〈ψ †ψ〉 in the locked case for t = 10−6 s
(solid, black), 1 s (dotted, blue), 50 s (dash-dotted, green), and 1000 s
(dashed, red). A time-independent distribution is reached where an
appreciable population has built up in the left-hand well.

C. Comparison of locked and unlocked operation

The significance between locked and unlocked operation
for circuit operation is clearly evident when observing the
number of atoms leaving the system. In Fig. 7 the atom flux
leaving the right-hand well is plotted as a function of time.
When the system is not phase locked the output flux fluctuates
around an average value of ∼0.04 atoms/s. The fluctuations
arise as a result of a small back and forth population transfer
between the two wells. When phase locking occurs, the output
flux increases by a factor of 3.5 to a steady-state value of
∼0.14 atoms/s.

Some insight into the increase in output flux due to phase
locking can be gained by studying the population in each level
once steady-state is reached. Figure 8 shows the population
distribution in steady state for both the unlocked and locked
cases. As time progresses in the unlocked case, relaxation takes
place and the populations settle essentially to a Bose-Einstein
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FIG. 7. (Color online) Time evolution of the output flux for the
unlocked (solid, blue) and locked (solid, red) cases.
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FIG. 8. (Color online) Steady-state population distributions in
the unlocked (solid, blue) and locked (solid, red) cases. Each data
point corresponds to the population at a given energy level. The
solid lines show the Bose-Einstein distributions with equivalent total
population and energy.

distribution after t ≈ 10 s. Note that the population distribution
is not exactly Bose-Einstein in nature due to the effects of
injecting and extracting atoms at specific energy levels. A
similar progression is followed at early times in the locked
case; however, with the onset of phase locking, substantial
cooling takes place (indicated by the decrease in population of
higher lying states) while the total atom population continues
to grow appreciably. Time independence in this case occurs at
t ≈ 100 s.

Figure 9 summarizes the results presented in Fig. 8 by
showing the time evolution of the fractional ground-state
population and effective temperature of atoms in the left-
hand well. Here, the fractional ground-state population in
the left-hand well is given by nA

1 /
∑6

i=2 nA
i . This quantity

is plotted in Fig. 9(a), where the difference in condensate
occupation is clearly depicted. Figure 9(b) shows the effective
temperature of the left-hand well, which is obtained by fitting
the population distribution to a Bose-Einstein distribution. At
early times, both locked and unlocked systems show a rise
in effective temperature as chemical potential is converted to
thermal energy and the system trends towards equilibrium. In
the unlocked case the system appears to reach a steady state
with noticeable residual fluctuations. On the other hand, in
the locked case the system moves towards a time-independent
operation exhibiting significant cooling and BEC growth in
the left-hand well. This growth leads to the large increase in
the number of atoms flowing out of the right well as shown in
Fig. 7.

The physics of coherent and incoherent tunneling has drawn
interest since the 1920’s. In regards to macroscopic quantum
tunneling experiments with BEC, recent reports have also
indicated two regimes of operation: the Josephson oscillation
regime and the self-trapping regime [22], which are determined
by the relative phase of two BECs occupying neighboring
potential wells. Direct relation of our modeling results to
experimental work is ongoing. The connection is challenging
because our model casts system behavior in terms of the
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FIG. 9. (Color online) Time evolution of the (a) fractional
ground-state population and (b) effective temperature of atoms in
the left-hand well for the unlocked (solid, blue) and locked (solid,
red) cases.

energy eigenstates of the wells and how they are effected by
population dynamics, such as the exchange shifts. In contrast,
the experimental work relates system behavior directly to the
atomic populations.

IV. CONCLUSION

A model is developed for use in the design of atomtronic
circuitry based on finite-temperature Bose-condensed gases.
Working in the Heisenberg picture, equations of motion for
atomic populations and coherences are derived. Energy renor-
malizations are treated at the mean-field level, and collision
effects are taken into account using an effective relaxation
rate description. Numerical solution of the population and
coherence equations of motion allows tracking of the dynamics
of finite-temperature BECs in the presence of atom injection
and extraction.

The model is demonstrated by studying the evolution of
a Bose-condensed gas in the presence of atom injection
and extraction in a double-well potential. In the presence of
collisions and dissipation, two regimes of device operation
are observed corresponding to unlocked and locked operation.
These operating regimes are identified based on whether the
population transfer between the two wells of the potential is
incoherent (unlocked) or coherent (locked). Behavior of the
system in terms of the output flux, degree of condensation,
and effective temperature is shown to be distinctly different
for each operating regime.

The goal of this paper is to introduce a predictive and
flexible model for use in designing atomtronic devices and for
analyzing BEC experiments. There is much room for further
improvement of the model. For example, quantum fluctuations
that are especially important at very low temperature may
be included by extending the equations of motion to include
higher order correlations described by terms like 〈a†

i a
†
i aiai〉,

〈b†j b†j bjbj 〉, and 〈a†
i b

†
j bjai〉. In addition, the role of dissipation

and dephasing may be treated more consistently by use of
the equivalence to the Lindblad terms in the density operator
approach [23].
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