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Polarons in ultracold Fermi superfluids
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We study a type of Fermi polaron induced by an impurity interacting with an ultracold Fermi superfluid.
Due to the three-component nature of the system, the polaron can become trimerlike with a nonuniversal energy
spectrum. We identify multiple avoided crossings between impurity- and trimerlike solutions in both the attractive
and the repulsive polaron spectra. In particular, the widths of avoided crossings gradually increase as the Fermi
superfluid undergoes a crossover from the BCS side towards the Bose-Einstein condensate side, which suggests
instabilities towards three-body losses. Such losses can be reduced for interaction potentials with small effective
ranges. We also demonstrate, using the second-order perturbation theory, that the mean-field evaluation of the
fermion-impurity interaction energy is inadequate even for small fermion-impurity scattering lengths, due to the
essential effects of Fermi superfluid and short-range physics in such a system. Our results are practically useful
for cold-atom experiments on mixtures.
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I. INTRODUCTION

Quasiparticles serve as the cornerstone of complex col-
lective phenomena in interacting many-body systems. As an
example, the polaron, an impurity dressed by particle-hole
excitations from the environment, is a typical quasiparticle
that has stimulated much interest in the study of solid-state
and cold-atom systems with highly polarized components.
In cold atoms, polarons have been successfully explored in
both the attractive and the repulsive branches of impurities
interacting with a Fermi sea of identical fermions [1–4]. These
studies are crucial for understanding the nature of normal states
either against pairing physics in the case of strong attraction
[5–10] or in the context of itinerant ferromagnetism with strong
repulsion [11–13]. However, much less is known about the
fate of impurities immersed in a Fermi superfluid, where the
impurity can be dressed by pairs of particles in the superfluid
[14]. Given the growing number of experiments on atomic
mixtures, it becomes pressing to understand the fundamental
physics of the underlying quasiparticles, such as polarons, in
these systems.

Particularly, in the recent ENS (Ecole Normale Supérieure
de Lyon) experiment, a mixture of Bose and Fermi superfluids
has been realized [15]. The two superfluids not only coexist but
also interact with each other, constituting the most charming
character of this system. How to characterize the interaction
energy between these two superfluids, however, is still an open
question. Exact three-body calculations show that, in the Bose-
Enstein condensate (BEC) limit of fermions, the interaction
between a bosonic atom and a molecule of two fermions cannot
be faithfully described by the mean-field theory, even when
the boson-fermion scattering length is small [16,17]. It then
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becomes essential to investigate the validity of the mean-field
theory on the many-body level throughout the whole BCS-
BEC crossover regime of fermions and identify the underlying
mechanism wherever it fails to apply. Here, we approach this
goal via the study of polarons.

We use the variational approach to investigate the polaron
physics when an impurity is immersed in a Fermi superfluid
with tunable interactions. With a pairing superfluid as the
background, the polaron wave function naturally acquires
trimerlike terms which originate from the impurity-induced
pair-breaking processes in the superfluid bath. As a result,
the polaron spectrum is composed of both impurity- and
trimer-dominated solutions. Due to the couplings in between,
many avoided level crossings occur, whose widths depend
sensitively on both the interaction strength and the effective
range of the system. In particular, as fermions are tuned from
the BCS to the BEC side, the widths of the avoided crossings
gradually increase, which suggests instabilities towards three-
body losses. On the contrary, the widths become narrower
at smaller effective ranges, which can help in stabilizing
the system. For small fermion-impurity scattering lengths,
the second-order perturbation theory captures the essential
effects of Fermi superfluid and short-range physics in the
system and consequently shows the insufficiency of mean-
field descriptions. These results rectify our understanding
of interaction effects in multicomponent mixtures on the
mean-field level and provide guidance for maintaining stability
from three-body losses in cold-atom experiments on mixtures.

The paper is organized as follows. In Sec. II, we outline
the variational approach adopted in this work and pro-
vide details on the derivation of the equations used for
the numerical evaluation of the polaron energy. In Sec. III,
we present the full polaron spectra and the polaron residue.
We then apply the second-order perturbation theory in Sec. IV
and discuss the insufficiency of the Hartree-type mean-field
characterization of the polaron energy. In Secs. V and VI,
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we study the effects of fermion-fermion interaction and the
effective range on the polaron spectrum, respectively. We
examine the potential polaron to molecule transition in the
system in Sec. VII. Finally, we summarize in Sec. VIII.

II. MODEL

We start from the Hamiltonian of our system K = H −
μNF (NF is the total number of fermions):

K =
∑
k,σ

(εk − μ)a†
kσ akσ + gff

V

∑
k,k′,q

a
†
k↑a

†
q−k↓aq−k′↓ak′↑

+
∑

k

εkb
†
kbk + gfi

V

∑
k,k′,q

∑
σ

a
†
kσ b

†
q−kbq−k′ak′σ , (1)

where akσ and bk are, respectively, the annihilation operators
for the superfluid fermions and the impurity atom with the
dispersion εk = k2/(2m) (� is taken to be unity); μ is the
chemical potential of the two-species (σ = ↑,↓) spin-balanced
Fermi gas. gff (gfi) is the bare fermion-fermion (fermion-
impurity) interaction, which is related to the scattering length
aff (afi) via the standard renormalization relation: [18] 1/gβ =
m/(4πaβ) − 1/V

∑
k 1/(2εk), where V is the quantization

volume and β = ff and fi. For simplicity, we only consider the
case where the impurity has the same mass as that of a fermion
and interacts equally with two fermion species. Our results can
be straightforwardly generalized to cases with unequal masses
or imbalanced interactions.

The Fermi superfluid at zero temperature can be described
by the standard BCS wave function [19]:

|BCS〉 =
∏

k

(uk + vka
†
k↑a

†
−k↓)|vac〉 ∼

∏
k

α−k↓αk↑|vac〉.
(2)

Here, αkσ = ukakσ + ησ vka
†
−kσ̄ is the annihilation operator

for the Bogoliubov quasiparticles, where η↓ = −η↑ = 1,

uk = √
(Ek + εk − μ)/(2Ek), and vk =

√
1 − u2

k; the corre-
sponding quasiparticle energy Ek =

√
(εk − μ)2 + �2, with

� being the pairing order parameter.
To depict the impurity-induced polaron excitations in a

Fermi superfluid, we adopt an ansatz inspired by that used
in a highly polarized two-component Fermi gas [5,20,21]:

|P 〉Q =
(

ψQb
†
Q +

∑
kk′

ψkk′b
†
Q−k′−kα

†
k′↑α

†
k↓

)
|BCS〉, (3)

where Q indicates the center-of-mass momentum of the
polaron. The second term in the brackets, which effectively
describes impurity-induced pair breaking in the superfluid and
is therefore trimerlike, includes contributions from excitations
like a

†
k′↑a−k↑, a

†
k↓a−k′↓, a

†
k′↑a

†
k↓, or a−k′↓a−k↑. As a first

attempt at the problem, we only keep excitations to the
lowest order [22]. The existence of trimerlike terms in polaron
wave functions is unique for a pairing-superfluid background,
which significantly affects the polaron spectra. Trimers in a
many-body background have received much attention recently
in different contexts [23–27], and ours is a new platform where
such few-body effects can be observed.

The ground-state solution can be obtained by minimizing
Ep = 〈P |K|P 〉 − EBCS, with EBCS = ∑

k(εk − μ − Ek) +

∑
k �2/(2Ek). Note that it is convenient to express the

fermion-fermion interaction term in K in terms of the scat-
tering between different quasiparticle states: k, q − k → k′,
and q − k′. Since in the large-k limit, uk → 1 and vk → 0,
only one term has a finite contribution to the energy:

gff

V

∑
q,k,k′

ukuq−kuq−k′uk′α
†
k↑α

†
q−k↓αq−k′↓αk↑. (4)

We then have the following equations:

(Ep − εQ)ψQ = gfi

V

(
2
∑

k

|vk|2ψQ

+
∑
kk′

vkuk′ψkk′ +
∑
kk′

ukvk′ψkk′

)
, (5)

Akk′ψkk′ = gfi

V

(
uk′

∑
k′′

uk′′ψkk′′ − vk

∑
k′′

vk′′ψk′′k′

+uk

∑
k′′

uk′′ψk′′k′ − vk′
∑

k′′
vk′′ψkk′′

+ vkuk′ψQ + ukvk′ψQ

)

+ gff

V
ukuk′

∑
k′′

ψk′′,k+k′−k′′uk′′uk+k′−k′′ . (6)

As gβ (β = ff and fi) would become vanishingly small after
renormalization, terms including gβ

∑
k vk · · · , where vk ∼

1/k2 at large momentum k, should also vanish. We therefore
neglect these terms and define the following:

Ak = gfi

(
vkψQ +

∑
k′

uk′ψk,k′

)
; (7)

Bk = gfi

(
vkψQ +

∑
k′

uk′ψk′,k

)
; (8)

Ck = gff

∑
k′

ψk′,k−k′uk′uk−k′ . (9)

From these, we can get ψQ and ψk,k′ in terms of Ak, Bk,
and Ck, which, when plugged into Eqs. (7), (8), and (9), yield
a set of closed equations:(

V

gfi
−

∑
k′

u2
k′

Akk′

)
Ak =

∑
k′

(
2vkvk′Ak′

Ep − εQ

+ ukuk′Ak′

Akk′

+ uku
2
k′Ck+k′

Akk′

)
, (10)(

V

gff
−

∑
k′

u2
k′u

2
k−k′

Ak′,k−k′

)
Ck =

∑
k′

2u2
k−k′uk′Ak′

Ak′,k−k′
, (11)

with Ak,k′ = Ep − εQ−k−k′ − Ek − Ek′ . Physically, as we
only consider the case of spin-independent impurity-fermion
interactions, we expect Ak = Bk and ψk,k′ = ψk′,k. We have
numerically checked that this is the case.

It is also important to note that Eqs. (10) and (11) are
able to reproduce the exact three-body equations when the
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FIG. 1. (Color online) Polaron spectrum (a) and residue (b1,
b2) as functions of the fermion-impurity interaction strength. The
fermion-fermion interaction is at resonance (aff = ∞). (a) Blue
solid, red dashed, and black solid lines correspond to the lowest,
second lowest, and higher branches of the spectrum. Red dotted
and magenta dash-dotted lines show, respectively, the perturbative
energies EPT/EF and (EPT + E′

PT)/EF . (b1, b2) The polaron residue
for the two lowest branches (b1) and several higher branches (b2).
The magenta dash-dotted curves in panels (b1) and (b2) are the
residue results based on the perturbative wave function. The cutoff
momentum kc = 10kF , and the unit of energy EF = k2

F /2m.

fermion density is sent to zero. While with a finite fermion
density, the interplay of Fermi superfluid and trimer physics
gives rise to intriguing polaron properties as discussed below.
In practice, Ep and variables Ak and Ck can be numerically
solved by imposing a certain momentum cutoff kc. Physically,
kc corresponds to setting a finite effective range, r0 ∼ 1/kc,
in the two-body collision. The coefficients in ansatz (3) can
be easily deduced from the Schrödinger’s equation (6), which
gives the polaron residue [28]:

Z = ψ2
Q

ψ2
Q + ∑

k,k′ ψ
2
kk′

. (12)

Apparently, the polaron residue Z ∼ 1 (Z ∼ 0) when the
system is impurity (trimer) dominated. In the rest of the work,
we focus on polarons in the Q = 0 sector.

III. POLARON ENERGY AND RESIDUE

By explicitly solving Eqs. (10) and (11), we get the
typical polaron spectrum for a unitary Fermi superfluid [see
Fig. 1(a)]. The spectrum exhibits many avoided level crossings
between impurity- and trimer-dominated solutions, which are
also apparent in the residue plots in Figs. 1(b1) and 1(b2).

Particularly, a wide avoided crossing exists between the two
lowest branches at (kF afi)−1 ∼ −3, where kF is the Fermi mo-
mentum of a noninteracting Fermi gas with the same number
density as the Fermi superfluid. When a−1

fi is tuned through
the avoided crossing, the wave function continuously evolves
from impurity dominated (Z ∼ 1) to trimer dominated (Z ∼ 0)
in the lowest branch [29]. Similar atom-trimer crossover has
been reported for the ground state of a two-channel model in
Ref. [14], where equal fermion-fermion and fermion-impurity
interactions are considered. A polaron to molecule transition
[9,10,14] can also occur within the second lowest branch of
our system, when the fermion-impurity interaction is tuned
towards the BEC limit.

Compared to the two lowest branches, the higher branches
at positive afi in Fig. 1(a) show more interesting properties,
as multiple avoided crossings occur with widths tunable by
afi. At small afi, the avoided crossings are very narrow, which
allows us to identify a repulsive atomic branch by following the
trajectory of the impurity-dominated solutions (Z ∼ 1) while
afi varies. The energy of the repulsive branch increases with
afi, while the width of avoided crossings becomes broader due
to the enhanced coupling between the impurity and the trimer
terms in Eq. (3). This repulsive branch eventually runs into a
dense spectrum of trimer-dominated solutions.

IV. PERTURBATIVE CORRECTIONS

To gain further insights into the polaron state, we apply the
second-order perturbation theory at small |afi|. Intuitively, up
to a2

fi, the perturbative energy caused by the fermion-impurity
scattering can be written as

EPT = 4πafiρ

m
+ 2

(
4πafi

mV

)2 ∑
kq

[
v2

q

(
1

2εk

− u2
k

ε−q−k + Eq + Ek

)
− ukvkuqvq

ε−q−k + Eq + Ek

]
. (13)

Here, the first term is the mean-field contribution, with ρ being
the total density of fermions, while the second term accounts
for the intermediate scattering processes shown in Fig. 2(a).
Equation (13) can be continuously reduced to the case of
noninteracting fermions [16] with decreasing fermion-fermion
interaction. However, for a unitary Fermi superfluid, EPT is

(a)

= +  … + 

(b)

FIG. 2. (Color online) Diagrams for the second-order perturba-
tive corrections in |afi|: panels (a) and (b) are, respectively, without
and with the intermediate scatterings between superfluid fermions.
The black solid (red dashed) line is the propagator for impurity
(Bogoliubov quasiparticles). The hollow (solid) red circles represent
the bare (renormalized) fermion-fermion interactions, and the black
circles represent the fermion-impurity interactions.
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well above the polaron energy Ep even at relatively small |afi| [see Fig. 1(a)]. This can be attributed to the effects of intermediate
fermion-fermion scatterings, as shown diagrammatically in Fig. 2(b). The sum of all relevant diagrams gives an additional energy
correction up to the order of a2

fi:

E′
PT = 2

(
4πafi

mV

)2 ∑
k,q,k′

(ukvq + uqvk)Tk,q;k′,k+q−k′ (uk′vk+q−k′ + vk′uk+q−k′)

(ε−q−k + Ek + Eq)(ε−q−k + Ek′ + Ek+q−k′ )
,

(14)

Tk,q;k′,k+q−k′ = ukuquk′uk+q−k′

(
mV

4πaff
−

∑
k

1

2εk
+

∑
k′′

u2
k′′u

2
k+q−k′′

ε−q−k + Ek′′ + Ek+q−k′′

)−1

.

As shown in Fig. 1(a), the inclusion of E′
PT considerably lowers

the perturbative energy based on Eq. (13). The remaining
discrepancy is attributed to higher-order impurity-fermion
scattering processes beyond the diagrams in Fig. 2, which
lead to energy corrections on the order of an

f i with n � 3.
The second-order perturbation results reveal several re-

markable properties of polarons in the presence of pairing
superfluid. First, through the inclusion of E′

PT [Eq. (14)] and
uk , vk , and Ek [Eqs. (13) and (14)], the second-order terms
rely crucially on the interaction between fermions. Thus,
sweeping the Fermi superfluid across the resonance is expected
to significantly affect the polaron. Second, the summations
in EPT and E′

PT both scale logarithmically with the cutoff
momentum kc (see Fig. 3). This scaling relation indicates that
Ep is generally nonuniversal and that the mean-field evaluation
of Ep is inadequate even for small |afi|. The reason for
the nonuniversality can be attributed to the three-component
nature of the system, where the high-energy (short-range)
detail, or the effective range, plays an essential role. In the
following, we show the dramatic effects of the fermion-
fermion interaction and the effective range on the polarons.

Finally, the polaron residue Z can also be estimated
based on first-order (in |afi|) wave functions derived from
the perturbation theory by setting �Q ≈ 1 [see Figs. 1(b1)
and 1(b2)].

V. EFFECT OF FERMION-FERMION INTERACTION

We study the variation of the polaron spectrum as the
fermion-fermion interaction changes. The results are shown
in Fig. 4. For both the lowest two branches [Figs. 4(a) and
4(b)] and the higher branches [Figs. 4(c) and 4(d)], the avoided
crossings become broader as fermions are tuned towards the

101 102
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0.04

kc/kF

E
(2

)
P
T

(a)

101 102

−1

−0.5

kc/kF

E
P
T

(b)

FIG. 3. (Color online) The cutoff-momentum dependence of the
second-order perturbative corrections: panel (a) is for E

(2)
PT [second-

order terms in Eq. (13)]; panel (b) is for E′
PT. Here we choose

interaction parameters (kF aff )−1 = 0.1 and (kF afi)−1 = 2. The unit
of energy is taken to be EF .

BEC side. As a result, the repulsive atomic branch becomes
difficult to identify even for small positive afi [Fig. 4(d)], which
suggests instabilities towards three-body losses.

A broad avoided crossing implies an enhanced coupling
between the impurity and the trimer terms in Eq. (3), which we
attribute to the enlarged phase space of the fermion-impurity
scattering: as the fermions are more tightly paired, the Fermi
surface becomes more smeared out, and the scattering phase
space is less affected by the Pauli principle. Accordingly, more
impurity-induced excitations emerge in the Fermi superfluid,
which effectively enhances the impurity-trimer coupling in
Eq. (3).

In addition, from Figs. 4(b) and 4(d) one can see increasing
deviations from the perturbative results when the fermions are
tuned from the BCS to the BEC side. This suggests that a
strong Fermi superfluid can dramatically affect the polaron
spectra through higher-order scattering processes, which are
beyond the ones shown in Fig. 2. This is consistent with the
exact calculation of atom-dimer scattering length in the deep
BEC limit of fermions [16,17], which includes all orders of
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FIG. 4. (Color online) Effect of fermion-fermion interaction on
the polaron energy (Ep) for the lowest two branches (a, b) and
the higher branches (c, d). (a) Ep as functions of (kF afi)−1, with
(kF aff )−1 = 0 (solid line), 0.5 (dashed line), and −1 (dash-dotted
line). (b) Ep as functions of (kF aff )−1 at a fixed (kF afi)−1 = −3. (c) Ep

as functions of (kF afi)−1 with (kF aff )−1 = 0 (solid line), 0.5 (dashed
line), and −0.3 (dash-dotted line). (d) Ep as functions of (kF aff )−1 at
a fixed (kF afi)−1 = 2. In panels (b) and (d), the red dotted line and the
magenta dashed-dotted line are, respectively, the perturbative energies
EPT/EF and (EPT + E′

PT)/EF . The cutoff momentum kc = 10kF .
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FIG. 5. (Color online) Effect of effective range on the polaron
spectra for the lowest two branches (a) and the higher branches (b).
The fermion-fermion interaction is at resonance (aff = ∞). The solid
and dashed lines are, respectively, for kc = 10kF and 20kF .

scattering processes and shows the breakdown of the mean-
field prediction.

VI. EFFECT OF EFFECTIVE RANGE

As the effective range (r0) corresponds to the inverse
of the cutoff momentum (kc) in our formalism, its effect
can be studied by changing kc in numerical simulations of
Eqs. (10) and (11). In Fig. 5, we show the polaron spectra for
two different kc, where Figs. 5(a) and 5(b) are, respectively,
for the lower and the higher branches. A common feature is
that for larger kc, or smaller r0, the avoided crossings move
towards weaker fermion-impurity interactions, i.e., towards
smaller |afi|. Accordingly, the coupling between impurity-
and trimer-dominated solutions also becomes smaller, which
naturally leads to narrower avoided crossings. In practice, these
results suggest that a system with a smaller r0 can be more
stable, as a narrower crossing with trimer-dominated solutions
makes the decay into deep trimers less likely.

VII. MOLECULAR STATE AND
POLARON-MOLECULE TRANSITION

The general variational wave function for a two-body state
involving the impurity atom can be written as

|M〉Q =
∑

k

(ϕk↑b
†
Q−kα

†
k↑ + ϕk↓b

†
Q−kα

†
k↑)|BCS〉. (15)

In the case of a spin-independent fermion-impurity interaction,
the bound-state wave functions ϕk↑ and ϕk↓ are decoupled.
There is then simply a twofold degeneracy in the two-body
sector. We therefore write the ansatz as

|M〉Q =
∑

k

ϕk↑b
†
Q−kα

†
k↑|BCS〉. (16)

From the Schrödinger’s equation, the wave functions ϕk↑
should satisfy

Eϕk↑ = εQ−kϕk↑ + Ekϕk↑ + gfi

V

(
uk

∑
k′

uk′ϕk′↑

− vk

∑
k′

vk′ϕk′ + 2
∑

k′
|vk′ |2ϕk

)
, (17)

where the last term is the Hartree term. As the Hartree terms
here only serve to shift the molecular energy by a vanishingly
small amount after renormalization, they are not important for

−3 0−2

−1

0

E
p
,E

m
−

E
th

(kF afi)−1

(a)

−3 0−2

−1

0

(kF as)−1

E
p
,E

m
−

E
th

(b)

FIG. 6. (Color online) (a) Polaron to molecule transition in the
Q = 0 sector. The solid and the dashed lines correspond to the
lowest two branches of the polaron energy, while the dash-dotted
line is the molecular energy relative to the molecular threshold. The
fermion-fermion interaction is at resonance (aff = ∞). The cutoff
momentum is chosen to be kc = 10kF , and the unit of energy is EF . (b)
Polaron to molecule transition for the case of as = aff = afi, with kc =
15kF .

the two-body bound states. Similarly, we may drop the term
gfivk

∑
k′ vk′ϕk′ . This leads to the equation in the two-body

bound-state sector:

V

gfi
=

∑
k

|uk|2
Em − εQ−k − Ek

. (18)

With the zero energy reference chosen to be the BCS
ground-state energy, the two-body bound -state threshold Eth

in this sector is the quasiparticle excitation gap: Eth = � when
μ > 0 and Eth =

√
�2 + μ2 when μ < 0. In Fig. 6(a), we

show the lowest two branches of the polaron energy and
the molecular energy relative to the threshold. While there
are no polaron to molecule transitions in the lowest branch,
which undergoes an impurity-trimer crossover before crossing
with the molecular branch, there are two polaron to molecule
transitions in the second-lowest branch. With increasing kc,
the two transition points will move towards the BCS limit and
the BEC limit, respectively.

A similar picture for the polaron to molecule transition
holds when we consider the special case where gff = gfi, i.e.,
the fermion-fermion interaction and the fermion-impurity
interaction are equal. As shown in Fig. 6(b), with an appropri-
ately chosen cutoff momentum, the avoided crossing between
the lowest two branches in the polaron spectrum is very narrow.
If one starts from the ground state in the BCS limit and tunes
the interaction strength as = aff = afi fast enough, the system
would not end up in the trimerlike branch beyond the avoided
crossing. In this case, there will be a polaron to molecule
transition on the BEC side of the resonance, at which point the
ground state of the system undergoes a first-order transition
from the nonuniversal polaronlike state into a universal molec-
ular state. This picture is consistent with the results reported in
Ref. [14].

VIII. SUMMARY AND DISCUSSION

We have studied the polaron excitations when an impurity
is interacting with a Fermi superfluid. In particular, we show
the importance of higher-order scattering processes caused
by the superfluid fermions in evaluating the polaron energy.
Consequently, the mean-field description of polarons becomes
inadequate even for small fermion-impurity scattering lengths,
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especially when the fermions are tuned across resonance to
the BEC side. This poses new challenges on the theoretical
treatment of these systems beyond the mean-field or perturba-
tive approaches. Moreover, our work shows that the impurity-
trimer coupling can be greatly enhanced by increasing the
fermion-fermion and fermion-impurity interactions or by
decreasing the effective range, which all lead to broader
avoided level crossings. In practice, this can serve as a
guideline to reduce three-body losses and maintain the stability
of mixture systems. Our results can be directly probed in
current cold-atom experiments. The polaron spectrum and its
residue can be measured using radio-frequency spectroscopy
[1,3,4], and the stability of the system can be detected through
the atom-loss measurement.

Finally, we note that our polaron ansatz could be improved
by including collective excitations in the Fermi superfluid
due to phase fluctuations of the pairing field. This type of
excitation dominates over pair-breaking processes in the deep
BEC regime of fermions, where the system can be modeled by
a polaron on top of a molecular BEC [30–38], with impurity-
boson and boson-boson scattering lengths, respectively, given

by the three-body [16,17] and the four-body [39] solutions. In
this work, we focus on the effects of pair breaking in the
weak-coupling and the near-resonant regimes of fermions,
where the collective excitations cannot qualitatively change
the main features of the polaron, i.e., the emergence of trimer
physics, the avoided level crossings, and the nonuniversality
of polaron spectra.
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