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The thermodynamics of the inhomogeneous one-dimensional repulsive fermionic Hubbard model with
parabolic confinement is studied by a density-functional-theory approach, based on Mermin’s generalization
to finite temperatures. A local-density approximation (LDA), based on exact results for the homogeneous model,
is used to approximate the correlation part in the Helmholtz free-energy, comprising the thermodynamic Bethe
ansatz LDA (TBALDA). The general presentation of the method is given and some properties of the homogeneous
model that are relevant to the DFT approach are analyzed. Extensive comparison between TBALDA and numerical
exact diagonalization results for thermodynamic properties of small inhomogeneous chains is discussed. In the
remaining, a classical thermodynamic treatment of the confined system is developed with the focus on global
properties of large systems. It is observed that, depending on the temperature and specific volume, the system can
have its temperature increased under isentropic expansion. Such unusual behavior becomes more pronounced
with the increase of the intrasite interaction U and can be understood considering the peculiar behavior of the
correlation entropy per site of the Hubbard model around half-filling. A related nonmonotonic variation of the
temperature under isentropic change of U is also studied. At the end, the dependence of the double occupancy
on temperature and volume per particle is discussed.
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I. INTRODUCTION

Ab initio calculations based on density-functional theory
(DFT) [1] have become more and more popular in the
last 30 years thanks to the continuous improvement on
energy functionals, algorithms, and available computational
resources, with definitive impact on chemistry, physics, and
materials science. The original formulation by Hohenberg and
Kohn [2] was devised to the ground-state electronic density,
however, applications in solid state physics and materials
science usually demand that temperature be taken into account
appropriately. Soon after the foundation of DFT by Hohenberg
and Kohn, Mermin [3] generalized the formulation to the
finite temperature case. The contribution of phonons to the
thermodynamic properties of the system is absent from
Mermin’s formulation, but phonon spectra can be computed
within DFT [4] and their contribution to the physical properties
can be incorporated [4,5]. Alternative approaches are under
the umbrella of ab initio molecular dynamics [6–8]. Accurate
computation of the thermodynamic properties of materials at
extreme conditions has had impact in the study of Earth’s
mantle [9] and in the study of warm dense matter [10]
for example. In applied physics, very complex systems, as
many-components steels [11], have also been successfully
approached by DFT. Recent quantum Monte Carlo numerical
results for the temperature dependence of the exchange-
correlation energy of the homogeneous electron gas [12] and
the proposed analytical fitting to this dependence [13] will
certainly allow improvement in the free-energy functionals.

In the last decade, DFT has been used to study model sys-
tems, such as the Hubbard model, the Heisenberg model, and
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other models [14]. The work for model systems has progressed
similarly to the work in DFT to study realistic systems. Starting
from ground-state DFT with simple functionals, there has been
progress in functional development and in the extension to
treat time-dependent situations, but almost no work has been
dedicated to treat systems at finite temperature. We mention
here an application of DFT to the single impurity Kondo
model [15] and the pioneering work by Xianlong et al. [16]
on the one-dimensional (1D) fermionic repulsive Hubbard
model, where the same approach of the present paper was
discussed but implemented in a different way, by means of an
approximate parametrization for the correlation energy. In this
work the correlation energy and its derivatives are obtained
directly from the exact solution of the homogeneous model.

The inhomogeneous fermionic Hubbard model can describe
quite well systems of trapped ultracold atoms in optical
lattices [17]. Actually, one important motivation to build such
ultracold atomic systems is to investigate experimentally the
Hubbard model properties [18,19], given the relevance of the
model to condensed matter physics and the fact that, despite
50 years of theoretical work, its physical properties remain
only partially understood in two and three dimensions. In ultra-
cold atomic systems, some external potential has to be present
to confine the atoms, giving rise to inhomogeneous systems,
promoting the approach to them by DFT, which will benefit
from the fact that both the lattice and the confining potential are
fixed, so that Mermin’s formulation can be directly used here.

In this work, the thermodynamics of the one-dimensional
repulsive fermionic Hubbard model under parabolic con-
finement is obtained from a DFT approach according to
Mermin’s formulation. The correlation Helmholtz free-energy
is approximated by the local-density approximation (LDA)
based on exact results for the homogeneous model in the
thermodynamic limit [20–25], which is a natural extension

1050-2947/2015/92(1)/013614(19) 013614-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.92.013614


V. L. CAMPO PHYSICAL REVIEW A 92, 013614 (2015)

to finite temperatures of the Bethe ansatz LDA (BALDA) used
to treat the inhomogeneous Hubbard model at T = 0 K [14].
For T > 0 K, the approximation will be called here thermal
Bethe ansatz LDA, or simply TBALDA. In the same way the
homogeneous electron gas is the reference system to build
the LDA used in ab initio calculations [1], the homogeneous
Hubbard model is the reference system to build the BALDA
and the TBALDA used here. The adoption of this reference
system is crucial to the success of BALDA to treat the
inhomogeneous Hubbard model [14]. Within BALDA, not
only the energy of the homogeneous system is exact, but
also the energy gap in the charge sector of the half-filled
homogeneous system is exactly taken into account [14]. This
energy gap is entirely due to the on-site interaction and makes
the half-filled system insulating. In confined inhomogeneous
systems, this energy gap is the reason for the coexistence of
an insulating phase (corresponding to a plateau with density
equal to one in the density profile) and a surrounding metallic
phase [26,27].

Despite the inhomogeneity of this confined one-
dimensional system, it is presented here a definition for its
volume. What follows is that the thermodynamic behavior of
the confined system can be described in the same way we do for
homogeneous systems, having temperature, chemical poten-
tial, and volume as independent variables. The inhomogeneity
becomes apparently hidden, but has direct consequences for
the thermodynamic behavior as it is shown in the present
analysis of isentropic transformations. Isentropic transforma-
tions are naturally motivated by the experimental situation,
where ultracold atomic systems are thermally isolated and
the confining potential can be tuned. It is found here that
in narrow ranges of specific volume and temperature, the
temperature in fact increases under isentropic expansion. This
interesting behavior is linked to the changes that happen in the
density profile as the confinement is relaxed and it is shown
that it can be understood, in the framework of TBALDA, as
a direct consequence of the peculiar density dependence of
the correlation entropy in the homogeneous Hubbard model
at low temperatures. This unusual behavior becomes more
pronounced increasing the intrasite interaction.

The work is organized as follows: Sec. II presents the model
Hamiltonian and Mermin’s formulation to the model system is
discussed in detail, Sec. III explains the thermodynamic Bethe
ansatz local-density approximation (TBALDA) used for the
correlation Helmholtz free-energy, Sec. IV discusses some
properties of the homogeneous systems that are relevant to
the DFT approach, and Sec. V presents a careful comparison
between DFT results based on TBALDA and exact results for
a short chain, where the approach can be seen to work well in
spite of the smallness of the chain. A brief comparison with
DMRG results for larger chains is also showed. In Sec. VI the
thermodynamics of the harmonically confined Hubbard model
is obtained from DFT calculations and a detailed study of the
behavior of the system under isentropic transformations is
presented. We discuss two possible transformations: changes
of the volume with constant intrasite interaction and changes
of the intrasite interaction with constant volume. We finish the
section discussing the behavior of the double occupancy. The
conclusion follows in Sec. VII.

II. BACKGROUND ON DENSITY-FUNCTIONAL THEORY:
MERMIN’S THEOREM AND KOHN-SHAM SCHEME

Consider a system described by the one-dimensional
fermionic Hubbard model in the presence of an external
potential, at fixed temperature (T ) and chemical potential (μ).
The system Hamiltonian is given by

Ĥ = K̂ + Û +
∑

j

vj n̂j , (1)

K̂ = −t
∑
j,σ

(c†j,σ cj+1,σ + H.c.), (2)

Û = U
∑

j

n̂j,↑n̂j,↓. (3)

c
†
j,σ creates a fermion at site j with spin z-component

σ (=±1/2), n̂j,σ = c
†
j,σ cj,σ is the spin-resolved site occupation

operator at site j , and n̂j = n̂j,↑ + n̂j,↓ is the total site
occupation operator at site j . K̂ represents the kinetic energy in
this tight-binding model with hopping integral t . Û represents
the interaction energy operator, which increases by U the
energy of any doubly occupied site. The external potential
has amplitude vj at site j and couples directly to the density.
Hereafter we will express any energy in units of the hopping
integral t .

Mermin’s theorem [3] is the generalization of Hohenberg
and Kohn theorem [1,2] to the case of fixed temperature
and chemical potential, establishing the one-to-one correspon-
dence between the external potential and the electronic density.
Both theorems were originally established for continuous elec-
tronic systems with Coulomb interaction in mind. However,
their generalization to discrete systems as the Hubbard model
does not pose any difficulty. In this case, there is a one-to-one
correspondence between the external potential set {vj } and
the equilibrium site-occupations set {nj }. For simplicity and
to reinforce the parallelism with the continuous case, we will
refer to site occupations as densities.

Let us briefly remind the reader of the main aspects of
Mermin’s theorem [3]. The thermodynamic properties of the
system described by the Hamiltonian in Eq. (1) are determined
by the equilibrium density-matrix

ρ̂eq = e−β(Ĥ−μN̂)

Tr{e−β(Ĥ−μN̂)} , (4)

which is the density matrix that minimizes the functional

�[ρ̂] = Tr{ρ̂[Ĥ + kBT ln(ρ̂) − μN̂ ]}. (5)

At equilibrium, �[ρ̂eq] is nothing else than the grand canonical
potential,

�[ρeq] = E − T S − μN = −kBT ln(ZG), (6)

where E is the internal energy, S is the entropy, N is the
number of particles, and

ZG = Tr{e−β(Ĥ−μN̂ )} (7)

is the grand partition function.
From the minimizing property of ρ̂eq, Mermin proved the

one-to-one correspondence between the external potential and
the equilibrium density in the same way as Hohenberg and
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Kohn, based on the minimizing property of the ground-state
wave function, proved such correspondence for an isolated
system at T = 0.

Since the density determines the external potential and
the external potential determines ρ̂eq, we can introduce the
universal density functional

F[n](μ,T ) = Tr{ρ̂eq[n][K̂ + Û + kBT ln(ρ̂eq[n])]}, (8)

with no explicit reference to the external potential, which is
itself a functional of the density. Following Mermin, for fixed
T and μ and for a given external potential, we define the
density functional

�v[n](μ,T ,U ) ≡ F[n](μ,T ,U ) − μN +
∑

j

vjnj (9)

and note that this functional is minimized by the equilibrium
density

n
eq
j = Tr{ρ̂eqn̂j }, (10)

opening the door to make a variational approach to determine
the equilibrium density along the lattice as well as the
thermodynamic properties of the system. The equilibrium
density is the minimum point of �v[n](T ,μ,U ), therefore

∂F
∂nj

[neq] + vj − μ = 0, any j. (11)

The main difficult is that the universal functional F[n](μ,T ) is
not exactly known and some approximation to it is required to
move on. Before considering the approximation to be used, let
us make some remarks about the thermodynamics quantities
of interest here.

For the equilibrium density, the functional �v[neq] gives
the grand canonical potential and �v[neq] + μN gives the
Helmholtz free-energy. Two other quantities of interest are
the entropy and the number of doubly occupied sites

ND = Tr

⎧⎨
⎩ρ̂eq

∑
j

n̂j,↑n̂j,↓

⎫⎬
⎭ = Tr

{
ρ̂eq

Û

U

}
. (12)

The entropy is given by −( ∂�
∂T

)
μ,U

. When differentiating Eq. (9)
with respect to the temperature, it is important to take into
account that the site occupations depend on the temperature,
so

− S(μ,T ,U ) =
∑

j

[
∂F
∂nj

[neq](μ,T ,U ) + vj − μ

](
∂nj

∂T

)

+ ∂F
∂T

[neq](μ,T ,U ), (13)

and from Eq. (11) we have

−S(μ,T ,U ) = ∂F
∂T

[neq](μ,T ,U ). (14)

Here we have energies in units of t , temperature in units of
t/kB , and entropy in units of kB .

For the number of doubly occupied sites, considering
eigenstates of the Hamiltonian to compute the trace in (12)
and the Hellmann-Feynman theorem, it is straightforward to

get

ND =
(

∂�

∂U

)
μ,T

. (15)

Differentiating Eq. (9) with respect to U at the equilibrium
density, we find

ND = ∂F
∂U

[neq](μ,T ,U ). (16)

According to the Kohn-Sham scheme, an auxiliary system of
noninteracting fermions is considered with the requirement
that its density be exactly the same as the density in the inter-
acting system. This auxiliary noninteracting system is usually
called the Kohn-Sham system. The universal functional for the
interacting system will be decomposed as follows:

F[n](μ,T ,U ) ≡ F0[n](μ,T ) + EHartree[n](U )

+Fc[n](μ,T ,U ). (17)

The first term on the right-hand side of (17) is the uni-
versal functional for the noninteracting system (U = 0),
F0[n](μ,T ) = F [n](T ,μ,0). The second term is the Hartree
energy, here defined as

EHartree[n](U ) = U

4

∑
j

n2
j , (18)

corresponding to the first-order (in U ) approximation to the
expected value of Û . The third term, Fc[n](μ,T ,U ), is the
correlation energy functional, which encompass all the subtle
many-body features of the universal functional.

It is important to note that the correlation functional does
not come only from the difference between the Hartree energy
and the interacting energy 〈Û 〉, but has a contribution due to the
difference between the kinetic energy of the interacting system
and the kinetic energy of the noninteracting system, as well
as a contribution due to the difference between the entropies
of these systems. In traditional DFT, the many-body term is
referred to as exchange-correlation functional, but because the
Hubbard model with one level per site does not have exchange
energy, we use only correlation here.

With the decomposition in Eq. (17), the functional to be
minimized [Eq. (9)] is written as

�v[n](μ,T ,U ) = F0[n](μ,T ) + U

4

∑
j

n2
j + Fc[n](μ,T ,U )

+
∑

j

vjnj − μN. (19)

At the exact density we have ∂�v [n](μ,T ,U )
∂nj

= 0 for any j , which
implies

∂F0[n](μ,T )

∂nj

+ U

2
nj + ∂Fc[n](μ,T ,U )

∂nj

+ vj − μ = 0.

(20)
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Defining the correlation potential by

vc
j = ∂Fc[n](μ,T ,U )

∂nj

, (21)

and the Kohn-Sham potential by

vKS
j = vj + U

2
nj + vc

j , (22)

Eq. (20) becomes equivalent to

∂F0[n](μ,T )

∂nj

+ vKS
j − μ = 0, (23)

which is exactly the equation we would have for a noninter-
acting system with chemical potential μ in the presence of an
external potential given by vKS.

For a given Kohn-Sham potential vKS, we can solve the
noninteracting problem set by Eq. (23) determining the single-
particle states and populating them according to the Fermi-
Dirac distribution. In particular, the density for the Kohn-Sham
system will be given by

nKS
j =

∑
l

1

eβ(εl−μ) + 1
〈ϕl|n̂j |ϕl〉, (24)

where the sum runs over all the single-particle states |ϕl〉 with
corresponding energies εl .

However, the Kohn-Sham potential is a functional of the
density [see Eqs. (21) and (22)]. For a given external potential,
we minimize the functional �v[n] in Eq. (19) starting with
a trial density n0. From n0, we compute vKS, solve the
noninteracting problem, and determine its density n1 by
Eq. (24). If n1 �= n0, a new trial density based on n0 and n1

is suggested and the procedure is repeated until convergence.
This is the self-consistent Kohn-Sham scheme. The whole
procedure would be exact if the correlation functional and
its derivative were exactly known. With an approximate
correlation functional, the Kohn-Sham scheme will give an
approximation to the density, to the grand canonical potential,
and to other properties.

III. TBALDA

Here we will make the local-density approximation to
the correlation energy. It is based on the exact Helmholtz
free-energy per site for the homogeneous Hubbard model with
no external potential in the thermodynamic limit. This approx-
imation will be referred to as thermodynamic Bethe ansatz
local-density approximation, or more simply, as TBALDA.
There are two main approaches to calculate the thermodynamic
properties of the homogeneous Hubbard model. The first one,
due to Takahashi [20–22], is the one known as thermodynamic
Bethe ansatz. This approach leads to an infinite set of
equations, which nonetheless can be treated numerically to
reasonable accuracy [22]. The second approach is based on the
quantum transfer matrix (QTM) method to deal with integrable
systems and was formulated more recently [23–25]. The QTM
approach leads to a finite (and small) set of integral equations
and was the approach followed by me to compute the properties
of the homogeneous model, although the denomination used
here suggests the opposite. The main reason to adopt this
denomination is to make clear that the present work is a

natural extension of previous work in density-functional theory
applied to the Hubbard model [14,28–30], where the acronym
BALDA has become well established.

The local-density approximation will be used in combina-
tion with the Kohn-Sham scheme [1,31] to approximate only
the correlation part Fc[n](μ,T ,U ) of the universal functional
in Eq. (8). We have

Fc[n](μ,T ,U ) ≈
∑

j

fc(nj ,T ,U ), (25)

where fc(nj ,T ,U ) is the Helmholtz correlation energy per site
of a homogeneous system in the thermodynamic limit with
site occupation nj . According to Eq. (17), fc is given by

fc(n,T ,U ) = f (n,T ,U ) − f0(n,T ) − U

4
n2, (26)

where f (n,T ,U ) and f0(n,T ) are the Helmholtz free-energies
per site in the interaction and noninteracting systems, respec-
tively. Therefore, within LDA, a generic site j of the real
inhomogeneous system contributes toFc as it would contribute
if it were part of an infinite homogeneous lattice with density
equal to nj everywhere.

On the right-hand side of Eq. (25), the dependence on
the chemical potential has disappeared and this deserves
clarification. The point is that the reference infinite homo-
geneous system is considered with external potential equal
to zero. If in the real system the site j has occupation
nj , we need to consider a homogeneous system with site
occupation equal to nj at all sites. In this homogeneous
system, the chemical potential must be equal to μ(nj ,T ,U ) =
( ∂f

∂n
)

T ,U
(nj ,T ,U ), where f is the Helmholtz free-energy per site

for the homogeneous system. Alternatively, one could keep
the chemical potential of the real system as an argument of
fc in (25), provided that the possibility of adding an uniform
external potential ṽ to the homogeneous system was allowed.
But this uniform external potential is equivalent to a shift in
the chemical potential. When μ − ṽ = μ(nj ,T ,U ), we would
have a system with site occupation nj .

The one-to-one correspondence between the chemical
potential and the site occupation for the homogeneous system
is illustrated in Fig. 1 for different temperatures and Us.
Additionally, the derivative of density with respect to the
chemical potential as a function of the density is displayed
in Fig. 2 for several temperatures and U = 8.

Solving the integral equations coming from the QTM
method, we determine f (n,T ,U ). For U = 0 it is simpler to
make a direct calculation to get

f0(n,T ) = −2kBT

π

∫ π

0
ln(1 + e−β(εk−μ0))dk + μ0n. (27)

The single-particle energy is given by εk = −2t cos(k) and the
noninteracting chemical potential μ0 is an implicit function of
the density n through the relation

n = 2

π

∫ π

0

1

eβ(εk−μ0) + 1
dk, (28)
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FIG. 1. (Color online) Density as a function of the chemical
potential for the homogeneous one-dimensional Hubbard model.
Energies are in units of the hopping parameter t [Eq. (1)]. The
system is half-filled (n = 1) when μ = U/2. In this case, the system
is insulating at T = 0 and the density as a function of the chemical
potential is constant and equal to one for U

2 − 


2 � μ � U

2 + 


2 ,
where 
 is the energy gap in the charge sector. For U = 8.0,

 ≈ 4.6795. When the temperature is small compared to 
, the
above mentioned plateau is apparent.

where the Fermi-Dirac occupations for all extended single-
particle states are added to build the total density.

FIG. 2. (Color online) Density times the charge susceptibility [as
defined in Eq. (56)] as a function of the density for the homogeneous
system with U = 8.0 at several temperatures. The dashed line
corresponds to kBT = 0. The charge susceptibility diverges as the
density approaches 0, 1, and 2, but if the density is exactly equal to
one of these values, the charge susceptibility is equal to zero, as it is
clear from Fig. 1. The other lines correspond to kBT = 0.05, 0.10,
0.15, 0.5, 1.0, 2.0, and 5.0 in the order the arrow crosses them. In the
inset we have the charge susceptibility in the limit of zero density.
The finite value of this limit shows that ( ∂n

∂μ
)
T

behaves linearly with
the density as n → 0.

From the approximate correlation functional, we obtain the
approximate correlation potential as follows:

vc
j = ∂FLDA

c

∂nj

= ∂fc

∂nj

(nj ,T ,U )

= μ(nj ,T ,U ) − μ0(nj ,T ) − U

2
nj , (29)

where the chemical potential for the interacting homogeneous
system is also obtained from integral equations coming from
the QTM method, while for the noninteracting system it is
given by the implicit function in (28). Accordingly, the Kohn-
Sham potential at site j [Eq. (22)] will be given by

vKS
j = vj + μ(nj ,T ,U ) − μ0(nj ,T ). (30)

After convergence of the self-consistent Kohn-Sham scheme,
we end up with an approximation to the density profile
along the real interacting system. This density is the same
as the density in the auxiliary noninteracting system. The
grand canonical potential can be promptly determined from
Eqs. (9), (17), (18), and (25),

�v[neq](μ,T ,U ) = F0[neq](μ,T ) +
∑

j

U

4
n2

j

+
∑

j

fc(nj ,T ,U ) +
∑

j

(vj − μ)nj ,

(31)

where

F0[neq](μ,T ) = Tr{ρ̂0[K̂ + kBT ln(ρ̂0)]} (32)

and ρ̂0 is the equilibrium density matrix for the noninteracting
auxiliary system, whose single-particle energies are known
and can be used to write

F0[neq](μ,T ) = −kBT
∑

l

ln(1 + e−(εl−μ)/kBT )

−
∑

j

(
vKS

j − μ
)
nj . (33)

In the first sum, l runs over the single-particle states, while in
the second sum, j runs over the sites. Substituting Eq. (33)
back into Eq. (31) we get

�v(μ,T ,U ) = −kBT
∑

l

ln(1 + e−(εl−μ)/kBT )

+
∑

j

(
vj − vKS

j + U

4
nj

)
nj

+
∑

j

fc(nj ,T ,U ). (34)

In the same way we related the entropy of the interacting
system to the derivative of its universal functional with respect
to the temperature [Eq. (14)], we have the following relation
for the noninteracting Kohn-Sham system:

−SKS(μ,T ) = ∂F0

∂T
[neq](μ,T ). (35)
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Therefore, the entropy can be computed differentiating
Eq. (17). Within TBALDA for the correlation energy we get

−S(μ,T ,U )

=
∑

j

[
∂F0

∂nj

[neq] + U

2
nj + vc

j + vj − μ

]
∂nj

∂T

+ ∂F0

∂T
[neq] −

∑
j

[s(n,T ,U ) − s0(n,T )]. (36)

From the Euler equation (23), the term between square brackets
in the first sum vanishes. From (35) we have

S(μ,T ,U ) = SKS(μ,T ) +
∑

j

[s(n,T ,U ) − s0(n,T )]. (37)

Analogously, for the number of doubly occupied sites, we
have, within TBALDA,

ND =
∑

j

∂f

∂U
(nj ,T ,U ). (38)

For situations when the number of particles is fixed, we pro-
ceed with the canonical ensemble formalism. The adaptation
of the previous formulation is straightforward. Instead of the
grand canonical potential, we have the Helmholtz free-energy.
The universal functional is defined in the same way as done
in Eq. (8), but with the densities satisfying the constraint of a
fixed number of particles,

∑
j nj = N . The functional to be

minimized is

Fv[n](N,T ,U ) = F[n](N,T ,U ) +
∑

j

vjnj , (39)

which at the minimum will correspond to the equilibrium
Helmholtz free-energy. The universal functional can be de-
composed as in Eq. (17), with the same expression for the
Hartree energy. The auxiliary Kohn-Sham system will have
the effective potential at site j given by the vKS

j in Eq. (22).
After solving the noninteracting system, the site occupations
have to be calculated in the canonical ensemble, which can
be considerably more difficult than in the grand canonical
ensemble, due to the constraint on the number of particles.
More specifically, if the systems are not large enough, the
chemical potential is not well defined and the Fermi-Dirac
distribution cannot be used to populate the single-particle
levels. For large enough systems, one could use a Fermi-Dirac
distribution, setting up the chemical potential to have exactly
N particles.

Making the local-density approximation to the correlation
functional, Eqs. (25)–(30) can be used. After convergence of
the self-consistent Kohn-Sham scheme, one can calculate the
Helmholtz free-energy for the interacting system by

Fv(N,T ,U ) = Tr{ρ̂0[K̂ + kBT ln(ρ̂0)]} +
∑

j

U

4
n2

j

+
∑

j

fc(nj ,T ,U ) +
∑

j

vjnj . (40)

The first term on the right-hand side can be written in terms
of the Helmholtz free-energy of the noninteracting system

F0(N,T ) = −kBT ln(Z0,N ),

Tr{ρ̂0[K̂ + kBT ln(ρ̂0)]} = F0(N,T ) −
∑

j

vKS
j nj , (41)

where Z0,N is the partition function of the noninteracting
system with N particles. Therefore, we have

Fv(N,T ,U ) = F0(N,T ) +
∑

j

(
vj − vKS

j

)
nj +

∑
j

U

4
n2

j

+
∑

j

fc(nj ,T ,U ). (42)

As a final remark in this section, it should be emphasized that
the density-functional approach explained above and applied
to the one-dimensional inhomogeneous Hubbard model could
also be applied to the model in higher dimensions. The
only practical difficulty would be the absence of an exact
solution for the homogeneous reference system, making the
construction of a reliable local-density approximation more
difficult [32–36].

IV. THE HOMOGENEOUS SYSTEM

The homogeneous 1D Hubbard model, i.e., the model in the
thermodynamic limit with no external potential, can be treated
exactly by the QTM method [23–25]. This approach leads
to a finite set of coupled integral equations for some auxiliary
functions which in turn determine the grand canonical potential
per site as a function of temperature, chemical potential, and
interaction strength U . By successive differentiation of the
grand canonical potential with respect to these variables, all
the thermodynamic quantities can be determined.

The physics of the homogeneous 1D Hubbard model at
finite temperatures is well known [23–25], but in this section
we will highlight aspects connected with the Helmholtz
correlation energy per site [fc in Eq. (26)], which are relevant
for TBALDA and have not been discussed in the literature so
far.

Considering interacting and noninteracting homogeneous
systems at the same density n, we will decompose the
Helmholtz correlation energy per site [Eq. (26)] to get a
better understanding of its behavior. It will be written as fc =
Uc + Kc − T sc, where Uc, Kc, and −T sc are its interaction,
kinetic, and entropic components, respectively. The interaction
component is given by the difference between the interaction
energy [Eq. (3)] per site and the first-order approximation
to it,

Uc = lim
L→∞

Tr{ρ̂Û}
L

− Un2

4
= U

[
〈n̂j,↑n̂j,↓〉 − n2

4

]
, (43)

where L is the number of sites, taken to infinity in the
thermodynamic limit with density n. The site j in the final
expression above is arbitrary, since the system is homogeneous
in the thermodynamic limit. 〈n̂j,↑n̂j,↓〉 represents the fraction
of doubly occupied sites in the system, which will be
represented by D. Therefore, Uc = U (D − n2/4). From the
Helmholtz free-energy per site (f ) as a function of n, T , and
U , or from the grand canonical potential per site (ω = f − μn)
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FIG. 3. (Color online) Decomposition of the Helmholtz correlation energy for U = 8 as a function of the density at several temperatures.
Energies are in units of t . The density interval was restricted to [0, 1] because the plotted functions are symmetric with respect to n = 1. (a) The
interaction component Uc = U (〈n̂j,↑n̂j,↓〉 − n2/4). (b) The fraction of doubly occupied sites D = 〈n̂j,↑n̂j,↓〉. This quantity is not symmetric
with respect to n = 1 and the inset shows its behavior for n > 1, when it grows fast towards 1.0 at n = 2, when all the sites are totally occupied.
(c) The kinetic energy component Kc is the difference between the kinetic energy per site in the interacting and noninteracting models. (d) The
entropic component −T sc = −T (s − s0), where s and s0 are the entropies per site in the interacting and noninteracting models, respectively.
(e) The Helmholtz correlation energy obtained by adding up its three components fc = Kc + Uc − T sc. (f) Ratio between the Helmholtz
correlation energy and the Helmholtz free-energy for the noninteracting system. For densities close to n = 1 and temperatures smaller than the
gap 
, the Helmholtz correlation energy is quite significant.

as a function of μ, T , and U , we have

D =
(

∂f

∂U

)
T ,n

=
(

∂ω

∂U

)
T ,μ

, (44)

which allows us to determine the interaction component Uc.
In Fig. 3(a) we show Uc as a function of the density at several
temperatures for the case of U = 8. Exploring a particle-hole
transformation, it can be shown that Uc(n) = Uc(2 − n), so it
is enough to consider densities from 0 to 1. The temperature
dependence is weak while kBT < 
, where 
 is the gap in
the spectrum of the charge sector for n = 1 (when U = 8,

 ≈ 4.6795). As can be seen in Fig. 3(b), for densities
n � 1 and small temperatures, the average number of doubly
occupied sites is small, making the interacting energy small
and the correlation component Uc close to −Un2/4. However,
it is interesting to note that raising the temperature from T = 0,

the fraction of doubly occupied sites D initially decreases with
the temperature while we still have kBT � 
, and accordingly
Uc also initially decreases. This is due to the fact that at small
temperatures there are more spin excitations (which do not
demand double occupancy) than charge excitations (which
tend to increase double occupancy). This behavior has been
discussed in the context of thermometry and cooling strategies
for ultracold trapped atomic systems made to simulate the
Hubbard model [37–42]. As the temperature becomes close
to or higher than 
/kB , the fraction of doubly occupied
sites grows, increasing Uc, whose magnitude nevertheless de-
creases, approaching zero as T → ∞, because the correlation
disappears and 〈n̂j,↑n̂j,↓〉 → 〈n̂i,↑〉〈n̂j,↓〉 = n2/4 in this limit.

The kinetic component Kc is the difference between the
kinetic energy per site in the interacting system and the kinetic
energy per site in the noninteracting system. In the same way,
the correlation entropy sc = s − s0 is the difference between
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FIG. 4. (Color online) (a) Entropy per site in units of Boltzmann
constant for the 1D homogeneous Hubbard model as a function of
the density for U = 8t and several temperatures. Energies are in
units of t . By a particle-hole transformation we see that the entropy
per site must be symmetric with respect to n = 1. For both n = 0
and n = 2 the entropy must be equal to zero. From the extrema
towards half-filling, the way the entropy per site changes with the
density depends strongly on the temperature. For high temperatures
(kBT > 
), the entropy is maximum at n = 1. For intermediate
temperatures (kBT < 
), the entropy has a local minimum at n = 1.
At this point, the strong repulsion suppresses configurations with
empty and doubly occupied sites giving rise to the local minimum
of the entropy. For low temperatures, the entropy oscillates even
more, but n = 1 is still a local minimum. (b) Difference between
the entropies per site of the interacting (U = 8t) and noninteracting
(U = 0) systems. For low temperatures, the interacting system has
more entropy than the noninteracting one at almost all densities, while
for higher temperatures we have the opposite behavior.

the entropies per site in the interacting and noninteracting
systems. Since the Helmholtz free energies and entropies can
be obtained from QTM equations, the kinetic component is
determined from Kc = fc − Uc + T sc. In Fig. 3(c) we show
Kc as a function of the density at several temperatures for the
case of U = 8. It can be seen that Kc > 0 and, as Uc, it does
not have a monotonic dependence with temperature. For small
temperatures, Kc is an increasing function of T , but as the
temperature gets close to 
, this behavior is reversed and Kc

starts to decrease. In fact, this reversion starts at temperatures
significantly smaller than 
/kB for small densities. As T →
∞, Kc → 0 since correlation disappears at high temperatures.

In Fig. 3(d) we show −T sc, the entropic component of the
Helmholtz free-energy per site. In contrast to the other two
components, the entropic one can be negative or positive (see
also Fig. 4). Since sc = 0 at T = 0, −T sc is very small at small
temperatures, being initially negative. As the temperature
is raised, the entropic component becomes positive and at
intermediate temperatures (close to 
/kB) it is comparable
to the kinetic component. As the temperature becomes larger
compared to 
/kB , the correlation entropy sc becomes smaller
and smaller, which will make the product −T sc → 0 when
T → ∞. However, this limit is achieved much more slowly
compared to the kinetic component and at high temperatures,

the entropic and interacting components can have the same
order of magnitude.

The whole Helmholtz correlation energy per site is dis-
played in Fig. 3(e), which is similar to Fig. 3(a), since
the interaction component is the most important one. On
general grounds, fc � 0 at any density and temperature. If
f0 corresponds to the Helmholtz free-energy per site for the
noninteracting system with the same density as the interacting
one, we have

f = f0 + U
n2

4
+ fc. (45)

In Fig. 3(f) the ratio fc/f0 is displayed to better quantify how
significant the contribution coming from correlation is. As
expected, the precise comparison shows that correlation is
specially important for densities close to 1 and temperatures
lower than 
/kB .

In Fig. 4 the reader can see the behavior of the entropy per
site [Fig. 4(a)] and of the correlation entropy per site [Fig. 4(b)]
as functions of the density for the homogeneous system at
several temperatures and U = 8.

As discussed in the previous section, to the noninteracting
or Kohn-Sham auxiliary system must be applied an effective
potential vKS [Eqs. (21) and (22)] to keep its density equal
to the density of the real interacting system. Within LDA, the
correlation potential at each site (of a possibly inhomogeneous
system) is given by the derivative ( ∂fc

∂n
)

T ,U
evaluated at the site

occupation, so some familiarity with the density dependence
of vc = ( ∂fc

∂n
)

T ,U
is helpful to understand the behavior of the

Kohn-Sham system.
From the QTM equations, we can get the density as a

function of the chemical potential and the inverse of this
function allows us to determine the correlation potential as
indicated in Eq. (29). As displayed in Fig. 5(a), at T = 0
the correlation potential is discontinuous at n = 1. The jump
is equal to the gap 
 [14,28]. It is interesting to note that
this gap is entirely due to correlation, since there is no gap
in the Kohn-Sham spectrum of single-particle energies for a
half-filled homogeneous system. For finite temperatures, the
discontinuity disappears, but vc changes fast around n = 1
if kBT � 
. As the temperature is raised, the function vc

becomes smoother, converging uniformly to zero in the limit
T → ∞. An abrupt change of the correlation potential around
the density n = 1 may sometimes make the convergence of
the Kohn-Sham self-consistent loop very slow. This point has
been discussed recently in Ref. [16] and a possible solution
has been proposed in Ref. [43].

Figure 5(b) illustrates the behavior of vc for several values of
interaction strength U at the same temperature kBT = 0.5. For
large U we have kBT � 
, making vc be almost discontinuous
at n = 1. As U decreases, so does 
, and the correlation
potential becomes smoother and smother. For U = 0 we would
naturally have vc = 0 at any density.

V. COMPARISON WITH EXACT DIAGONALIZATION
IN A SHORT CHAIN

The formalism developed in Sec. II can be used for any
kind of external potential. Before testing the performance
of TBALDA, it is important to explain how TBALDA was
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FIG. 5. (Color online) (a) Correlation potential (vc = dfc/dn) as
a function of density for U = 8 and several temperatures. Energies are
in units of t . At T = 0, the correlation potential has a discontinuity at
n = 1 with a jump equal to the gap energy (
). At finite temperatures,
the discontinuity disappears. However, vc will change rapidly around
n = 1 while kBT � 
. (b) Correlation potential for kBT = 0.5 for
several interaction strengths. As U increases, the gap energy also
increases, and the change of the correlation potential around n = 1
becomes more pronounced.

actually implemented. In this work, for given values of U , tem-
perature, and chemical potential, we solve the QTM equations
for the homogeneous model to find the density, the correlation
Helmholtz free-energy per site, as well as its derivative with
respect to the density (correlation potential) and the correlation
entropy per site. Repeating the calculation for several values
of chemical potential, we generate a fine mesh of densities
in the interval [0,2]. Let us call this whole computation a
mesh computation. For densities not presented in the mesh, a
careful numerical interpolation is used to extract the quantities
of interest keeping accuracy. Each mesh computation takes
a few hours in a 2.4 GHz desktop computer. Given U and
kBT , after the mesh computation, we can study within LDA
the inhomogeneous Hubbard model for arbitrary external
potential. However, for fixed external potential, the study of
its properties as a function of temperature, requires a mesh
computation for each temperature. It would be easier if we had
accurate analytical fittings to the dependence on temperature
and U of the thermodynamic data from QTM equations.
An important first step in this direction has been given in
Ref. [16], where an analytical parametrization is proposed to
the correlation free-energy that allows an accurate description
of the correlation potential. However, the resulting temperature
dependence of the entropy per site is not accurate for kBT < 1
[44], so that we had to follow the more time demanding
approach of doing a mesh computation for each temperature
and U to avoid introducing spurious errors in the method.
While density profiles computed using the parametrization
will be accurate [44], thermodynamic properties, specially
the entropy, computed using the parametrization, can have
significant errors.

In this section we consider a nine-site Hubbard chain
with U = 4.0, submitted to the harmonic external potential

Vj = (j/2)2, −4 � j � 4, with open boundary condition.
The thermodynamic properties of this inhomogeneous system
were calculated from numerical exact diagonalization leading
all eigenvalues and eigenvectors. Exploring conservation of
number of particles and of spin angular momentum (S2 and
Sz), the exact diagonalization is carried out in a few hours using
a 2.4 GHz desktop computer. Since the number of eigenval-
ues grows exponentially with the chain size, going beyond
nine sites would demand considerably greater computational
resources than used here. Nine sites are already close to the
maximum one could achieve computing all eigenvalues and
eigenvectors, so it is a size neither too big, making exact cal-
culations possible, nor too small, making the LDA applicable.

Having exact results, we can test the performance of
TBALDA. A test with a small chain is a tough one because
finite size effects and the spectrum discreteness are significant
and cannot be properly described by a local-density approx-
imation based on results for the homogeneous system in the
thermodynamic limit. Since a local-density approximation is
better for smooth external potentials, if TBALDA performs
relatively well in this test, we will have a strong indication
that it will perform well enough in the large systems we are
ultimately interested in. A comparison for larger systems with
around 100 sites is provided in the end of the section, where
density profiles obtained from TBALDA are compared with
density profiles obtained from DMRG calculations in Ref. [46]
and excellent agreement is observed.

We analyzed the grand canonical potential, the entropy, the
number of particles, and the site densities in broad ranges of
temperature and chemical potential. Once we have the density
at the end of the self-consistent Kohn-Sham cycle, the number
of particles is trivially computed. The grand canonical potential
is computed using Eq. (34) and the entropy comes from
Eq. (37). From the extensive comparison between BALDA and
QMC or DMRG results at T = 0 [30,45], that usually indicates
small errors in the ground-state energy and site occupations, we
could expect small errors in the grand canonical potential, site
occupations, and number of particles at finite temperatures and
it is exactly what we have found. Table I summarizes the error

TABLE I. Error analysis of TBALDA results for a nine-site
chain with external potential V (j ) = j 2/4, − 4 � j � 4, and an open
boundary condition. We made comparisons for 120 values of chemical
potential in the interval [−1,5] at three representative temperatures.
We show average absolute relative error/maximum absolute relative
error (percent values) for the grand canonical potential (�), number
of particles (N ), entropy (S), and site occupations (nj ).

Av. rel. error (%)/Max. rel. error (%)

kBT = 1.0 kBT = 0.5 kBT = 0.2

� 0.12/0.33 0.28/0.72 0.63/2.8
N 0.38/3.3 0.46/1.7 1.7/4.9
S 0.94/5.8 1.5/7.4 8.4/31
n0 0.64/4.6 0.49/3.3 1.5/5.1
n1 0.74/5.2 0.68/3.0 1.6/5.0
n2 0.94/6.5 1.2/5.6 2.8/7.5
n3 1.1/6.5 2.2/5.2 6.2/16
n4 1.6/5.8 5.6/12 15/45
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FIG. 6. (Color online) Density profiles from exact diagonaliza-
tion and from the Kohn-Sham scheme using TBALDA. At each panel
we show data for chemical potential equal to 0, 1, 2, 3, and 4. The
dotted line represents the confining potential V (j ) = j 2/4.

analysis found in this comparison. Figure 6 displays density
profiles obtained by both exact diagonalization and the DFT-
TBALDA approach. We plotted density profiles for situations
very close to those with the largest errors found while varying

the chemical potential in broad intervals (see Table I). Despite
the smallness of the system, the agreement is quite well.

Two main features are clear. First, the errors decrease as
the temperature increases. This can be understood from the
fact that the correlation becomes less important at higher
temperatures, as discussed in Sec. IV and also because a
small temperature can be smaller than the typical energy level
separation (
E). In this situation we do not expect TBALDA
works well. For the present small system we have 
E ≈ 0.5
and even when kBT = 0.2 we have reasonable accuracy.
Second, the errors become more significant as we move to
the ending sites. There are two reasons for this behavior. One
is elementary: the densities in the ending sites are smaller
due to the confining potential, so the relative errors there are
expected to be larger than in the central sites. The other reason
is more fundamental: we have a chain with an open boundary
condition and our approach based on TBALDA simply cannot
deal appropriately with this situation where the last sites have
just one neighbor. With this in mind, the performance of
TBALDA is in fact surprisingly good in the last sites of the
chain for the vast majority of the studied cases.

In spite of the smallness of the system and some difficulty
to reproduce the densities in the last sites, TBALDA results
for extensive quantities (namely, grand canonical potential,
number of particles, and entropy) are quite accurate as can
be seen in Table I. The entropy typically gives rise to a small
contribution to the grand canonical potential (through the −T S

term) and its determination requires an accurate description of
the temperature dependence of the grand canonical potential.
The derivative of our approximate grand canonical potential
functional with respect to the temperature at its minimum
is given by Eq. (37), being unnecessary to make numerical
derivatives to compute the TBALDA approximation to the
entropy.

We conclude that TBALDA has been successful in this
tough test of a small chain. For a parabolic confining potential
given by V (x) = (x/L)2, if we consider that (i) TBALDA
is exact by construction in the limit L → ∞ (homogeneous
system) and (ii) it is already quite accurate for the case of L = 2
in a short chain with an open boundary condition; given the
nature of a local-density approximation, one can only expect
accurate results from TBALDA for intermediate values of L,
increasing accuracy for larger values of L. It should also be
noted that the role of correlation decreases as we increase the
temperature as discussed in the previous section. At T = 0
BALDA has typical accuracy of few percent [14,16,30,45]
in the ground-state energy and site occupations. At large
temperatures, the DFT approach will be certainly successful
because the local-density approximation will be done for a
small quantity (correlation energy) and the system behavior
will be close to the behavior of the noninteracting Kohn-Sham
system. Accordingly, for intermediate temperatures we expect
accuracy of a few percent. The only limitation of accuracy
occurs when 0 < kBT < 
E, where 
E is the typical energy
level separation in the confined system, that is of order 1/L.
For L ≈ 100 this lowest temperature is much slower than the
temperatures achieved in experiments [18].

Therefore, one can treat larger systems, where the external
potentials are smooth (L � 2), expecting that thermodynamic
properties be accurately determined. This expectation is
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FIG. 7. (Color online) Density profiles for the 1D harmonically
confined Hubbard model with U = 1.44 and confining potential
V (x) = (x/L)2. Comparison between TBALDA results and DMRG
results extracted from Figs. 9(b) and 10(b) of Ref. [46]. In this figure
ρ = N/(

√
2L) represents the rescaled density as defined in Ref. [46].

confirmed for the case of density profiles in Fig. 7, where we
compare density profiles obtained by TBALDA with density
profiles obtained by DMRG calculations at finite temperature
from Ref. [46]. Excellent agreement between both techniques
is observed.

VI. THERMODYNAMICS OF THE HARMONICALLY
CONFINED ONE-DIMENSIONAL HUBBARD MODEL

A. General aspects

In this section we consider the case of harmonic traps,
whose external potential has the general form

vj = (j/L)2. (46)

Accordingly, 2L can be considered the typical size of the
confined system. In what follows it will be helpful to refer
to this size (2L) as the volume (V ) of the system. Given
the general familiarity with classical thermodynamics, this
abuse of notation will make our treatment more appealing.
Figure 8 displays typical density profiles and makes clear that
in a harmonically confined system the number of particles
outside its volume 2L can be quite significant. In spite of this
fact and of the characteristic inhomogeneity of the system, we
show below that its global thermodynamic description can be
done in a way totally similar to the classical thermodynamics
of homogeneous systems.

Consider the behavior of usually extensive quantities, like
internal energy, free-energy, entropy, and number of particles
of usual systems with sharp boundaries as we increase the vol-
ume keeping temperature and chemical potential fixed. In the
thermodynamic limit, when surface effects become negligible,
any extensive quantity is proportional to the volume. Figure 9
illustrates what happens for the inhomogeneous harmonically
confined Hubbard model. The linear dependence of the grand
canonical potential (and any other extensive property) on the
volume is observed even for relatively small volumes, opening

FIG. 8. (Color online) Density profiles for system “volume”
2L = 200, U = 8.0, and kBT = 0.4 for different values of the
chemical potential (μ = 0, 2, 4, 6, 8, and 10). The dashed line
represents the parabolic potential V (x) = (x/100)2. As the chemical
potential increases, a significant fraction of the particles will be found
outside the interval [−L,L]. As the temperature is much smaller than
the gap (kBT /
 ≈ 0.085), the central plateau around density equal
to 1.0 is visible for μ = 4, as well as lateral plateaus are also visible
for larger values of the chemical potential. Energies are in units of t .

the possibility for a classical thermodynamic treatment of this
system.

The fact that a harmonically confined system has no surface,
with the external potential growing slowly, suggests that the
finite-size correction to the thermodynamic limit of the ratio

FIG. 9. (Color online) Grand canonical potential (�) as a func-
tion of the volume (V = 2L) at kBT = 0.4 for different values of the
chemical potential. Energies are in units of t . From top to bottom we
have μ = 0, 2, 4, 6, and 8. The linear behavior since small sizes is clear
from the excellent distribution of the points over the linear fittings
to them (dotted lines). This picture is only illustrative of this fact
which was observed for all temperatures, chemical potentials, and
interaction strengths in broad ranges investigated. Inset: Deviation
from the linear behavior for small L, showing that the thermodynamic
limit is achieved fast.
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between any extensive quantity and the volume 2L can be
special. In fact, for the case of the ground-state energy, it was
found [47] that E/(2L) = ε∞ + 1/(2L/ξ )γ , with the exponent
γ > 1 (around 1.4 for U = 2.0). This exponent larger than
the common value of 1 makes the thermodynamic limit ε∞
rapidly achievable and explains the results also found for finite
temperatures in Fig. 9.

Having the chemical potential, the temperature, the interac-
tion strength (U ), and the volume as independent variables, the
grand canonical potential �(μ,T ,U,V ) will give the complete
thermodynamic description of the system. In particular, we
have

d� = −SdT − Ndμ + NDdU − pdV, (47)

where S is the entropy, N is the number of particles, ND is the
number of doubly occupied sites, and p is the pressure. But
what does the pressure mean in this harmonically confined
Hubbard model? To answer this, it is enough to work out from
Eq. (6) relating the grand canonical potential to the grand
partition function ZG = Tr{eβ(Ĥ−μN̂ )}. We have(

∂�

∂V

)
μ,T ,U

= 1

ZG

∑
R

∂

∂V
(ER − μNR)e−β(ER−μNR)

= 1

ZG

∑
R

∂

∂V
〈R|Ĥ − μN̂ |R〉 e−β(ER−μNR)

= 1

ZG

∑
R

〈R|∂Ĥ

∂V
|R〉 e−β(ER−μNR) = −〈V̂ext〉

L
.

(48)

where V̂ext = ∑
j ( j

L
)
2
n̂j is the external potential operator due

to the harmonic trap. Therefore, the trap pressure is given by

p = 〈V̂ext〉
L

= 2〈V̂ext〉
V

. (49)

The proportionality between � and volume in the harmoni-
cally confined system seen in Fig. 9 can be mathematically
expressed by

�(μ,T ,U,λV ) = λ�(μ,T ,U,V ) (50)

for real λ. This immediately gives us the familiar Euler relation

�(μ,T ,U,V ) = −p(μ,T ,U )V, (51)

where the trap pressure is a function of temperature, chemical
potential, and U only.

Any other thermodynamic function can be computed from
derivatives of p(μ,T ,U ). In particular, the first derivatives give
the particle number, the entropy, and the number of doubly
occupied sites,

N (μ,T ,U,V ) =
(

∂p

∂μ

)
T ,U

V , (52)

S(μ,T ,U,V ) =
(

∂p

∂T

)
μ,U

V , (53)

ND(μ,T ,U,V ) = −
(

∂p

∂U

)
μ,T

V , (54)

so

dp = N

V
dμ + S

V
dT − ND

V
dU, (55)

that is the Gibbs-Duhem relation between the differentials
of the four intrinsically intensive quantities for this kind of
thermodynamic system. In the following we will assume U is
kept constant during the thermodynamic transformation and
will omit this variable for simplicity. In the next subsection we
will discuss how U affects the behavior of the system under
isentropic expansion, as well as consider isentropic changes
of this parameter.

Let us introduce some thermodynamic coefficients obtained
from the second derivatives of the trap pressure. We have the
isothermal charge susceptibility

χt = 1

N

(
∂N

∂μ

)
T ,V

= V

N

(
∂2p

∂μ2

)
T

, (56)

the specific heat at constant μ and V ,

cμ,v = T

N

(
∂S

∂T

)
μ,V

= T V

N

(
∂2p

∂T 2

)
μ

, (57)

and the thermal particle-increment coefficient

ν = 1

N

(
∂N

∂T

)
μ,V

= V

N

∂2p

∂T ∂μ
. (58)

Note the Maxwell relation ( ∂S
∂μ

)
T ,V

= ( ∂N
∂T

)
μ,V

= νN . While χt

and cμ,v are never negative as a consequence of the second law
of thermodynamics, the thermal particle-increment coefficient
can assume positive and negative values.

With the above definitions we can write

dp = s

v
dT + 1

v
dμ, (59)

dN = νNdT + χtNdμ + 1

v
dV, (60)

dS = cμ,v

T
NdT + νNdμ + s

v
dV, (61)

where s = S/N is the entropy per particle and v = V/N is the
volume per particle. From the differentials in Eqs. (59)–(61),
any other thermodynamic coefficient can be written in terms
of χt , cμ,v , and ν. Some of them are listed in Table II.

TABLE II. Common thermodynamic coefficients and their rela-
tion to those defined in Eqs. (56) and (57).

Adiabatic charge
susceptibility

χs = 1
N

( ∂N

∂μ
)
S,V

= χt − ν2T

cμ,v

Thermal expansion
coefficient

α = 1
V

( ∂V

∂T
)
p,N

= sχt − ν

Specific heat at
constant volume

cv = T

N
( ∂S

∂T
)
V,N

= cμ,v − ν2T

χt

Specific heat at
constant pressure

cp = T

N
( ∂S

∂T
)
p,N

= cμ,v + T s(sχt − 2ν)

Isothermal
compressibility

κt = − 1
V

( ∂V

∂p
)
T ,N

= vχt

Adiabatic
compressibility

κs = − 1
V

( ∂V

∂p
)
S,N

= cμ,v

cp
vχs = cv

cp
κt
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FIG. 10. (Color online) Temperature dependence on volume per particle during isentropic transformations of harmonically trapped systems.
We have results for four different values of U . For each U we display curves for several values of entropy per particle in units of Boltzmann
constant. The region below the rightmost and leftmost dashed lines corresponds to the locus on T V plane where the trapped systems present
a plateau in their density profiles whose size is at least 10% of the volume (2L). Due to the finite temperature, the density n is not perfectly
constant in the plateau. We have adopted the criteria of considering a site i as part of the plateau if |ni − 1.0| < 10−3. On the right of the central
dashed line, the plateau is central, while on the left, it is lateral. For small values of entropy per particle, there are narrow ranges of specific
volumes where the temperature increases during the isentropic expansion. This anomalous behavior becomes more evident as U is increased.

B. Isentropic transformations

If the parabolic external potential has its curvature slowly
changed to allow thermodynamic equilibrium, we have a
thermodynamic transformation with constant particle number
(for negligible loss of particles) and constant entropy (there is
no heat transfer). The change in curvature represents a change
in the volume (2L) as defined above.

Figure 10 displays, for four different values of U , how
the temperature depends on the volume per particle during
isentropic transformations at several values of entropy per
particle. The usual adiabatic cooling under expansion is ob-
served almost everywhere. However, for low enough specific
entropy, we observe temperature increase during expansion in
narrow intervals of specific volume. The anomalous behavior
becomes stronger as the parameter U increases. Such behavior
is unusual but it is thermodynamically allowable because

(
∂T

∂v

)
s

= − αT

cvκt

, (62)

and the thermal expansion coefficient (α) can be negative (as
it happens, for example, with water below 4 ◦C at 1 atm).

At constant particle number and entropy, the volume of the
trap will determine the temperature of the confined system,
except in the small region where the temperature is not
monotonic.

The behavior of the thermodynamic properties is naturally
related to the density profile, in fact, as discussed in Sec. II, the
density profile determines the thermodynamics of the system.
In each panel of Fig. 10 the area below the leftmost dashed line
and the rightmost dashed line is the region where the system
density profile presents a plateau with half-filled sites, where
the system behaves locally as a Mott insulator, presenting very
low compressibility. On the right of the central dashed line, the
plateau is in the middle of the trap. Compressing the system,
the central plateau will increase, the density remains constant
due to the energy gap preventing double occupation in the
middle of the trap. Continuing the compression, there will be
a point where it starts to be energetically favorable to increase
the density in the center of the trap instead of increasing the
plateau extension. The density profiles start to have lateral
plateaus separated by a bump where the density is larger than
one. The central dashed line in the panels of Fig. 10 locates
the transition: central plateaus on the right and lateral plateaus
on the left.
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FIG. 11. (Color online) Cartoon to explain the anomalous change of temperature in isentropic transformation. In (a) we zoom the isentropic
line with entropy per particle s = 0.8kB from the U = 15 panel of Fig. 10. We show three isothermal lines crossing the isentropic line at three
different points. For each crossing, the corresponding density profile is displayed in (b). The correlation entropy per site of the homogeneous
model with kBT = 0.76 is displayed as a function of the density in (c). Its pronounced minimum at half-filling is noticeable (see also Fig. 4).
(d) The total entropy and the Kohn-Sham entropy as functions of the volume (2L) for kBT = 0.76. As the system is compressed (b → e → h),
the rate of increase of the correlation entropy due to the increase of the density in the center of trap can compensate the decrease of the KS
entropy, making the total entropy increase in some range of volumes.

Due to the finite temperature, the density is not strictly equal
to one, but for kBT smaller enough than the energy gap, the
density variation around one will be negligible. The criteria
used to draw the dashed lines in Fig. 10 was to have at least
0.2L sites with densities ni satisfying |ni − 1| < 10−3.

Starting with a given number of particles and a weakly
confined system, we can get the insulating phase in the center
of the trap by decreasing its volume only if the entropy per
particle is low enough. Consider, for example, the case U = 9.
We would need s < 0.9 kB to have a reasonable range of
system volumes presenting flat plateaus. For higher values of
the entropy per particle, when the volume per particle becomes
close to 0.5, the temperature of the system will be already high
enough to prevent the formation of a flat plateau in the density
profile.

To discuss the influence of the interaction U on the
isentropic curves of Fig. 10, we have to take into account
that the temperature must be compared to the energy gap
(
), which is an increasing function of U . The formation
of plateaus in the density profiles, i.e., the appearance of Mott
insulator regions in the trapped system, has direct influence
on the thermodynamics properties. The formation of plateaus
depends on the ratio kBT /
, therefore some degree of scaling

with 
 in the temperature axis should be expected and, in
fact, it is clear in Fig. 10 that, increasing U , the anomalous
behavior is observed to shift to higher temperatures as well as
the dashed lines, that delimit the plateau regions in the T V

plane, have their temperatures scaled by the gap 
.
It is also interesting to observe that the unusual behavior

shifts to smaller specific volumes as U increases. Since the
unusual behavior happens in the lateral plateau region, the
shift to smaller specific volumes is a consequence of the fact
that, starting from a central plateau, we need to compress the
system until the potential energy due to the trap potential at
the borders of the plateau becomes comparable to the gap 
 to
start observing lateral plateaus. Therefore, larger U , the higher
the required compression.

The unusual temperature increase under isentropic ex-
pansion can be understood if we analyze the changes in
the density profile during the thermodynamic transformation
and take into account the very characteristic dependence of
the correlation entropy on density for the one-dimensional
Hubbard model. Figure 11 illustrates the situation for the
case U = 15. Consider the change of the density profile
during a compression (we prefer to make the argument for
a compression instead an expansion). The bump in the center
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FIG. 12. Temperature dependence on the interaction strength U with entropy, volume, and number of particles kept constant. Each panel
corresponds to a different volume per particle. Each curve corresponds to a different entropy per particle. From bottom to top we have
S/NkB = 0.4,0.5,0.6,0.7,0.8,0.9, and 1.0 in all panels.

of the trap grows in height and width and the borders of the
lateral plateaus move inwards to keep the number of particles
constant. The number of sites with density larger than one
increases and the lateral plateaus shrink.

Suppose for a moment that the temperature is constant.
We decompose the total entropy as the sum of Kohn-Sham
entropy and correlation entropy [see Eq. (37)]. Given the
sharp minimum of the correlation entropy per site at n = 1
[Fig. 11(c)], the correlation entropy (computed by LDA)
increases when some sites have their occupations increased
from n = 1 to n � 1. Eventually such increase can overcome
the decrease of the Kohn-Sham entropy (for a noninteracting
system, the entropy always decreases under isothermal com-
pression), leading to an increasing total entropy. To restore
the entropy, we need to lower the temperature, so we get the
unusual temperature decrease under isentropic compression.

Under further compression, the sites in the center of the trap
will assume densities with values about the local maximum of
the correlation entropy. Accordingly, the increasing rate of the
correlation entropy will fall. At some point the increase of
the correlation entropy will cease compensating the decrease
of the Kohn-Sham entropy and the temperature change under
isentropic transformation gets back to the usual behavior. It is
interesting to point out that the unusual increase of temperature

in isentropic expansion may be a feature displayed only by
the one-dimensional system. Similar plots of the temperature
as a function of the average density (N/2L) for the repulsive
two-dimensional Hubbard model under parabolic confinement
were reported in Ref. [38] without presenting such unusual
behavior. However, it cannot be discarded that the average
densities investigated in that reference may be too high to
allow the observation of the unusual behavior.

If we look carefully at Fig. 10 we will observe that the
isentropic curves with S/N = 0.8kB and S/N = 0.7kB around
V/N = 0.3 seem to repel each other as U increases. This
behavior suggests to be valid to study how temperature changes
as U is increased isentropically at constant volume. Figure 12
illustrates the situation. Before discussing it, it is helpful to
analyze the dependence on U of the entropy per site in the
homogeneous model.

In the homogeneous model the entropy will depend signifi-
cantly on U if the density is close to 1 and will have negligible
dependence on U if the density is far from 1, since at low
densities of particles or holes, the interaction is less important.
The scenario is illustrated in Figs. 13(a), 13(b), and 13(c). The
temperature has to be taken into account in this discussion.
First, consider the case of a small temperature (compared to
typical values of the gap 
). As U increases, for densities
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FIG. 13. (Color online) (a) Entropy per site as a function of the density in the homogeneous Hubbard model for U = 4,5, . . . ,15 at
kBT = 0.2. (b) and (c) Same as (a) but for kBT = 0.6 and kBT = 1.0, respectively. As the entropy is symmetric around half-filling, we only
show results for density greater than 1. It is strikingly that beyond some density, the dependence on U becomes essentially negligible. Very close
to half-filling the entropy is not monotonic as a function of U and this behavior becomes more pronounced as the temperature is increased. (d)
Correlation between the change of the density profile of the confined system and the change of the temperature when the intrasite interaction U

changes isentropically, highlighting the range of U where the temperature rises as U increases. Data are for a system with S/N = 0.9kB and
V/N = 0.4.

around half-filling, the entropy per site increases. This can be
understood from the fact that most of the excitations present
in the system are in the spin sector [46,48]. Those excitations
have energies dispersed over a width of order J = 4t2/U . As
U is increased, J decreases, more excitations are present for
the same temperature, and the entropy increases accordingly.
For a higher temperature, the range of densities where the
entropy changes with U shrinks. If the temperature is high
enough to allow charge excitations for small Us, as U increases
the number of such charge excitations will decrease fast, the
number of spin excitations will increase, and the entropy per
site typically will increase, but for densities very close to one,
the entropy per site can in fact decrease while U is not too
large. Increasing the temperature, the range of densities where
the entropy per site is sensitive to U continues to shrink. At
high temperatures, the charge excitations are important and
losing those excitations upon increase of U has more impact
on the entropy than the increase of spin excitations so, for
densities around 1, the entropy decreases as U is raised up to
large values.

Having discussed the entropy per site in the homogeneous
model, we can understand the behavior in Fig. 12 more
easily. Let us start by the largest volume (V/N = 0.6). In

this case, the site occupations are smaller than 1 over the
whole trap. Increasing U at relatively small temperatures, we
should expect increase of entropy at constant temperature.
Therefore, the temperatures lowers to keep the entropy
constant. Compressing the system, we will have densities
larger than 1 at the center of the trap with small U . In
the case of small temperatures, we still expect increase of
entropy at constant temperature and, accordingly, decrease of
temperature at constant entropy. For larger temperatures with
charge excitations present, depending on the density profile,
the increase of U can give rise to the opposite behavior,
increase of temperature at constant entropy. This must happen
if a considerable part of the system has density n � 1, a
situation the system is driven to when the densities larger than
1 in the center of trap are lowered to avoid excessive double
occupation upon increase of U . This is illustrated in Fig. 13(d),
where the changes in the density profile and temperature
during the isentropic change of U for S/N = 0.9kB and
V/N = 0.4 can be correlated. The increase of temperature
is not expected to continue too far because, for very large
Us, the charge excitations will be completely suppressed.
The nonmonotonic behavior of the temperature becomes more
pronounced as the system volume decreases. This follows
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from the fact that under strong compression and small U ,
there is a large number of particles in the center of the trap
where the density becomes very large. Upon increase of U ,
this large number of particles will spread and give rise to
large plateaus, amplifying the effect. Since the density with
small U is very large in the center of the trap, densities
close to 1 will be achieved only for relatively large values
of U , which implies that the nonmonotonic behavior will be
observed at larger temperatures compared to what happens
in less compressed systems. This is very clear in Fig. 12.
Nonmonotonic behavior of the temperature as a function of
the intrasite interaction at constant entropy and volume was
reported for the two-dimensional system [38,42] but with
oscillations in the temperature smaller than we see for the
one-dimensional model.

C. Fraction of doubly occupied sites

We finish this section discussing the behavior of the number
of doubly occupied sites (ND) or, alternatively, the fraction of
particles in doubly occupied sites,

d = 2ND

N
, (63)

that is an intensive property. In the top panel of Fig. 14 we
have the fraction d as a function of temperature and volume
per particle for a system with U = 6.0. At low temperatures,
as the system is compressed starting from large volumes, the
fraction d remains small and increases slowly, because the
site occupations are small (< 1). The relation between d and
density for the homogeneous system can be seen in Fig. 3(b).
Due to the energy gap at half-filling, at some point a central
plateau with half-filled sites is formed and starts to grow (see
the dashed lines in Fig. 10), preventing d of growing faster. d

remains increasing slowly until the point where the density in
the center of the trap becomes larger than 1. Now, the fraction d

starts to grow fast, being energetically advantageous increasing
the site occupation in the center of the trap. This fast change
in the increasing rate of the fraction d reflects the presence
of a Mott insulating phase in the central portion of the trap
that started to be destroyed from the center. As we consider
compressions at larger temperatures, it is easier to overcome
the energy gap and the fast change in the increasing rate of d

is gradually smoothed. This is also illustrated in the bottom
panel of Fig. 14.

The temperature dependence of the fraction d can be
discussed in connection with Figs. 3(b) and 12. From the
Helmholtz free-energy differential

dF = −SdT − pdV + μdN + NDdU, (64)

we have the Maxwell relation(
∂ND

∂T

)
U,V,N

= −
(

∂S

∂U

)
T ,V,N

, (65)

which gives us (
∂d

∂T

)
U,V,N

= −2

(
∂s

∂U

)
T ,V,N

. (66)
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FIG. 14. (Color online) Top panel: Behavior of the fraction d of
particles in doubly occupied sites as a function of temperature and
volume per particle. Bottom panel: Dependence of the fraction d on
temperature for some values of volume per particle.

The right-hand side of Eq. (66) can be rewritten as

−
(

∂s

∂U

)
T ,V,N

=
(

∂s

∂T

)
U,V,N

(
∂T

∂U

)
S,V,N

, (67)

leading to (
∂d

∂T

)
U,V,N

= 2cv

T

(
∂T

∂U

)
S,V,N

. (68)

From Fig. 12 we can qualitatively describe the behavior of d as
a function of the temperature. Typically, at low temperatures,
d will be a decreasing function of temperature, since ( ∂T

∂U
)

S,V,N

will be negative in general as discussed above. Depending on
U and volume per particle, d will start to increase with the
temperature at some point. This behavior is exactly what is
seen in the bottom panel of Fig. 14. Consider the particular
case of v = V/N = 0.5. For U = 6.0, below kBT = 0.2, we
see from Fig. 10 that the density profile presents a central
plateau with half-filled sites. As the temperature is increased,
some particles have enough energy to go further away from
the center, the central plateau shrinks, and the density in the
borders of the trap increases. This effect of course causes the
decrease of double occupation. Besides this fact, the increase
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of temperature when it is much smaller than the gap (≈2.89, for
U = 6.0) activates spin excitations, which do not contribute
to double occupancy. Accordingly, d decreases. This effect is
clear in Fig. 3(b). When the temperature overpass 0.2, a small
jump with density slightly greater than one appears in the
center of the trap. There are now lateral plateaus. But density
also increases in the borders of the trap. The lateral plateaus
are shrinking due to particle migration to the center and to
the borders. The migration to the center promotes increase of
double occupancy, while the migration to the borders promotes
decrease of double occupancy. For temperatures still much
smaller than the energy gap, the activation of spin excitations
dominates, contributing to the decrease of double occupancy.
However, at some temperature, charge excitations contributing
to increase double occupancy will become important [see also
Fig. 3(b)] as well as the migration of particles to the center
of the trap will become more intense, making the double
occupancy achieve a minimum and then start to increase.
For larger temperatures, the lateral plateaus are completely
destroyed. Charge excitations become more important and
the double occupancy grows. Increasing the temperature now
makes the density profile spread out, with particle migration
to the borders. This migration tends to decrease double
occupation and competes with the charge excitations. The
fraction d for a homogeneous model with density n approaches
n2/2 (the noninteracting value) as kBT → ∞. Therefore, at
some high temperature (larger than the gap), the depletion
effect will dominate and d will decrease with the temperature,
following the behavior of the noninteracting system.

VII. CONCLUSION

In this work we have presented in detail a DFT approach to
the thermodynamics of the inhomogeneous one-dimensional
Hubbard model. The approach is based on the LDA for the
correlation Helmholtz free-energy, where the data for the
homogeneous model comes from numerical solution of QTM
integral equations [23–25]. The general formalism can be used
with any external potential. Extensive comparison between
TBALDA and exact diagonalization was done for a small
system and TBALDA performed well, allowing its use to study
the thermodynamics of larger inhomogeneous systems with
smoother confining potentials, where TBALDA must perform
even better.

The thermodynamics for the fermionic one-dimensional
Hubbard model confined by a parabolic external potential was
studied. After introducing the system volume, the trap pressure
was obtained, being equal to twice the external potential energy
per unit of volume. The thermodynamic description of the
confined system was shown to proceed in the same way we
classically describe the thermodynamics of a homogeneous
system. One must note that the approach used here to treat
the one-dimensional model could naturally be used to treat
the Hubbard model in two and three dimensions. In these

cases, however, we would have a practical difficulty to make
computations based on DFT with LDA, because there is no
exact solution for the homogeneous model as it happens in
one dimension. Alternative considerations are required to build
the energy functionals and this is ongoing research. It is also
valid to note that other forms of external potential would lead
to a similar thermodynamic description in terms of a volume
appropriately defined. For example, with potentials of type
V (x) = |x/L|p, we could also define the volume by 2L and
easily find the meaning of the trap pressure.

The combination of reasonable accuracy and fast compu-
tation is the most appealing feature of a DFT approach. The
procedure is not exact due to the necessary approximation
to build the correlation energy functional, but the errors are
typically small enough to let us use it with confidence. The
DFT approach based on TBALDA allowed us to determine
the thermodynamic properties of the harmonically confined
Hubbard model. In this work we emphasized the behavior of
the confined system at constant entropy due to the experimental
motivation. The whole scenario of isentropic transformations
changing the volume or the intrasite interaction was discussed
looking at the behavior of the temperature. The necessary
conditions to have a trap presenting a Mott-insulator phase
were discussed. We found an unusual increase of temperature
under isentropic expansion, that can be of experimental interest
as well as can motivate new calculations using more precise but
much more demanding computational techniques, as QMC,
DMRG, or exact diagonalization. The unusual increase of
temperature was understood as a consequence of the peculiar
density dependence of the correlation entropy per site for the
homogeneous model around half-filling at low temperatures.
It is possible that this anomalous behavior be a feature of the
one-dimensional system only. The nonmonotonic behavior of
the temperature under isentropic behavior of U was studied in
detail. Such behavior has also been observed to happen in the
two-dimensional model [38,42], but it is more prominent in
the one-dimensional case. We finished discussing the general
behavior of the fraction of particles in doubly occupied sites
as a function of temperature and volume per particle showing
results in agreement with what could be analyzed from
the temperature dependence on interaction during isentropic
transformations.

This work opens the door to study, in the framework of DFT,
the thermodynamics of the inhomogeneous fermionic one-
dimensional Hubbard model in other physically interesting
conditions, such as with attractive intrasite interaction and
with spin polarization.
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