
PHYSICAL REVIEW A 92, 013612 (2015)

Simulation and measurement of the fractional particle number in one-dimensional optical lattices
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We propose a scheme to mimic and directly measure the fractional particle number in a generalized Su-
Schrieffer-Heeger model with ultracold fermions in one-dimensional optical lattices. We show that the fractional
particle number in this model can be simulated in the momentum-time parameter space in terms of Berry curvature
without a spatial domain wall. In this simulation, a hopping modulation is adiabatically tuned to form a kink-type
configuration, and the induced current plays the role of an analogous soliton distributing in the time domain such
that the mimicked fractional particle number is expressed by the particle transport. Two feasible experimental
setups of optical lattices for realizing the required Su-Schrieffer-Heeger Hamiltonian with tunable parameters
and time-varying hopping modulation are presented. We also show practical methods for measuring the particle
transport in the proposed cold atom systems by numerically calculating the shift in the Wannier center and the
center of mass of an atomic cloud.
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I. INTRODUCTION

Particle fractionalization has been recognized as a re-
markable and fundamental phenomenon in both relativis-
tic quantum field theory and condensed-matter systems
[1–10]. The first physical demonstration of fractionalization is
the celebrated Su-Schrieffer-Heeger (SSH) model [3] of one-
dimensional (1D) dimerized polymers, such as polyacetylene.
In this model, a kink domain wall in the electron hopping
configuration induces a zero-energy soliton state carrying a
half-charge [3,4]. The basic physics of fractionalization in
the SSH model is governed by a low-energy effective Dirac
Hamiltonian with topologically nontrivial background fields,
which was first proposed by Jackiw and Rebbi [1]. Subsequent
achievements were made to generalize the original SSH model
to exhibit an irrational (arbitrary) fermion number by breaking
the conjugation symmetry [11–13]. The fractional particle
number (FPN) in these systems can be understood in terms
of global deformations of the hole sea (or the valence band)
due to the nontrivial background fields.

The SSH model has achieved great success in describing
transport properties of polymers, and some novel phenomena
associated with the topological solitons have also been
explored in experiments [4]. In these materials, two spin
orientations are present for each electron, and thus a domain
wall in the polyacetylene carries an integer charge [4]. Inspired
by the newly discovered quantum spin Hall insulators [14], it
was theoretically proposed to realize the SSH model on the
edge of this two-dimensional (2D) insulator by bringing a
magnetic domain wall there, and the edge electrons with the
inherent chiral symmetry may provide a direct signature of the
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FPN [15,16]. However, creation of such a magnetic domain
wall acting only on the edge elections is experimentally chal-
lenging, and the proposed schemes are yet to be demonstrated.

In the past years, a lot of theoretical and experimental
work has been carried out to simulate the Dirac equation and
the involved exotic effects by using ultracold atoms [17–25].
Especially, it has been proposed to realize the (generalized)
SSH model associated with the effective Dirac Hamiltonian
using ultracold atomic gases in the continuum [26] and in
optical lattices [27–30]. The detection of the FPN in these
cold atom systems was also suggested by an optical image of
the density distribution of soliton modes [26,30]. Since single-
component fermionic gases or component-dependent optical
lattices are used in the realization of the FPN in atomic systems,
the spin-doubling problem encountered in condensed-matter
systems can be avoided. In a recent experiment with a 1D
optical superlattice, the SSH model in the absence of spatial
domain walls was realized, and its topological features were
also probed [31], making direct measurement of the FPN in
optical lattices to be feasible and timely.

In this paper, we propose a scheme to mimic and directly
measure the FPN in the generalized SSH model using ultracold
fermions in 1D optical lattices. First, we show that the FPN in
this model can be simulated in the momentum-time parameter
space in terms of Berry curvature without creating a spatial
domain wall. In this simulation, a hopping modulation is
adiabatically tuned to form a kink-type configuration, and
the induced current plays the role of an analogous soliton
distributing in the time domain so that the mimicked FPN in
parameter space is expressed by the adiabatic particle trans-
port. Furthermore, we explore how to implement this scheme
with ultracold fermions in 1D optical lattices. We propose two
experimentally setups to realize the required SSH Hamiltonian
with tunable parameters and hopping modulations and then
show practical methods for measuring the particle transport
in the proposed cold atom systems by numerically calculating
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the shift in the Wannier center and the center of mass of an
atomic cloud. Some possible concerns in realistic experiments,
such as the energy scales, the adiabatic condition, and the
effects of an external harmonic trap, are also considered.
In comparison with the previous proposals of realizing and
detecting the FPN [15,26–30], one advantage of the presented
scheme is that it does not require the spatial domain in the
hopping configuration, which is usually hard to create. Another
advantage is the adiabatic particle transport corresponding to
the value of the FPN can be directly measured in our proposed
cold atom systems.

The rest of this paper is organized as follows: Section II
presents a brief review on fractionlization in a generalized
SSH model. In Sec. III, we elaborate our scheme of simulation
and measurement of the FPN in this model, based on the Berry
curvature and adiabatic transport approaches. In Sec. IV, we
propose two feasible experimental setups of 1D optical lattices
to realize the required Hamiltonian and then discuss how to
measure the atomic particle transport in the proposed systems.
Finally, a short conclusion is given in Sec. V.

II. FRACTIONALIZATION IN THE SSH MODEL

Before describing our scheme, we briefly review the
arbitrary FPN in the generalized SSH model in this sec-
tion. We start with this model described by a tight-binding
Hamiltonian [7,12],

H =
∑

n

[J + (−1)nδ](ĉ†nĉn+1 + H.c.) + �

2

∑
n

(−1)nĉ†nĉn,

(1)

where ĉn (ĉ†n) is the fermion annihilation (creation) operator in
site n, J is the uniform hopping amplitude, δ is the dimerized
hopping modulation, and � is a staggered potential breaking
the inversion symmetry [the conjugation symmetry in the low-
energy Dirac Hamiltonian (3)]. In this lattice system as shown
in Fig. 1(a), the even and odd number sites form two sublattices
with modulating hopping amplitudes (on-site energies), and
thus a unit cell contains two nearest lattice sites, which are used
to constitute a pseudospin. When the inversion (conjugation)
symmetry preserves with � = 0, the system corresponds to
the original SSH model of polyacetylene.

By employing Fourier transformation in the spin basis, we
can obtain the Bloch Hamiltonian of the model as

H = �d(k) · �σ , (2)

where �σ = (σx,σy,σz) are the Pauli matrices acting on the
pseudospin, �d(k) = (J cos ka

2 , − δ sin ka
2 ,�) is the band vec-

tor with a being the lattice spacing as shown in Fig. 1(a). By
linearizing the Bloch bands near the Dirac point kD = π/a,
Hamiltonian (2) can be transformed into an effective low-
energy relativistic Hamiltonian [1,2,11],

HD = vF p̂xσx − 2 δσy + �

2
σz, (3)

in the continuum, where vF = Ja/� is the Fermi velocity, p̂x

is the momentum operator measured from the Dirac point, and
δ and � act as two background fields [11].

FIG. 1. (Color online) Two experimental setups for simulating
the SSH Hamiltonian in 1D optical lattices. (a) A double-well optical
superlattice trapping noninteracting single-component fermionic
atoms. A unit cell contains two nearest lattice sites with energy
offset � (for atoms denoted by dark and light blue small balls),
and the atomic hopping exhibits staggered modulation configuration.
(b) A state-dependent optical lattice trapping noninteracting two-
component fermionic atoms where atomic states |↑〉 and |↓〉 are
denoted by blue and red small balls. The block dotted line represents
a Raman field R1(x). (c) Raman-assisted tunneling. The uniform
atomic hopping between the nearest neighbors in the state-dependent
optical lattice is realized by a large-detuned Raman transition with
detuning �d1 and Rabi frequencies of the Raman beams �1,2, whereas
the hopping modulation is realized by another pair of Raman beams
g1,2 with large detuning �d2. The Zeeman splitting gives rise to the
� term in this system.

It has been widely studied that for a kink-type background
potential with δ(x → ±∞) = ±δ0, an unpaired soliton state
appears at the kink-carrying FPN [2,11],

Ns = − 1

π
arctan

(
4δ0

�

)
, (4)

which may exhibit arbitrary fractional eigenvalues. The minus
sign in the FPN is due to the fact that the physical fermion
number in the soliton sector is defined as being measured
relative to the free sector without the kink background, and
this fractional part of the fermion number actually comes
from the global contribution (polarization) of the valence
band [2,11,26]. In addition, it has a topological character in
the sense that it is dependent only on the asymptotic behavior
of the background fields instead of their local profiles. When
� → 0, it recovers to the half-fermion number ± 1

2 for the
zero-energy soliton mode in the original SSH model [1].

It is interesting to note that fractionalization also exhibits
in many low-dimensional correlated electron systems. For
instance, a well-known example is that of fractional exci-
tations in the fractional quantum Hall regime [5,9], which
is a consequence of strong Coulomb interaction among 2D
electrons in partially filled Landau levels. In addition, the
collective excitations in some 1D interacting fermion systems
may be characterized by effective fractional charges via the
spin-charge separation mechanism [10]. Fractionalization in
these systems is basically due to electron correlations and
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hence is completely different from that in the SSH model
of noninteracting fermions. The fractional charges in some
correlated electron systems have been directly observed in
experiments [9,10]. However, despite the fractionalization in
SSH model being investigated for decades, the FPN there is
yet to be directly measured in solid-state materials (mostly due
to the spin-doubling problem) or in artificial systems, even for
the simplest half-fermion-number case with � = 0. Therefore,
experimentally feasible schemes for direct measurement of the
intrinsic FPN in the SSH model would be of great value.

III. SCHEME TO DIRECTLY MEASURE THE FPN

Several schemes have been proposed to realize the SSH
model and to probe the soliton modes with the FPN in cold
atom systems [27–30]; however, the realization of the required
kink background and the local detection of the fermion number
of a soliton state therein are still challenging in practical
experiments. In the following, we propose a simpler scheme
to mimic and then directly measure the FPN via the adiabatic
particle transport.

The energy bands of the SSH model described by
Hamiltonian (2) can be mapped onto a two-level system
in the Bloch sphere with the parametrized Bloch vector
�S = h0(sin θ cos φ, sin θ sin φ, cos θ ), where θ and φ are
the polar and azimuthal angles, respectively. In this mapping,
we have

h0 =
√

4J 2 cos2(ka/2) + 4 δ2 sin2(ka/2) + �2/4,

θ = arccos(�/2h0), (5)

φ = − arctan

[
δ sin(ka/2)

J cos(ka/2)

]
.

The degeneracy point locates at k = π/a, δ = 0, and � =
0. We consider the fractionalization in this band insulator at
half-filling [26], corresponding to the low-energy level with
the eigenstate |u−〉 = (sin θ

2 e−iφ, − cos θ
2 )

T
with superscript

T being the transposition of matrix. In this framework, one
can define the Berry connection Aθ = 〈u−|i ∂θu−〉 = 0 and
Aφ = 〈u−|i ∂φu−〉 = sin2 θ

2 .
Instead of considering the kink background field in the

spatial domain, here we introduce a time-varying hopping
modulation with a kink-type ramping configuration,

δ(t) = δ0 tanh[ξ (t − t0)], (6)

where t0 denotes the center of the time domain wall and
ξ represents the ramp frequency. We assume t0 	 1/ξ

(actually t0 = 5/ξ is large enough) such that δ(0) 
 −δ0 at
the beginning t = 0 and then adiabatically ramp the system
to t = tf = 2t0 with δ(tf ) 
 δ0 at the end. That is to say,
we simulate a kink potential in the time domain instead of
creating it in real space. In this dynamical case, the bulk gap
is Eg = 2

√
�2 + 16δ(t)2, which will close at t = t0 for the

original SSH model with � = 0. To guarantee the adiabatic
condition for the original SSH case, which requires a gapped
bulk band, we can use a time-varying staggered potential with
the form �(t) = δ0 sin(πt/2t0).

We consider the adiabatic evolution of the system with
the ramping parameter δ(t) [and �(t) for the original SSH
case] and provide that the Fermi level lies inside the band gap

in the whole progression. The Berry phase effect of this 1D
band insulator can be measured from the particle transport [7].
This is an analog of the adiabatic charge pumping proposed by
Thouless [32]; however, the parametric driving in our case does
not form a closed cycle but only a half one. The topological
pumping in cold atom systems and photonic quasicrystals have
been discussed in the contexts of the SSH model [33–35]
and the 1D quasiperiodic Harper model [36–40] where the
pumping particle is shown to be quantized one over one period
and can be fractional over a fraction of one period [40].

In the momentum-time (k-t) parameter space, we can
rewrite the Berry connection as Ak = ∂kφ Aφ + ∂kθ Aθ and
At = ∂tφ Aφ + ∂tθ Aθ . Thus the Berry curvature Fkt =
∂kAt − ∂tAk in the k-t space can be obtained as

Fkt = �J sin2 ka
2 ∂t δ(t)

2
[
4J 2 cos2 ka

2 + 4 δ(t)2 sin2 ka
2 + �2/4

]3/2 , (7)

where J and � are assumed to be constants here. We note
that Berry curvature distribution given by Eq. (7) is modified
for time-varying �(t) = δ0 sin(πt/2t0) discussed previously,
however, the corresponding FPN given by the following
Eq. (8) remains since it just depends on the boundaries of
the background fields [4].

Figure 2(a) shows an example of the Berry curvature
distribution in the center region of the k-t space for typical
parameters, whereas the Berry curvature outside is almost
vanishing. In the small � limit, a sharp peak exhibits in the
Berry curvature distribution at the position of (k,t) = (π/a,t0),
which is the dominant contribution to its integration over
the parameter space. Figure 2(b) shows the corresponding
spin texture, which is interpreted as a mapping from the k-t
parameter space onto the Bloch sphere by Eq. (5). Figures 2(c)
and 2(d) show the static energy spectrum and the adiabatic
density variation in each lattice site with respect to the hopping
modulation for the lattice size L = 100, respectively. It looks
like a density kink-soliton (antisoliton) configuration appears
in the time domain.

The particle transport for the ground band in this 1D
band insulator over the ramping progression of parameter δ(t)
from t = 0 to t = tf is given by the integration of the Berry
curvature,

Q = − 1

2π

∫ tf

0
dt

∫ 2π

0
dkFkt

= 1

2π

∫ 2π

0
dk[Ak(k,tf ) − Ak(k,0)]

= − 1

π
arctan

⎛
⎝ 4πJδ0

�

√
π2J 2 + 4δ2

0 + �2/4

⎞
⎠


 − 1

π
arctan

(
4δ0

�

)
= Ns , (8)

where the approximation satisfies well for J 	 δ0,� and
becomes exact when � = 0. In the calculation, the integration
of ∂kAt over k vanishes due to the periodic condition in the
Berry vector potential [7]. Here the unquantized adiabatic
particle can be regarded as the polarization change in this
1D band insulator [7,41], which has also been discussed in
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FIG. 2. (Color online) (a) Berry curvature distribution of the
ground band Fkt in the center region of the k-t parameter space.
The Berry curvature outside is almost vanishing, and integration
over the whole parameter space (0 ≤ k ≤ 2π/a,0 ≤ t ≤ 2t0) gives
the particle transport. (b) Spin texture of the SSH model, interpreted
as a mapping from the k-t parameter space onto the Bloch sphere by
Eq. (5). The colors show the Sz-component cos[θ (k,t)], and the arrows
show the azimuthal component (Sx,Sy) = (sin θ cos φ, sin θ sin φ).
Here the lengths of all the arrows have been divided by a factor
π for visibility. (c) The energy spectrum for a lattice system with
size L = 100. (d) The variation in density in each lattice site
with respect to the time-varying hopping modulation at half-filling.
(e) The analog of kink potential and solitonlike current in the time
domain under adiabatic conditions. The parameters in (a)–(e) are
J = 1, δ0 = � = 0.1, and t0 = 5/ξ .

the context of nanotubes and ferroelectric materials [42]. If
one consider an additional anti-kink-type modulation to form
a full cycle, then the particle transport will be quantized (±1
or 0 depending on the loop of the cycle) after one period as
the integration of the Berry curvature in the extensional region
contributes the other fractional portion [7,15].

There are actually close connections between the FPN of
a soliton state and the adiabatic transport via the Berry phase
approach in Eq. (8). We can consider the response equation

in the progression of dynamical generation of the background
field [6,11],

ρs = 1

2π
∂x�(x,t), jc = 1

2π
∂t�(x,t), (9)

where �(x,t) represents the generalized angular angle of the
background field, ρs denotes the soliton density distribution
near the spatial domain wall, and jc is the induced current.
In the present model with J 	 δ,� (in which case the same
polarization variation is obtained by the band Hamiltonian and
the low-energy Dirac Hamiltonian), the angular angle � =
− arctan(4δ/�) is just time dependent. Therefore, the induced
current mimics an analog of the kink soliton in the time domain
as shown in Fig. 2(e). The induced current over the whole time
domain gives the transferred particle,

Q =
∫ tf

0
jc(t)dt, (10)

which takes the value given by Eq. (8) and depends only on the
boundaries of the angular angle under the adiabatic condition.

So far, we have described our scheme to simulate the FPN
in the SSH model in a parameter space and to directly measure
it via the adiabatic transport. In contrast to the previous
schemes [15,26–30], the presented scheme does not involve
the spatial kink domain in the hopping configuration, which
is usually hard to realize and (or) control in experiments. In
addition, the particle transport corresponding to the value of
the FPN can be directly measured in cold atom systems, such
as from the measurement of atomic density distribution and
atomic current [43], which will be discussed in 1D optical
lattices in the next section.

IV. EXPERIMENTAL IMPLEMENTATION IN OPTICAL
LATTICES

In this section, we turn to discuss the implementation of our
scheme of mimicking and measuring the FPN in 1D optical
lattices. We first propose two experimental setups to realize the
required SSH Hamiltonian with tunable parameters and then
discuss how to measure the particle transport in the proposed
cold atom systems by numerically calculating the shift in the
Wannier center and the center of mass of an atomic cloud.

A. Two experimental setups

The first experimental setup we proposed is a 1D optical
superlattice trapping a noninteracting atomic gas of single-
component fermions as shown in Fig. 1(a). Such an optical
lattice has been widely realized in experiments [31,43–45]. It
is generated by superimposing two lattice potentials with short
and long wavelengths differing by a factor of 2 with the optical
potential given by

V (x) = V1 sin2(k1x + ϕ) + V2 sin2(2k1x). (11)

Here k1 is the wave vector of the short-wavelength trapping
lasers (the lattice spacing a = 2π/k1), ϕ and V1,2 are the
relative phase and the strengths of the two standing waves,
respectively. By varying the laser intensity and the phase, one
can fully control the lattice system with ease [31,43–45] and
then make the system well described by Hamiltonian (1) of
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the SSH model in the tight-binding regime [31]. In the experi-
ments [31,43–45], the hopping configuration J + (−1)j δ can
be adjusted by varying potential strengths V1,2 or swapping the
relative phase ϕ, and the staggered potential � can be tuned
by the phase. Therefore in this system, a straightforward way
to realize the required hopping modulation with a kink-type
configuration in the time domain is by changing these tunable
parameters of the optical superlattice with a well-designed
sequence [31].

Another experimental setup, which would be more conve-
nient as we will see in the following, is loading an ultracold
Fermi gas of two-component (internal states |σ 〉 with σ =
↑,↓) atoms in a state-dependent optical lattice [46]. It has
been proposed to realize the SSH Hamiltonian with a spatial
domain wall in this system [27], and such a state-dependent
optical lattice has been experimentally created by superposing
two linearly polarized laser beams with a relative polarized
angle [46]. The separation and potential depth for different
atomic components can be well controlled by the angle and
the laser intensity with a simple example of such a 1D lattice
potential as shown in Fig. 1(b),

Vσ (x) = V0 sin2(ksx ± π/4). (12)

Here V0 is the lattice potential depth, ks is the wavelength of the
laser beams (the lattice spacing a = 2π/ks), and ±π/4 are the
polarization angles for atomic states |↑〉 and |↓〉, respectively.

For sufficiently deep lattices, the atoms in the system
must alter their internal states in order to tunnel between
two nearest-neighbor lattice sites. This can be achieved by
the Raman-assisted tunneling method [43,47–50] as shown in
Fig. 1(c). The energy offset between two atomic states arises
from the external Zeeman field and then plays the role of
tunable parameter � in this system. Two pairs of Raman beams
with Rabi frequencies �1,2 and g1,2 are used to induce two
large-detuned Raman transitions with detunings �d1 and �d2,
respectively. One can use the former pair of Raman beams to
realize the uniform nearest-neighbor hopping,

J = A0

∫
w∗

↑(x − xn)eikxxw↓(x − xn+1)dx, (13)

where A0 = |�1�
∗
2|/�d1 is the effective Raman strength

constant, kx is the momentum difference along the x axis
between the two beams, and wσ (x) are the Wannier functions
of the lowest Bloch band for atomic state |σ 〉.

To realize the time-varying hopping modulation term, one
can use another pair of laser beams with a resulting Raman
field as shown in Fig. 1(b),

R1 = g1g
∗
2/�d2 = A1(t) sin(2ksx + π/2), (14)

where A1 is a time-dependent constant controlled by the
laser intensities or detuning �d2. In this way, the hopping
modulation (−1)nδ(t) is given by

A1(t)
∫

w∗
↑(x − xn) sin(2ksx + π/2)w↓(x − xn+1)dx.

Here the staggered hopping modulation is a consequence of the
relative spatial configuration of the lattice and the Raman field:
The period of R1(x) is double the lattice period, and R1(x) is
antisymmetric corresponding to the center of each lattice site
as shown in Fig. 1(b). Thus, to realize the proposed particle

transport scheme in this system, we can adjust the Zeeman field
and the Raman field R0 to tune the parameters � and J in the
SSH Hamiltonian and then independently vary the intensity of
another Raman field A1(t) in time with a kink-type form. The
case of time-varying �(t) can also be achieved in a similar
way. The time modulation of the Raman coupling in ultracold
atoms has been demonstrated in recent experiments [51].

Considering 40K atoms and typical lattice spacing a =
532 nm, one has the recoil energy ER/� ≈ 30 kHz. For the
optical superlattice system with an intermediately deep lattice,
a typical uniform hopping strength is J ∼ 0.1ER , and the other
parameters δ and � can be tunable in a wide regime [31].
For the state-dependent optical lattice system, the uniform
hopping strength given by Eq. (13) is proportional to the
effective Raman intensity A0, which is typically on the order
of megahertz, and the overlap integral of the Wannier functions
between neighbor lattice sites can be about 10−2 [52]. Thus
the Raman-induced uniform hopping strength in this system is
J ∼ 0.4ER , and the nature (next-nearest-neighbor) hopping tN
within sublattices can be effectively suppressed by sufficiently
deep lattice V0. For example, the numerical calculation shows
that tN � 10−3ER for V0 ≈ 22ER [52]. We can consider
typical parameters δ0 and � (the minimum bulk gap in the
dynamical progression is 2�) on the order of 0.1J . In this
case, the adiabatic approximation works well for the ramp
time tf 	 �/0.1J ∼ 1 ms. Thus one can choose the ramp
frequency ξ = 0.01J/� and t0 = 50 ms, which is well shorter
than the typical coherence time in cold atom experiments. The
nonadiabatic Landau-Zener transition from the ground band
to the excited band for the chosen parameters is then given by
PLZ ≈ e−π(0.1J )2/4� δ0ξ ≈ 0. In addition, the finite temperature
effects do not interfere with the particle transport progression
for temperatures lower than the energy gap [33]. This requires
a temperature on the order of 0.08ER/kB ∼ 20 nK (kB is
the Boltzmann constant), which has been achieved in current
experiments with, e.g., 40K atoms. So we can conclude that
the required Hamiltonian with tunable parameters and the
adiabatic condition are able to be realized under realistic
circumstances.

B. Experimental measurement methods

It has been shown that the particle transport can be
connected with the Wannier center based on the modern
theory of charge polarization [7,41]. Especially, the shift in
the Wannier center in each unit cell is

Xd = xc(t = tf ) − xc(t = 0), (15)

where xc ≡ 〈wn|x̂|wn〉 is the Wannier center with |wn(x)〉 =
1

2π

∫ π

−π
e−ik(n−x)|u−(k)〉 being the Wannier function of the

ground band in the nth unit cell. The shift in the Wannier
center encodes the adiabatic particle transport (the variation in
polarization) as [33,39,40]

Xd/a = Q. (16)

In Fig. 3, we have numerically calculated the variation in the
Wannier center in each lattice site in the proposed system.
For the symmetric case with � = 0+ (the solid blue line) and
�(t) = δ0 sin(πt/2t0) (the dashed red line) shown in Fig. 3(a),
after adiabatically tuning the hopping modulation over the kink
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FIG. 3. (Color online) The shift in the Wannier center in each
lattice as a response to the adiabatically tuning hopping modulation.
(a) The symmetric case with � = 0+ (solid blue line) and �(t) =
δ0 sin(πt/2t0) (dashed red line) with δ0 = 0.1J . After tuning the
hopping modulation over the kink form, the Wannier center for
each lattice site shifts downwards one site, i.e., one-half of the unit
cell, corresponding to Q = −1/2 as expected for the half-charge
in the original SSH model. (b) The symmetry-breaking case with
� = 4δ0 = 0.1J , the shift in the Wannier center is nearly half a
lattice site, corresponding to Q = −1/4 as expected in this case.
Other parameters in (a) and (b) are J = 1 and t0 = 5/ξ .

form, the Wannier center in each lattice site shifts downwards
one site, that is, exactly one-half of the unit cell. According to
Eqs. (8) and (16), the adiabatic particle transport is Q = −1/2
(the sign depends on the shift direction), as expected for the
half-charge in the original SSH model. For the symmetry-
breaking case with � = 4δ0 = 0.1J as shown in Fig. 3(b), the
shift in the Wannier center is nearly half a lattice site, which is
consistent with the expected Q = −1/4 in this case.

The shift in Wannier center shown in Fig. 3 implies the
appearance of atomic current (the transport of particles) in
each unit cell, which flows through the whole lattice system.
Under the adiabatic condition, the atomic current will take the
solitonic form in the ramping progression, which is similar
to the example shown in Fig. 2(e). In principle, the transport
dynamics can be detected by using the single-atom in situ
imaging technology in optical lattices [53]. Thus, the variation
in atomic density distribution in a unit cell associated with
induced current can be experimentally extracted out in this
way. In our proposed systems, it would be more convenient
to detect the global current through the whole lattice by
measuring the time evolution of the atom fractions in the even
and odd sublattices, instead of using in situ detection in a single
unit cell. For the double-well superlattice system in Fig. 1(a),
the atomic current associated with the atom fractions of the
even or odd sublattices has been measured in the experiment
by transferring the atoms to higher-lying Bloch bands and
applying a subsequent band mapping technique [43]. For the
state-dependent optical lattice system in Fig. 1(b), the even and
odd sublattices trap |↑〉 and ↓〉 atoms, respectively. Therefore
in this system, one can simply measure the evolution of atom
fractions via optical imaging of the up-component (down-
component) atoms, such as using state-resolved time-of-flight
measurements [54]. Therefore, one can obtain the particle
transport Q by its integration over the time domain as given
by Eq. (10), which corresponds to the mimicked FPN in this
system.
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FIG. 4. (Color online) The shift in the center of mass of an atomic
cloud as a function of (a) the parameter � with fixed δ0 = 0.1 and
(b) the parameter δ0 with fixed � = 0.1 for a finite lattice system
with L = 400 sites and at half-filling Na/L = 1/2, respectively. The
solid (blue) line and the dashed (black) line denote the corresponding
particle transport Q obtained by Eq. (8) and fractional particle number
Ns obtained by Eq. (4), respectively, in the text. Other parameters in
(a) and (b) are J = 1 and t0 = 5/ξ .

In addition, the particle transport can be directly measured
from the shift in the center of mass of an atomic cloud in a
finite lattice system [33,35,40]. In our system, the center of
mass of an atomic cloud in the lattice with L sites xcom(t) is
given by

xcom(t) = 1

Na

L∑
n=1

∑
εoc

|ψoc(n,t)|2n, (17)

where Na = L/2 is the atomic number at half-filling, εoc

denotes the occupied state of the fermionic atoms, and ψoc

is the corresponding wave function. Under the adiabatic
evolution with δ(0) → δ(tf ) described by Eq. (6), the center of
mass of the system shifts from the position xcom(0) to xcom(tf ).
It can be proved that the shift in the center-of-mass δxcom =
xcom(tf ) − xcom(0) is proportional to the particle transport in
the infinite L limit [33,40],

Na

L
δxcom = Q. (18)

If L is large enough such that the bulk properties of the system
are almost not affected by the edges, Naδxcom/L in the above
equation will be approximated to be the ideal particle transport
Q in infinite systems. In Fig. 4, we have calculated the shift
in the center of mass of an atomic cloud for a lattice system
with L = 400 sites, Naδxcom/L (the red circles) as a function
of the parameters � [Fig. 4(a)] and δ0 [Fig. 4(b)], respectively.
As shown in Figs. 4(a) and 4(b), the calculated shift in the
center of mass is well described by the particle transport Q

(the solid blue line) obtained by Eq. (8) with small deviations.
These deviations are due to the finite-size effects and become
smaller and smaller with the increase in the lattice size in our
simulations, which will be invisible in practical experiments.
For comparison, we also plot the mimicked FPN Ns given
by Eq. (4) in this system in Fig. 4 (the dashed black line).
From Fig. 4, one can see that the corresponding FPN is nearly
equal to the particle transport within the parameter regimes. In
current experiments, the center-of-mass position of an atomic
cloud can be directly and precisely measured, either by using
an in situ measurement of the atomic density distribution in the
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optical lattices [53] or by being deduced from the time-of-flight
imaging [54].

Finally, we note that a shallow-enough harmonic trap
in practical experiments will not affect the particle trans-
port [33,39] and the main results of this paper remain intact. In
order to take the effect of the harmonic trap into account, we
can add a term Ht = Vt

∑
n(n − L/2)2ĉ

†
nĉn into Hamiltonian

(1), where Vt is the trap strength and L is the lattice size.
Within a local-density approximation, the lower band will
still be filled at the center of the trap, and thus the shift
in the Wannier center in these lattice sites is expected to
be nearly the same as those shown in Fig. 3, whereas the
band is only partially filled near the edge with the local trap
energy Vt (n − L/2)2 � Eg such that the pumping argument
does not apply to this region [33]. Therefore in practical
experiments, one may emphasize the shift in the Wannier
center in the central region or turn the trap strength to a small
value Vt ∼ 4Eg/L

2. For the shift in the center of mass of an
atomic cloud, our numerical simulations demonstrate that the
results shown in Fig. 4 preserve with a deviation less than 2%
for Vt ≈ 0.6 × 10−5J , whereas Vt ≈ 10−4J is enough if the
lattice size reduces to L = 100, which are consistent with the
estimates in the local-density analysis.

V. CONCLUSIONS

To summarize, we have proposed a scheme to mimic and
measure the FPN in the generalized SSH model with cold
fermions in 1D optical lattices. It has been shown that the
FPN in this model can be simulated in the momentum-time
parameter space in terms of Berry curvature without a spatial
domain wall. In this simulation, a hopping modulation is

adiabatically tuned to form a kink-type configuration, and the
induced current plays the role of a soliton in the time domain,
so the FPN is expressed by the particle transport. We have
also proposed two experimental setups of optical lattices to
realize the required Hamiltonian with tunable and time-varying
parameters and considered the energy scales and the adiabatic
condition under practical circumstances. Finally we have
discussed how to directly measure the particle transport in
the proposed systems by numerically calculating the shift in
the Wannier center and the center of mass of an atomic cloud.
Considering that all the ingredients to implement our scheme
in optical lattices have been achieved in the recent experiments,
it is anticipated that the presented proposal will be tested in an
experiment in the near future. The direct measurement of such
a mimicked FPN in cold atom experiments will be an important
step toward exploring fractionalization and topological states
in cold atom systems. Extensions of this paper can enable
simulating and measuring the FPN emerging in two- and three-
dimensional Dirac Hamiltonians with topologically nontrivial
(vortex and monopole) background fields [1,8], which has been
theoretically studied but remains elusive in nature. It will be
also interesting to simulate a variety of topological states [6]
and study their properties in the parameter space using cold
atoms.
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