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Effective many-body parameters for atoms in nonseparable Gaussian optical potentials
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We analyze the properties of particles trapped in three-dimensional potentials formed from superimposed
Gaussian beams, fully taking into account effects of potential anharmonicity and nonseparability. Although
these effects are negligible in more conventional optical lattice experiments, they are essential for emerging
ultracold-atom developments. We focus in particular on two potentials utilized in current ultracold-atom
experiments: arrays of tightly focused optical tweezers and a one-dimensional optical lattice with transverse
Gaussian confinement and highly excited transverse modes. Our main numerical tools are discrete variable
representations (DVRs), which combine many favorable features of spectral and grid-based methods, such as
the computational advantage of exponential convergence and the convenience of an analytical representation of
Hamiltonian matrix elements. Optimizations, such as symmetry adaptations and variational methods built on
top of DVR methods, are presented and their convergence properties discussed. We also present a quantitative
analysis of the degree of nonseparability of eigenstates, borrowing ideas from the theory of matrix product states,
leading to both conceptual and computational gains. Beyond developing numerical methodologies, we present
results for construction of optimally localized Wannier functions and tunneling and interaction matrix elements
in optical lattices and tweezers relevant for constructing effective models for many-body physics.
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I. INTRODUCTION

Ultracold neutral atoms trapped in optical potentials have
been solidly established as a highly controllable platform for
precision measurement and quantum metrology [1] as well
as quantum simulation of many-body physics [2,3]. The most
prevalent method for quantum simulation of three-dimensional
(3D) lattice systems is to optically trap neutral atoms in a cubic
lattice formed by three orthogonal pairs of counterpropagating
laser beams [4]. An emerging alternative for manipulating and
trapping ultracold atoms is optical tweezers [5], in which a
tightly focused Gaussian beam is used to trap single atoms.
In contrast to optical lattice experiments, which typically load
gases which have been evaporatively cooled, atoms in optical
tweezers can be individually manipulated and cooled to their
ground state using laser cooling alone [6,7]. The ability to
dynamically vary the position of such tweezers at separations
where tunneling is appreciable, as has been demonstrated in
recent experiments [8,9], leads to a “bottom-up” approach to
building low-entropy quantum systems [10], in contrast to the
“top-down” approach of most optical lattice experiments in
which large ensembles of atoms are cooled in an external trap
before being loaded into the lattice.

The many-body physics of ultracold atoms in optical po-
tentials is usually described within the framework of Hubbard
models, which are truncated expansions of the full Hamiltonian
in a basis of spatially localized orbitals known as Wannier
functions [11]. The parameters appearing in such models, for
example, tunneling integrals and interaction matrix elements,
are the point of connection between few-body physics in the
confining potential and many-body physics: these parameters
controlling the many-body physics can be determined from
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few-body calculations or experiments. Hence, determining
them quantitatively is key to designing and validating robust
quantum simulators and other quantum technologies. The
construction of Hubbard models for cubic optical lattices is
greatly facilitated by the fact that such lattices are separable
in Cartesian coordinates V (r) = V (x) + V (y) + V (z), and
hence their eigenfunctions are products of eigenfunctions of
one-dimensional (1D) problems, which are much less compu-
tationally demanding than 3D problems. In addition, the theory
of periodic potentials in 1D is especially simple and leads
to computationally efficient procedures for determining the
Wannier functions with maximum spatial localization [12]. On
the other hand, technologies which depend upon the curvature
of light beams for trapping, such as optical tweezers, are
inherently nonseparable, and so the well-developed machinery
employed for cubic lattices is not applicable. In addition to
being more computationally challenging, nonseparable poten-
tials have significant qualitative differences from separable
potentials. For example, the tunneling rate of a particle through
a nonseparable lattice depends on its transverse motional
state, and can change this rate by an order of magnitude or
more. In contrast, for a separable potential tunneling rates are
independent of the transverse motional state.

In this work, we study the eigenstates of nonseparable 3D
optical potentials constructed by superimposing Gaussian laser
beams, taking as our two main examples arrays of optical
tweezers [8,9] and a 1D optical lattice with transverse Gaussian
confinement, such as is utilized for optical lattice clocks [13].
Our main numerical tool is discrete variable representations
(DVRs), coupled with variational methods. As will be dis-
cussed in Sec. III A, DVR methods combine many nice features
of grid-based methods, such as analytic representation of the
kinetic energy operator and a diagonal representation of the
potential energy operator, with features of spectral methods,
such as exponential convergence. We focus in particular on
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the connections between the trap parameters, e.g., the trap
depth, and the parameters appearing in effective many-body
models, such as tunneling and interaction matrix elements.
We also quantitatively study the degree of separability of the
eigenfunctions of such potentials using tools from quantum
information science. In particular, borrowing from the theory
of matrix product states (MPSs) [14], which accurately capture
many-body states with restricted entanglement, we develop an
analogous state ansatz for nonseparable single-particle states.
As we will show, this ansatz is useful for visualization, storage,
and computational efficiency.

This work is organized as follows: Sec. II defines the
potentials we study in this work, their symmetries, and the
Hubbard parameters we will study; Sec. III reviews the two
DVR basis sets we use and presents numerical optimizations
for DVR-based algorithms; Sec. IV presents an analysis
of nonseparable single-particle states from the viewpoint
of quantum information theory, in particular discussing a
canonical form for nonseparable states motivated by matrix
product states; Sec. V gives results for Hubbard parameters
and quantifies nonseparability of states in a double-well
optical tweezer array and a nonseparable optical lattice; finally,
Sec. VI concludes and gives an outlook. Some technical details
on computing interaction matrix elements in a basis of radial
functions and a variational algorithm for finding the nearest
separable state given a state in the MPS canonical form are
given as appendixes.

II. OPTICAL POTENTIALS FOR NEUTRAL ATOMS

In this work, we consider optical potentials which are
generated by superimposed Gaussian laser beams. The electric
field amplitude of the fundamental TEM00 mode of a Gaussian
laser beam propagating along z may be written as [15]

|E(r,z)| = E0√
1 + (

z
zR

)2
exp

{
− r2

w2
0

[
1 + (

z
zR

)2]
}
, (1)

where E0 is the field amplitude, the beam waist w0 is where
the field amplitude drops to 1/e of its on-axis value, and the
Rayleigh range zR = πw2

0/λ, with λ the wavelength of the
laser light. The resulting optical potential is proportional to
the intensity of the field and the atomic polarizability. For a
single field of the form (1) with the laser frequency far detuned
from an optical transition, the ac Stark shift gives rise to the
potential

Vs(r) = − V
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with maximum depth at the origin V . We assume the laser is
red detuned, and therefore that V is positive. We will refer to a
single potential of the form (2) as an optical tweezer when the
beam waist is comparable to the wavelength w0 � λ. Such a
potential can be formed by focusing a Gaussian beam through
a high numerical aperture lens. Expanding Eq. (2) to lowest
order in r and z results in a harmonic approximation

Vs(r) ≈ −V + 2V
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FIG. 1. (Color online) Double-well optical tweezer. The double-
well optical tweezer potential (4), at y = 0, with no bias (� = 0)
and spacing a/w0 = 1.23. Note the different scaling of the x and z

coordinates.

corresponding to radial and axial frequencies �ωr = √
8Ew0V

and �ωz = √
4EzR

V , respectively, where Ew0 = �
2/2mw2

0

and EzR
= �

2/2mz2
R are the characteristic energies associated

with the waist and Rayleigh range, respectively.
The second case we consider is that of two focused traps in

which one has an intensity greater by � more than the other,
resulting in a double-well optical tweezer potential of the form
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, (4)

as shown in Fig. 1, when the lasers are set up to avoid coherent
interference effects, for example, by frequency detuning the
two beams with a splitting above any trap time scales. The
dynamics of two bosonic [8] or fermionic [9] atoms in such
a double-well tweezer configuration have been investigated
in recent experiments. While the rotation of polarization due
to high numerical aperture focusing can cause significant
effective magnetic fields for the very deep traps required for
Raman sideband cooling [6,7], this effective magnetic field
scales with the trap depth and so will be <1 mG for the trap
depths considered in this work. An applied magnetic field of
a few Gauss perpendicular to this effective field suppresses its
effects, resulting in the scalar potential (4).

The third case that we consider is a 1D optical lattice
with transverse Gaussian character, which can be created by
interfering two counterpropagating beams of the form (1).
Confinement along the z direction is provided by the standing-
wave interference pattern, and so w0 � λ is not required for 3D
confinement. Hence, we consider the regime w0 � λ in which
most experiments operate. In this regime, we can neglect any
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FIG. 2. (Color online) Nonseparable optical lattice. The nonsep-
arable optical lattice [Eq. (6)] for V/Vconst = 3/22. A nonzero value of
Vconst increases the effective transverse (r) confinement while leaving
the axial (z) motion unchanged, to lowest order. Note the different
scalings of the r and z coordinates, as well as the difference in scaling
of z coordinates with respect to Fig. 1 due to the additional length
scale a.

effects of the Rayleigh range, giving rise to the potential

V (r,z) = −Vlatt exp

(
− 2r2

w2
0

)
cos2 (kz), (5)

where k = π/a, with a = λ/2 the lattice spacing. In addition,
to study the effects of nonseparable transverse confinement on
the axial motion of particles through a 1D optical lattice, we
will consider the generalized 1D optical lattice

Vlatt(r,z) = − exp

(
− 2r2

w2
0

)
[Vconst + V cos2(kz)], (6)

which is comprised of a standing-wave optical lattice [Eq. (5)]
together with the potential resulting from a nonreflected beam
[Eq. (2)] of the same waist. In this configuration, the transverse
confinement frequency is set by

√
8Ew0 (Vconst + V ), while

confinement along z measured close to a single lattice
minimum is set by V alone (see Fig. 2).

Atoms loaded into an optical tweezer potential can be effi-
ciently cooled to their 3D ground state via laser cooling [6,7],
and so our analysis of tweezer potentials will be focused
on the properties of the lowest few eigenstates. In contrast,
some applications of optical lattices, such as optical atomic
clocks [13,16], do not require being in the lowest transverse
motional states. Hence, in discussing the 1D optical lattice
potential we will devote special attention to develop methods
which can efficiently deal with a large number of states to
facilitate thermal averages.

A. Symmetries of the optical potentials and characterization
of eigenstates

For a periodic potential such as the 1D optical lat-
tice potentials (5) and (6), the solutions may be char-
acterized by a quasimomentum q in the first Brillouin
zone (BZ), q ∈ [−π/a,π/a), even in the case that the
potential is nonseparable. The resulting eigenfunctions can

be written in Bloch form ψnq(r) = eiqzunq(r)/
√

L, where
unq(x,y,z + a) = unq(x,y,z) is a unit periodic function in z,
with a the lattice spacing and L the number of unit cells.
Eigenfunctions of different q are orthogonal by construction,
and so can be obtained in separate calculations. The double-
well potential (4) has a mirror symmetry along the y and z

directions. As a consequence, the solutions can be character-
ized in terms of their parities Py and Pz, where Pν = 1 (−1)
corresponds to a function which is even (odd) under inversion
of coordinate ν. In addition, for � = 0 there is also mirror
symmetry along x. As with the quasimomentum, we can obtain
the eigenstates in each symmetry sector separately, leading to
significant computational gains.

For a nonseparable potential, we cannot unambiguously
assign quantum numbers counting the number of quanta of
excitation along each direction. However, in most cases it is
possible to assign labels which specify that the separable state
nearest to the given state may be labeled by a vector of excita-
tion quanta n = (nr,nz) for problems of cylindrical symmetry
and n = (nx,ny,nz) for problems without cylindrical symme-
try. This vector n can be determined by counting the number
of nodes in the components of the nearest separable wave
function. A precise definition of the nearest separable state
and a procedure for obtaining it are presented later in Sec. IV.

In summary, the eigenstates of the optical lattice poten-
tials (5) and (6) can be written as ψmnrnzq(r), where q is the
quasimomentum, m is the azimuthal quantum number arising
from cylindrical symmetry, and nr and nz are labels stating that
the state has character dominated by nr radial excitation quanta
and nz band excitation quanta. Similarly, eigenfunctions of
the double-well tweezer potential (4) may be written as ψn,p,
where p is a vector of parities and n a vector of excitation
quanta labels.

B. Hubbard parameters

The transition from few- to many-particle physics in the
presence of a trapping potential is frequently done by means
of a Hubbard-type model, which projects the full many-body
model onto a basis of low-energy lattice states. Such a
projection often removes irrelevant degrees of freedom without
significantly modifying the physical behavior, resulting in
models which are easier to analyze. The many-body Hamilto-
nian in second quantization is

Ĥ =
∫

dr ψ̂†(r)

[
− �

2

2M
∇2 + V (r)

]
ψ̂(r)

+ 1

2

∫
dr dr′ψ̂†(r)ψ̂†(r′)Ĥint(r − r′)ψ̂(r′)ψ̂(r), (7)

where the first line represents single-particle physics in the
trapping potential V (r) and the second line is two-body inter-
actions with interaction Hamiltonian Ĥint(r). This Hamiltonian
can be expressed in terms of a particular single-particle basis
{ψν(r)} by expanding the field operators in terms of this
basis ψ̂(r) = ∑

ν ψν(r)âν , where âν is an operator which
destroys a particle in state ν. A Hubbard model results when
this expansion is not complete, but runs only over low-energy
states in the single-particle basis. These basis functions are
usually taken to be localized Wannier functions {wiμ(r)},
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where i denotes the lattice site (or potential minimum, in the
case of a double-well optical tweezer) where the function is
centered, and μ are any other single-particle quantum numbers
or labels. The precise construction of Wannier functions we
use will be discussed in Sec. V. A primary reason to choose the
Wannier orbitals as the basis is that they decay exponentially
in space and the couplings can therefore be truncated, for ex-
ample, including only nearest-neighbor tunneling in the tight-
binding approximation. The single-particle contributions to the
Hubbard model with these approximations can be written as

Ĥ1 =
∑

μ

∑
i

Eμn̂iμ −
∑

μ

Jμ

∑
〈i,j〉

[â†
iμâjμ + H.c.], (8)

where μ runs over the restricted subset of single-particle
states, i runs over all lattice sites, 〈i,j 〉 denotes a sum over
neighboring lattice sites i and j , â

†
iμ creates a particle in state

μ at lattice site i, and

Eμ =
∫

dr w�
iμ(r)

[
− �

2

2M
∇2 + V (r)

]
wiμ(r), (9)

Jμ = −
∫

dr w�
iμ(r)

[
− �

2

2M
∇2 + V (r)

]
wjμ(r), (10)

with i and j nearest neighbors, are the onsite energies and
tunneling matrix elements, respectively.

At ultracold temperatures, only the lowest partial waves
contribute to scattering. For neutral atoms, interactions can
be well modeled by zero-range pseudopotentials: an s-wave
pseudopotential for bosons

Ĥs-wave(r) = 4π�
2as

M
δ(r)∂rr (11)

and a p-wave pseudopotential for identical fermions [17]

Ĥp-wave(r) = π�
2b3

p

M

←−∇ δ(r)
−→∇ r∂rrr r

2 . (12)

Here, as is the s-wave scattering length, b3
p the p-wave

scattering volume, and the arrows on the ∇ operators denote
the direction of operation. Keeping only interactions between
particles on the same lattice site, the interaction contribution
to the Hubbard model can be written

Ĥ2 = 1

2

∑
μ′

1μ
′
2;μ2μ1

(
4π�

2as

M
Uμ′

1μ
′
2;μ2μ1 + 6π�

2b3
p

M
Vμ′

1μ
′
2;μ2μ1

)

×
∑

i

â
†
iμ′

1
â
†
iμ′

2
âiμ2 âiμ1 , (13)

where the s- and p-wave Wannier integrals are

Uμ′
1μ

′
2;μ2μ1 =

∫
dr w�

iμ′
1
(r)w�

iμ′
2
(r)wiμ2 (r)wiμ1 (r), (14)

Vμ′
1μ

′
2;μ2μ1 =

∫
dr

× [(∇w�
iμ′

1
(r)

)
w�

iμ′
2
(r) − w�

iμ′
1
(r)

(∇w�
iμ′

2
(r)

)]
· [

wiμ2 (r)
(∇wiμ1 (r)

) − (∇wiμ2 (r)
)
wiμ1 (r)

]
. (15)

Thus, determining the Wannier functions defines an effective
Hubbard model H = H1 + H2 with H1 and H2 given by
Eqs. (8) and (13).

III. NUMERICAL METHODS

In this section, we discuss the numerical methods we use to
obtain the Wannier functions and, from these, the effective
Hubbard parameters for particles trapped in nonseparable
potentials. In particular, we advocate the use of discrete
variable representations (DVRs) as a flexible, simple, and
efficient means of solving the single-particle problem in
anharmonic optical potentials. This choice was motivated by
the desire to have the very rapid convergence of a spectral
method while still maintaining the flexibility and simplicity
of grid-based methods. Rapid convergence is desired both
to reduce the computational demand of solving fully three-
dimensional problems and also so that possibly a large number
of states can be accurately converged with modest resources.

A. Discrete variable representations

In this section, we briefly review the theory of the two
DVRs we employ in this work: the sinc DVR and the Bessel
DVR. While the idea of DVRs is quite old, it was not
until their apparent rediscovery in the 1980s that they found
broad applicability in chemical and molecular physics (see,
e.g., [18] for a review of this history). In spite of their
widespread use in chemical physics, DVRs have received
less attention in the ultracold gases community (however,
see [19,20]). Perhaps the greatest advantage of DVR methods
compared to pure spectral methods is their simplicity. As will
be shown in the following, applying DVR methods requires
only the diagonalization of a matrix whose elements are all
analytically known, as contrasted with spectral methods in
which the Hamiltonian matrix elements consist of integrals
which either have to be performed analytically for each
problem instance or approximated numerically. The advantage
of DVR methods over other grid-based methods, such as finite-
order finite-differencing schemes, is in efficiency. Standard
finite-differencing schemes have an error which scales as a
power of the number of grid points, while DVR methods
converge exponentially in this parameter.

We define a DVR as follows [21]. Given a domain D ⊆ R
and a Hilbert space H of functions on D, we would like to
find a subspace SK of H with refinement parameter K which
captures the part of H spanned by low-energy eigenstates of
our potential. Let PK be a Hermitian, idempotent projection
operator into the subspace SK , and pick some set of N

grid points {xn}, where N = dimSK .1 We then call the set
of PK and {xn} a discrete variable representation if the
projected delta functions |xn〉 = PKδ(x − xn) are orthogonal.
A normalized set of these projected delta functions, which
we will denote in Dirac notation as |�n〉 = PK |xn〉/

√
Nn,

with Nn a normalization factor, becomes the set of basis
functions in which we expand our wave functions of in-
terest. Methods which use an expansion in terms of basis
functions defined on a grid in real space are also known as

1In both the DVRs we define below, the spaces SK are infinite
dimensional, and so are not captured fully by a basis with a
finite dimension N . In these cases, we understand SK to be the
finite-dimensional subspace which is spanned by the N DVR basis
functions.

013610-4



EFFECTIVE MANY-BODY PARAMETERS FOR ATOMS IN . . . PHYSICAL REVIEW A 92, 013610 (2015)

collocation-spectral methods or pseudospectral methods [22].
DVRs combine several nice properties of grid-based and
spectral methods, such as exponential convergence in N of
eigenenergies and eigenvectors for problems with potentials
V (x) ∈ SK , a diagonal representation for the potential energy
〈�n|V (x)|�n′ 〉 ≈ V (xn)δn,n′ , and an analytic representation of
the kinetic energy operator.

1. Sinc DVR

The sinc DVR [23] is obtained by letting the domain be
the real line D = (−∞,∞), choosing the projection operator
PK to project into the subspace of wave functions whose
bandwidth is limited by a momentum K ,

PK =
∫ K

−K

dk|k〉〈k|, (16)

where 〈x|k〉 = eikx/
√

2π are plane waves with a delta-
function normalization, and N equally spaced grid points
xn = nπ/K . The projection PK can also be viewed as
projection onto the subspace of the Hilbert space spanned by
noninteracting states with energy less than EK = �

2K2/2M ,
M being the mass. It can be verified by direct substitution that
delta functions projected into SK are in fact sinc functions

〈x|�n〉 = 1√
�x

sinc[π (x − xn)/�x], (17)

where �x = π/K is the grid spacing, and that these functions
are nonzero at a single grid point and vanish on all others, thus
satisfying the orthonormality property of a DVR (see Fig. 3).
As will be discussed further in the section of convergence, the
momentum-space cutoff K is related to the real-space cutoff
�x, and so the convergence behavior of DVR methods can be
interpreted either in real or momentum space.

One notes from Eq. (17) that the sinc DVR functions define
a quadrature rule [24] with abscissas {xn} and uniform weights
wn = �x such that the overlap between two such states is

x/Δx

1√
Δx

FIG. 3. (Color online) Sinc DVR basis functions. The sinc DVR
basis functions 〈x|�0〉 (red solid line) and 〈x|�1〉 (blue dashed line)
are nonzero at their centering grid point and vanish at all other grid
points. The black dots on the x axis denote the equally spaced grid
points.

exact:∫
dx〈�n|x〉〈x|�n′ 〉

=
∞∑

i=−∞

�x

�x
sinc[π (i − n)]sinc[π (i − n′)] = δn,n′ . (18)

This remarkable property is also the underpinning for the
Nyquist-Shannon sampling theorem, which states that any
band-limited function can be completely determined from a se-
quence of equally spaced samples of the function [24]. Noting
that π/�x is the spatial Nyquist frequency for a function with
bandwidth K , the representation of a band-limited function in
DVR basis functions is nothing but Shannon’s interpolation
formula.

More useful than the fact that we can integrate products
of basis functions (and hence, products of any two functions
in SK ) exactly with the given quadrature is the fact that
integration by this quadrature produces exponentially accurate
results for potentials V (x) which are smooth and slowly
varying (i.e., well approximated within SK ).2 Here, exponen-
tial accuracy refers to convergence with N . The exponential
accuracy of the DVR quadrature leads to the matrix elements
of the potential within the DVR basis states 〈�n|V (x)|�n′ 〉 ≡
Vnn′ ≈ V (xn)δnn′ . As another example of the use of the
DVR quadrature, the derivative of a band-limited function is
another band-limited function of the same bandwidth, and
so the quadrature above provides an exponentially accurate
representation of differential operators acting on functions in
SK via

〈�n| ∂k

∂xk
|�n′ 〉 = ∂k

∂xk
sinc(πx)

∣∣∣∣
x=n−n′

. (19)

For example, this gives that the derivative of a function
expressed in the DVR basis

ψ(x) =
∑

n

ψn〈x|�n〉 (20)

is given by

dψ(x)

dx
= 1

�x

∑
n

∑
l �=n

(−1)n−l

n − l
ψl〈x|�n〉, (21)

and that a representation of the kinetic energy operator in the
DVR basis is given by

Tnn′ ≡ 〈�n| − �
2

2M

∂2

∂x2
|�n′ 〉

= �
2

2M�x2

⎧⎨
⎩

π2

3 , n = n′

2(−1)n−n′

(n−n′)2 , otherwise.
(22)

2If V (x)〈x|�n〉 ∈ SK , then there is clearly no error in integrating
with the DVR quadrature. However, the components of V (x)〈x|�n〉
which lie outside of SK are typically O(1/N ) and this error is
concentrated in the basis elements near the boundary n � N . For
wave functions well converged with a basis size N , the weight on the
basis functions with n near N is exponentially small, and hence we
recover exponential accuracy [21].
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One can show [23] that these matrix elements also correspond
to the limit of an N th-order finite-difference approximation
to the second derivative as N → ∞. This provides a useful
alternative viewpoint of the sinc DVR as a limiting case of grid-
based finite-difference methods. While in one dimension the
resulting Hamiltonian matrix is no longer sparse due to the fact
that the kinetic energy operator is long ranged in the grid space,
in higher (tensor product space) dimensions the Hamiltonian
is sparse in the sense that it is block diagonal along each
dimension. In addition, while a finite-order finite-differencing
scheme would produce a more sparse representation of
the kinetic energy than the DVR, such methods are only
polynomially convergent. Hence, the loss in sparsity of the
DVR compared to finite-order finite-differencing methods is
more than compensated by the increase in accuracy. Generally
speaking, exponential convergence comes only from using an
analytic basis set for expansion [21], and so methods based
on nonanalytic wave functions, such as Haar wavelets, B

splines, and finite differencing, will not display exponential
convergence.

A particularly nice corollary of the fact that expectation
values of functions well approximated within SK are exponen-
tially accurate, which seems not to have been recognized yet
in the literature, is that the DVR representation gives an expo-
nentially convergent method for the evaluation of integrals of
products of eigenfunctions and possibly also their derivatives.
Such integrals appear in the evaluation of pseudopotential
matrix elements (14) and (15), and their proper evaluation is
key to quantitative connections between few- and many-body
physics. A demonstration of the convergence of interaction
matrix elements is given in Sec. III A 3.

For potentials with mirror symmetry V (−x) = V (x), we
can divide the space of wave functions into those with even
or odd parity about x = 0. Correspondingly, we can use the
parity-adapted sinc DVR basis sets

|�+
n 〉 = 1√

2(1 + δn,−n)
(|�n〉 + |�−n〉), n ∈ [0,N ] (23)

|�−
n 〉 = 1√

2
(|�n〉 − |�−n〉), n ∈ [1,N ] (24)

which form complete bases for the even and odd functions in
SK , respectively. The kinetic matrix elements in these bases
are

T +
nn′ = �

2

2M�x2

{
π2

3 − 2(−1)n+n′

(n+n′)2 , n = n′ (25)

T −
nn′ = �

2

2M�x2

⎧⎨
⎩

π2

3 − 2(−1)n+n′

(n+n′)2 , n = n′

2(−1)n−n′

(n−n′)2 − 2(−1)n+n′

(n+n′)2 , n �= n′
(26)

and the potential matrix elements remain unchanged, i.e.,
V ±

nn′ = Vnn′ ≈ V (xn)δnn′ .

2. Bessel DVR

The Bessel DVR is similar to the above sinc DVR, but uses
the free-particle wave functions relevant for a radial coordi-
nate. Namely, we consider the functions φm(r) = √

rψm(r) in
2D, where ψm(r) are the solutions of the radial Schrödinger
equation for angular momentum m ∈ Z. The radial functions

φm(r) satisfy the equation

�
2

2M

[
− d2φ(r)

dr2
+ m2 − 1/4

r2
φ(r)

]
+ V (r)φ(r) = Eφ(r),

(27)

and so behave as rm+1/2 near the origin. For free parti-
cles V (r) = 0, the solutions are Bessel functions: φmk(r) =√

krJm(kr) ≡ 〈r|km〉, where k denotes that this is the solution
with energy �

2k2/2m. As with the plane-wave states, these
free radial states obey a delta-function normalization. We now
obtain a Bessel DVR on the radial domain D = [0,∞) by
choosing the projector PKm to project into the space of free
wave functions with energy less than EK = �

2K2/2M which
vanish as rm+1/2 at the origin:

PKm =
∫ K

0
dk|km〉〈km|, (28)

and letting the grid points correspond to the zeros of the
function 〈r|Km〉, the free-particle wave function evaluated at
the momentum cutoff K . We note that this grid is not uniformly
spaced, and depends upon the angular momentum m. Denoting
the nth zero of Jm(x) as zmn (n = 1, . . . ,∞), the DVR basis
functions are

〈r|�m,n〉 = (−1)n
Kzmn

√
2r

K2r2 − z2
mn

Jm(Kr), (29)

and the grid points are zmn/K . Examples of these functions
for m = 3 are shown in Fig. 4.

As was the case with the sinc DVR functions, the Bessel
DVR functions also define a quadrature which is exponentially
convergent for functions in SK . One may be concerned about
the accuracy of the kinetic energy operator evaluated with
DVR quadrature, as the centrifugal potential is singular and
hence not within SK . However, our DVR basis functions are
constructed out of the eigenfunctions of the kinetic energy,
and so the DVR basis also represents the full kinetic energy
operator with exponential accuracy. Stated differently, the

r/K

r|
Δ

3
n

/
√

K

FIG. 4. (Color online) Bessel DVR basis functions. The Bessel
DVR basis functions 〈r|�3,1〉 (red solid line) and 〈r|�3,2〉 (blue
dashed line) are nonzero at their centering grid point and vanish
at all other grid points. Here, the grid (black points on x axis) is not
uniformly spaced.
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singular contributions from the derivative operators and the
centrifugal potential cancel within our basis, and the remainder
is well represented inSK . The matrix elements are given as [25]

〈�m,n| �
2

2M

[
− d2

dr2
+ m2 − 1/4

r2

]
|�m,n′ 〉

= �
2K2

2M

⎧⎨
⎩

1
3

[
1 + 2(m2−1)

z2
mn

]
, n = n′

(−1)n−n′ 8zmnzmn′
(z2

mn−z2
mn′ )2 , n �= n′.

(30)

The DVR quadrature associated with the Bessel DVR is
less useful than that associated with the sinc DVR due to the
fact that the grid points are different for different values of the
angular momentum m. However, overlaps between any two
functions which have the same value of m still can be evaluated
with exponential accuracy by this means. The evaluation of
interaction matrix elements for radially symmetric potentials
is discussed in more detail in Appendix A.

3. Convergence

In both the sinc DVR and Bessel DVR there exist two
convergence parameters. The first is the number of grid points
N , and the second is the finite domain size of the DVR grid,
which can either be taken as a cutoff in real space or momentum
space. While the domain of the DVR grid points is finite,
we stress that the DVR basis functions themselves still exist
on infinite or half-infinite domains. The relation between the
real-space cutoff R and the momentum-space cutoff K is R =
Nπ/K for the sinc DVR and R = zmN/K for the Bessel DVR.
In this section, we demonstrate the exponential convergence
of the sinc DVR method with N and R using a 1D Gaussian
well. The convergence behavior of the Bessel DVR method is
similar, and we do not demonstrate it here. Additionally, while
we only display relative exponential convergence here, this
convergence is indicative of absolute exponential convergence
to an accurate solution, as we have verified in the analytically
tractable case of the harmonic oscillator.

In Fig. 5, we demonstrate the exponential convergence of
the energies for a 1D Gaussian potential well

V (x) = −V e−2x2/w2
0 , (31)

where we take V = 96 kHz,3 w0 = 707 nm, and the mass
of 87Rb. This convergence is monitored by increasing a
convergence parameter η in discrete steps δ, and then observ-
ing an exponential decrease in �E(η) ≡ E(η + δ) − E(η).
Figure 5(a) demonstrates exponential convergence with the
number of DVR grid points N at fixed domain size R, which
can also be stated as convergence in the grid spacing �x.
The different curves denote different eigenstates, with lower
curves corresponding to lower-energy eigenstates. In Fig. 5(b),
we show exponential convergence in the domain size R at fixed
�x. In this case, convergence of the first 10 eigenenergies to
machine precision can be achieved with only 60 grid points
(in the parity-adapted DVR basis set).

3Energies quoted in Hz always mean units of hHz. We suppress the
h for brevity.

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

 20  30  40  50  60  70  80

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

 1  1.5  2  2.5  3

R/w0

Δ
E

(k
H

z)
Δ

E
(k

H
z)

x/w0

N

(a)

(b)

0.21 0.140.10 0.08 0.07 0.06 0.05

FIG. 5. (Color online) Convergence of DVR energies with num-
ber of DVR grid points and domain size. (a) Convergence in the
number of DVR grid points (equivalently, the grid spacing �x) is
demonstrated for the first 10 eigenstates of a Gaussian well at fixed
R = 3w0. The points are differences in energies for neighboring N , as
described in the main text. Curves from bottom to top are increasing
in energy. (b) The analogous plot to (a) at fixed �x = 0.05w0 and
varying R, the DVR grid domain cutoff. The parameters used are
depth V = 96 kHz, waist w0 = 707 nm, and the mass of 87Rb.

In Fig. 6, we demonstrate the convergence of the one-
dimensional s- and p-wave interaction integrals (14) and (15),
for the same parameters as Fig. 5. Namely, we plot
the differences in the dimensionless parameters U0,0,0,0aho,
U10,10,10,10aho, U0,10,10,0aho, and V0,10,10,0a

3
ho with neighboring

convergence parameters, where aho = √
�/mω is the harmonic

oscillator length corresponding to the trap curvature. As
with the energies, we use differences between neighboring
convergence parameters, e.g., �U0,0,0,0(N ) = [U0,0,0,0(N +
δN) − U0,0,0,0(N )]aho to gauge convergence. We have also
checked the convergence of the interaction matrix elements for
the harmonic oscillator, where analytic results are available,
and found similar convergence. The rate of convergence of
the matrix elements is akin to that of the energies. However,
exponential convergence sets in at a larger value of N for
interactions compared to the convergence of the energy.
Convergence in R has a similar qualitative behavior. Due to
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FIG. 6. (Color online) Convergence of s- and p-wave interaction
matrix elements in the DVR basis size. The convergence of the
one-dimensional analogs of Eqs. (14) and (15) in oscillator units is
given by considering the differences with neighboring convergence
parameters. These integrals show a similar rate of convergence to the
energies in Fig. 5(a), although the exponential convergence sets in at
a larger value of N . The trap parameters are the same as those used
in Fig. 5.

the nonuniform grid of the Bessel DVR, computation of the
interaction parameters for radial functions is more involved,
and is discussed in Appendix A.

In order to converge results, we find it is useful to first
converge in �x and then increase R until convergence.
Convergence with �x can be ascertained by convergence
of the energy at fixed R, and then convergence with R can
be judged by requiring that the weight on the outermost
DVR basis functions becomes on the order of machine
precision. In higher-dimensional scenarios, visualization of
the convergence with R can be greatly assisted by plotting
the nearest separable state. A precise definition of the nearest
separable state and a procedure for calculating it are discussed
in Sec. IV.

B. Optimizations: Using sparsity and variational
and quasiadiabatic methods

A nice feature of DVRs in dimensions higher than one is that
the resulting multidimensional Hamiltonian descriptions are
sparse. In particular, for a 3D problem in Cartesian coordinates,
the Hamiltonian may be written in a product sinc DVR basis
as

〈�x�y�z|Ĥ |�′
x�

′
y�

′
z〉

= δy,y ′δz,z′Txx ′ + δx,x ′δz,z′Tyy ′

+ δx,x ′δy,y ′Tzz′ + δx,x ′δy,y ′δz,z′V (x,y,z). (32)

Hence, the Hamiltonian can be applied to a vec-
tor describing the state in the DVR basis using
O(N2

x NyNz + NxN
2
y Nz + NxNyN

2
z ) operations, far fewer

than the O(N2
x N2

y N2
z ) operations required for a dense matrix

description. This enables the use of sparse matrix methods
requiring only matrix-vector products, such as the Lanczos

algorithm [26], to find extremal eigenstates. Utilizing the
sparsity of the representation is also key for efficient simulation
of the dynamics of particles in time-varying potentials, as it
enables the use of Krylov subspace approximations to the
matrix exponential [27,28]. Such dynamical simulations are
useful, for example, for determining the degree of adiabaticity
when optical tweezer wells are dynamically repositioned.

For lattice problems, using a set of basis functions which
has the same translational symmetry as the lattice often
leads to significant computational gains. The DVR basis
functions given above are defined on infinite or semi-infinite
spaces, and so are inappropriate for expanding a function
defined on a finite, periodic space. For 1D periodic potentials,
expansion in terms of a plane-wave basis is very efficient
and accurate. Hence, it is natural to combine DVR methods
for the transverse potential with plane-wave methods along
the periodic direction. In what follows, we combine the two
by expanding the full Hamiltonian in a basis consisting of
products of transverse (r) and lattice (z) degrees of freedom.
The number of functions we use for the expansion along
direction r (z) will be denoted ar (az), and is called the
variational dimension.

To see how the combination of DVR methods with other
basis sets is facilitated in this situation, consider the lattice
potential (5). We can write this potential as VlattVg(r)Vz(z),
where Vg(r) = − exp(− 2r2

w2
0

) is the Gaussian radial potential

and Vz(z) = cos2 (kz) is the lattice corrugation. This mul-
tiplicative separability of the potential provides a simple
variational basis with which to expand the full coupled 3D
problem, namely, products of eigenfunctions of VlattVg(r) with
eigenfunctions of VlattVz(z). Let us denote the eigenfunctions
of Vg(r) with angular momentum m as Rm,nr

(r) and the
eigenfunctions of Vz(z) with quasimomentum q as ϕq,nz

(z),
where nr and nz are mode and band indices. Then, the
matrix elements of the full Hamiltonian in the product basis
〈r|nrnz〉 = eimφRm,nr

(r)ϕq,nz
(z)/

√
2π are

〈n′
rn

′
z|Ĥ |nrnz〉

= T
(r)
n′

r nr
δnzn′

z
+ T

(z)
n′

znz
δnrn′

r
+ VlattV

g

nrn′
r
V z

nzn′
z
, (33)

where Oμμ′ = 〈μ|Ô|μ′〉, T̂ (r) is the radial and azimuthal
kinetic energy operator, and T̂ (z) is the z kinetic energy
operator. If we use the ar � Nr lowest-energy states |nr〉 to
expand the full coupled problem, where Nr is the DVR basis
size, V

g

nrn′
r
= 〈nr |V g(r)|n′

r〉 can be efficiently obtained with

O(a2
r Nr ) operations within a DVR calculation, as the matrix

V is diagonal in the DVR representation. The kinetic energy
matrix elements can then be obtained with O(a2

r ) operations
as Tnn′ = δnn′En − Vnn′ , En being the eigenenergy of state n.
Restricting to a variational basis results in an eigenvalue prob-
lem of linear dimension araz whose lowest-energy solutions
converge to the true solutions with ar,az → ∞. The advantage
of this procedure is that the variational dimensions ar and az

can be significantly smaller than the “bare” basis sizes Nr

and Nz required to converge the variational basis functions R
and ϕ. This procedure can also be applied to the potential (6).
Here, we take the basis states R to be the eigenvectors of the
Hamiltonian with potential (Vconst + V )V g(r) and the states
ϕ to be the eigenvectors of the Hamiltonian with potential
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FIG. 7. (Color online) Convergence of the m = 0 energies and
tunneling amplitudes of the potential (6) with the variational basis
size az. The difference in energies adding another lattice band �E ≡
E(az + 1) − E(az) as a function of eigenstate energy are shown for
numbers of bands az = 2, . . . ,7, with lower curves corresponding to
larger numbers of bands. The bottom curve is �J for az = 7, showing
that the tunneling amplitudes display similar convergence behavior
to the energy. The trap parameters are w0 = 30 μm, Vconst = 88 ER ,
and V = 12 ER .

V V z(z). The variational Hamiltonian has matrix elements

〈n′
rn

′
z|Ĥ |nrnz〉 = T

(r)
n′

r nr
δnzn′

z
+ T

(z)
n′

r nr
δnzn′

z

+V
g

nrn′
r

(
Vconstδnzn′

z
+ V V z

nzn′
z

)
. (34)

In principle, one could optimize the depths of the potentials
used to compute the functionsR and ϕ such that the variational
dimensions ar and az are minimal, but in practice using the
depths given above works well and we have not explored
this possibility. We demonstrate the convergence of this
variational procedure in the number of bands kept az with the
potential (6) with w0 = 30 μm, Vconst = 88 ER , V = 12 ER ,
where ER = �

2π2/2ma2 is the recoil energy of 87Sr in a magic
lattice of spacing a = 406.72 nm. Figure 7 displays the results,
showing rapid convergence in both the energies and tunneling
amplitudes. The transverse variational dimension is ∼500. For
comparison, the DVR basis size is ∼2000, and the number of
plane waves used to expand the lattice potential is ∼200.

For optical tweezers, in which the Rayleigh range cannot
be neglected, the potential no longer becomes a product of
functions in the transverse and z degrees of freedom. In this
case, one can employ a quasiadiabatic variational method, in
which a set of basis functions are constructed for each axial (z)
DVR basis state |�zn

〉 using only the transverse kinetic energy,
and then the full problem is diagonalized in this basis. As an
example, consider the single-well optical tweezer potential (2).
We construct the basis functions |nr,zn〉 as the ar lowest-
energy eigenfunctions of T̂ (r) + Vs(r,zn) for each DVR grid
point zn, and denote the eigenenergies as Enr,zn

. These energies
then form an effective potential for the z degrees of freedom,
which obey the Schrödinger equation

〈nr,zn|Ĥ |n′
r ,z

′
n〉 = T

(z)
znz′

n
δnr ,n′

r
+ Enr,zn

δnr ,n′
r
δzn,z′

n
. (35)

The time required for this complete procedure scales as
O[NzD(Nr ) + D(arNz)], where D(Nμ) is the time required
to find the lowest aμ eigenvectors of a (possibly sparse) matrix
of linear dimension Nμ. As with the above, reductions in
the computational time required for a given accuracy can be
achieved when ar � Nr .

A similar procedure can also be applied to the double-well
optical tweezer potential (4), using the multiplicative separa-
bility of the x and y potentials. Here, we first diagonalize the
x kinetic energy together with the potential Vd (x,0,zn) at each
axial DVR grid point zn, keeping the lowest ax quasiadiabatic
levels. Next, we diagonalize the x and y kinetic energies
together with the full potential constructed from the product of
the matrix elements of Vd (x,0,zn) in the x quasiadiabatic basis
and a Gaussian along y, extracting the lowest axy quasiadia-
batic energies. These energies then form an effective potential
which is diagonalized with the z kinetic energy to obtain
the full solutions in O[NzD(Nx) + NzD(axNy) + D(axyNz)]
time.

IV. MATRIX PRODUCT STATE REPRESENTATIONS
OF NONSEPARABLE STATES

The eigenfunctions of a nonseparable potential are them-
selves not separable, meaning that ψ(r) �= ψx(x)ψy(y)ψz(z)
or ψ(r) �= ψφ(φ)ψr (r)ψz(z) for potentials of cylindrical sym-
metry. However, in many cases one would expect that the
lowest-energy states of sufficiently deep potentials are “nearly
separable,” as the potential becomes nearly harmonic over the
extent of the wave function. In this section, we provide several
quantitative measures of nonseparability for the eigenstates
of nonseparable potentials, and investigate near-separable
approximations of nonseparable states using tools borrowed
from quantum information theory.

A. Schmidt form for nonseparable states
with cylindrical symmetry

The simplest case to study nonseparability in a 3D potential
is to consider a system with cylindrical symmetry. Here, the
azimuthal degrees of freedom are separable, leaving only the
r and z degrees of freedom coupled so that the wave function
may be written

ψm(r) = eimφ

√
2π

ζm(r,z). (36)

We can find the state nearest to the true state in the 2-norm
with a restricted amount of separability (in a sense to be made
precise below) by using the Schmidt decomposition [29]. The
Schmidt decomposition states that we can write any state on a
product Hilbert space H1 ⊗ H2 as

|ψ〉 =
χ∑

μ=1

λμ|φμ〉|ξμ〉, (37)

where the sets {|φμ〉} and {|ξμ〉} consist of orthonormal states
in H1 and H2, respectively, and the Schmidt coefficients {λμ}
satisfy λμ > 0,

∑
μ λ2

μ = 1. The Schmidt decomposition is
unique, up to unitary rotations in subspaces with degenerate
Schmidt coefficients. The dimension χ is called the Schmidt
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rank, and χ = 1 if and only if the state is separable. Hence,
χ quantifies the degree of nonseparability. A continuous
measure of separability is given by the von Neumann entropy
S = −∑

μ λ2
μ ln λ2

μ. We note that the Schmidt decomposition
can be obtained efficiently numerically using the singular
value decomposition (SVD) of the coefficient matrix of the
wave function in a given basis, e.g., a DVR basis. Further,
the Schmidt decomposition is invariant under local unitary
transformations, which is to say that Eq. (37) is unchanged if
we change bases in H1 or H2. This implies that if we have our
wave function expressed in terms of a variational basis formed
of products of r and z functions, as described in Sec. III B,
then we can find the Schmidt decomposition by performing the
SVD on the matrix of coefficients in the variational basis. As
the variational basis sizes ar,az are often significantly smaller
than the grid sizes Nr,Nz, the resulting SVD computation is
more efficient.

The state nearest to |ψ〉 with fixed nonseparability, i.e.,
fixed Schmidt rank χ̃ � χ , is obtained by truncating the ex-
pansion (37) at μ = χ̃ . The difference between this truncated
state and the true state is given by the discarded Schmidt
coefficients

||ψ̃〉 − |ψ〉|2 =
χ∑

α=χ̃+1

λ2
α ≡ εχ̃ . (38)

In practice, the state |ψ̃〉 needs to be renormalized by setting the

Schmidt coefficients λ̃μ = λμ/

√∑χ̃

α=1 λ2
α , μ = 1, . . . ,χ̃ . The

resulting correction of (1 − εχ̃ )−1 is inconsequential to the
error bound of Eq. (38) as εχ̃ → 0. For states with a low
degree of nonseparability such that the Schmidt rank required
to reproduce the state with error ε in the sense of Eq. (38),
χ̃ , is much less than the maximum allowed χ , using the
Schmidt form drastically reduces the memory required for
storing quantum states from NrNz to χ̃ (Nr + Nz), and also
reduces operations acting only on one degree of freedom, say
the z degree of freedom, from NrN

2
z to χ̃N2

z . The savings are
especially beneficial in cases where thermal averages over
a large number of states are to be performed. Finally, we
note that the nearest separable state is obtained by setting
χ̃ = 1. In addition to being useful for visualization and devel-
oping intuition, the nearest separable state |ψsep〉 defines an
additional measure of nonseparability E ≡ − ln(|〈ψsep|ψ〉|2)
which we will call the geometric nonseparability, in analogy
with the geometric entanglement [30] motivating its definition.
As opposed to the von Neumann entropy, which is a measure
of nonseparability for a specific bipartition of the degrees of
freedom, the geometric nonseparability is a global measure of
the nonseparability of the full state. This distinction is most
important in the multipartite case discussed in the next section,
where multiple possible bipartitions exist.

B. Matrix product state form for nonseparable states
in Cartesian coordinates

The above analysis is directly applicable in the case of a
single-well optical tweezer or a 1D optical lattice, but not for
a system without cylindrical symmetry, such as the double-
well optical tweezer Eq. (4). Here, the state is most directly
represented in Cartesian space, and the x, y, and z degrees

of freedom are all coupled. The natural generalization of the
Schmidt decomposition to multipartite systems is a matrix
product state (MPS) decomposition [14] (also called a tensor
train decomposition in the mathematics literature [31]), which
in the present case reads as

ψ(r) =
χxy∑

μxy=1

χyz∑
μyz=1

Xμxy
(x)Yμxyμyz

(y)Zμyz
(z). (39)

Here, χxy and χyz are the Schmidt ranks corresponding to
bipartitions of the state into x and y ⊗ z degrees of freedom
and x ⊗ y and z degrees of freedom, respectively. As opposed
to the Schmidt decomposition, we do not assume any particular
orthonormality properties of the states indexed by μxy and
μyz; a more thorough discussion of canonical forms for MPSs
which impose such conditions may be found in Ref. [14].
The savings in using the MPS format for a nonseparable state
is even more striking than in the two-partite case: storage is
reduced from NxNyNz to (χxyNx + χxyχyzNy + χyzNz) and
operations on, e.g., the x degree of freedom can be applied
in N2

x χxy operations rather than N2
x NyNz. We note that the

representation (39) is not the only MPS topology which can
represent a nonseparable state in 3D. For example, we could
have chosen the partition x − y − z or z − x − y. These other
permutations will generally have different Schmidt ranks χ ,
which implies a difference in accuracy for describing the state
for a given number of parameters. Here, we do not make
any claims about the optimality of the x − y − z partition of
degrees of freedom in Eq. (39); the optimal partition of degrees
of freedom must be determined on a case-by-case basis.

The multipartite representation (39) bears many similarities
with the two-partite Schmidt decomposition (37). For example,
both approximations are controlled by the Schmidt ranks of
bipartitions, and both representations can be obtained via the
SVD (recursively applied at each bipartition, in the case of the
MPS form), as is shown explicitly in Appendix B. However,
there are key differences between the MPS form and the
Schmidt form. An important example is in finding the nearest
state with a restricted amount of nonseparability. Compression
of an MPS to the optimal MPS with restricted nonseparability
χ at a given bipartition is achieved by truncating the range
of μyz in Eq. (B2) or μxy in Eq. (B4). The resulting error in
the 2-norm is given by the sum of squares of the discarded
singular values, as in Eq. (38). However, finding the nearest
MPS in a global sense is not as simple as for the two-partite
case [32,33]. Here, variational algorithms which minimize
the distance between the true state and one in a variational
manifold with fixed nonseparability in an iterative fashion
perform well. In Appendix B, we present such a variational
algorithm for finding the product state X̃(x)Ỹ (y)Z̃(z) nearest
a given state expressed in the MPS format.

While the above decompositions are useful for visualiza-
tion, quantification of nonseparability, and storage of states,
obtaining such a decomposition via the SVD is as compu-
tationally demanding as finding the eigenstates themselves.
However, the fact that the states explored in this work are
only weakly nonseparable in spite of the fact that they are
significantly anharmonic hints that the MPS form given by
Eq. (39) could be useful as an ansatz which is variationally
optimized, similar to the way MPSs are used in the density
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matrix renormalization group (DMRG) method of condensed
matter physics [34]. Such an algorithm would find states
with a restricted degree of nonseparability using significantly
fewer resources than direct diagonalization. This prospect is
especially promising for multiparticle systems, where failure
of the center of mass and relative coordinates to separate in
an anharmonic potential makes analysis significantly more
difficult [35,36]. We leave a detailed description of such an
algorithm for future work.

V. APPLICATION TO OPTICAL TWEEZER ARRAYS
AND LATTICES

In this section, we apply the above algorithms and measures
to two cases of interest. The first is a double-well optical
tweezer of the form (4), as has been considered in recent
experiments at JILA [8]. Here, we focus on the properties of
the lowest few states. The second case we study is that of
a 1D optical lattice of the form (6). Here, we are interested
in the spectrum of states spanning a large fraction of the
lattice depth, as is often the case when nondegenerate gases are
trapped in such lattices. The reason we study the generalization
Eq. (6) over Eq. (5), with the latter corresponding to the
potential used in neutral atom optical clocks [13,16], is that the
potential (6) enables us to study tunneling in a nonseparable
lattice with a tunable degree of both nonseparability and
transverse confinement.

A. Optical tweezers

As an example of our methodologies applied to arrays of
optical tweezers, we consider a double-well optical tweezer
of the form (4), and take parameters similar to the JILA
experiment [8], with waist w0 = 707 nm, Rayleigh range zR =
2.17 μm, and mass and s-wave scattering length for 87Rb in
the |F = 2,mF = 2〉 state. Before we give results for Hubbard
parameters and quantitative measures of nonseparability, we
first detail a procedure to obtain localized Wannier-type
functions from the numerical eigenstates of the double-well
optical tweezer.

1. Construction of Wannier functions

For inversion-symmetric lattice potentials in 1D, the lo-
calization properties of Wannier functions can be analyzed in
detail. In particular, a seminal work of Kohn [12] showed that
requiring the phases on the Bloch functions ψnq(x) to be such
that ψnq(x) is a smooth function of the quasimomentum q leads
to Wannier functions which are real and have an asymptotically
exponential decay away from their centering position. Apart
from this situation, a procedure to obtain so-called maximally
localized Wannier functions has been extensively developed
which minimizes the second moment of Wannier function
position away from its center [37]. Here, we put forth a similar
criterion for the generation of localized orbitals from the
eigenstates of the nonseparable double-well optical tweezer
potential (4). With a slight abuse of terminology, we will also
refer to these localized orbitals as Wannier functions.

In particular, we take as our localization functional the prob-
ability to measure a particle in the left well. Mathematically,

we use the functional

L(ψA,ψB) =
∫

dy dz

∫ xcut

−∞
dx ψ�

A(r)ψB(r), (40)

where xcut is some parametrization of what defines the
left well, e.g., the center between the minima, the local
maximum, or x = 0. Now, given some subset of spatially
overlapping eigenstates {ψk1 (r),ψk2 (r), . . . ,ψkN

(r)} we seek
the normalized linear combination w(a,r) = ∑N

i=1 aiψki
(r),

a · a = 1 satisfying

max
a

L[w(a,r),w(a,r)]. (41)

Alternatively, for functions maximally localized on the right,
we take the minimum. Equation (41) can be written as

max
a

a · L · a, (42)

where the localization matrix has matrix elements

Lij = L[ψki
(r),ψkj

(r)]. (43)

L defines a symmetric positive-semidefinite quadratic form,
and so the normalized vector maximizing the localization
criterion is the eigenvector corresponding to the largest eigen-
value. Moreover, the complete set of orthonormal eigenvectors
of the localization matrix provides a basis which is optimal
according to our localization criterion. Strictly speaking, in
order to find the optimally localized basis according to our
criterion, all states at experimentally relevant energies should
be included. However, for states which are well separated in
energy, the mixing between them incurred in the localization
transformation is small and has little effect on the Hubbard
parameters. Hence, one can localize subsets of energetically
separated states (with energy differences large compared to
the tunneling splitting) individually for greater efficiency. In
the case of a symmetric double well � = 0, the closely spaced
doublets with even and odd parity along the tunneling direction
form a 2 × 2 localization matrix with diagonal elements 0.5
and small but nonzero off-diagonal elements. Hence, the
Wannier functions in this case are even and odd superpositions
of the even- and odd-parity functions, which are related to one
another by the parity transformation.

2. Tunneling and effective bias in an asymmetric double-well
optical tweezer

Using the localization prescription given in the last section,
we find the tunneling amplitudes Jμ and onsite energies Eμ [cf.
Eqs. (9) and (10) in the double well in the basis of maximally
localized Wannier functions]. In particular, we have

Eμ =
∑

ν

(
a(μ)

ν

)2
εν, (44)

Jμ = −
∑

ν

(
a(μ)

ν a(μ̄)
ν

)
εν, (45)

where a(μ) is the μth eigenvector of the localization matrix, εν

is the energy of state ψkν
(r), and μ̄ denotes the index of the

state connected to μ by tunneling.
As an example, Fig. 8 shows the results for an a = 853 nm

spacing and V = 96 kHz depth double-well tweezer as a
function of the applied bias �, focusing on the lowest two
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FIG. 8. (Color online) Single-particle Hubbard parameters in an
asymmetric double-well optical tweezer. The maximal localization
procedure described in the text converts the tunneling doublet whose
energy splitting (ε2 − ε1) shown in magenta into a single-band
Hubbard model with a nearly constant tunneling J in red and
an effective bias (E2 − E1) which scales linearly with the applied
potential bias.

states. These two states are a tunneling doublet when � = 0,
and asymptotically become two localized states with negligible
spatial overlap as � becomes large. The tunneling J (�) in the
optimized �-dependent Wannier basis changes by less than a
percent over the range of biases shown here. The effective bias
�eff , given by the difference in energy (E2 − E1) between
the Wannier functions localized in the two wells, is well
represented by a linear function of the potential bias. However,
the slope of the linear dependence is generally less than one,
�eff = m�, m < 1, due to curvature effects as the potential
depth is changed. In the given example, the best fit gives
m = 0.79. Also displayed is the difference in energy between
the two eigenstates used to construct the Wannier functions

(ε2 − ε1). This energy difference fits well to
√

(2J )2 + �2
eff ,

validating the single-band Hubbard model description, even
when � � J .

3. Tunneling and interaction parameters in a symmetric
double-well optical tweezer

We now turn to the case of of a symmetric double-well
potential, using as an example the spacing a = 820 nm. In
Fig. 9, we show the tunneling and interaction energies for the
ground (g) state as well as the first axially excited state along
z (e). We note that the excitation in the state e is perpendicular
to the tunneling direction, and so would not affect tunneling
in a separable potential. The excited-state tunneling is roughly
20% larger than the ground-state tunneling as a consequence
of nonseparability. To make a quantitative comparison with
tunneling in optical lattices, we can approximate our double-
well tweezer as an optical lattice with lattice constant ã twice
the distance from the origin to minx>0 V (x,0,0) and depth
given by the local maximum Ṽ = V (0,0,0) − V (ã/2,0,0). For
the given spacing we consider ã = 642.2 nm, the associated
energy Eã = �

2π2/2mã2 is 1.39 kHz, and the effective lattice
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FIG. 9. (Color online) Tunneling and interaction parameters in a
symmetric double-well optical tweezer. The tunneling and s-wave
interaction energies for the ground (g) and first z excited (e) states
in a double-well optical tweezer as a function of depth. While the
reduction in Uee compared to Ugg is an effect of the different spatial
extent of the Wannier orbitals in the g and e states that occurs even for
separable potentials, the increase of Je vs Jg is solely a manifestation
of nonseparability. Also displayed is J 1D

g , the tunneling predicted
from a one-dimensional calculation with the potential Vd (x,0,0),
showing significant deviation from the full 3D result.

depth is Ṽ = 0.0473V . We fit our data in the range V ∈
[50 kHz, 200 kHz] to the standard formula for tunneling in
an optical lattice

J/ER = A

(
V

ER

)B

exp(−C
√

V/ER), (46)

using Eã as the recoil energy and Ṽ as the lattice depth. In
contrast to the optical lattice, in which the optimal parameters
are A = 1.363, B = 1.057, and C = 2.117, we find A =
2.563, B = 1.217, and C = 2.281. It should be noted that these
values also depend on the waist and Gaussian spot spacing.
While the function (46) provides an excellent fit, the optical
lattice analogy itself amounts to a 60%–70% discrepancy over
the range of parameters considered, with the tweezer having
a larger tunneling for a given effective lattice depth. Another
reasonable approximation is to estimate the tunneling from a
1D calculation using the double-well tweezer potential at its
deepest point Vd (x,0,0). This tunneling is plotted as J 1D

g in
Fig. 9, and shows that this 1D calculation produces significant
discrepancies amounting to roughly 10% in the present case.

Figure 9 also shows the behavior of the s-wave interaction
energies Uσσ ′ = 4π�

2as

M
Uσσ ′;σ ′σ as a function of lattice depth.

For an intuitive understanding of the behavior and to quantify
the degree of anharmonicity, we will compare with the pre-
dictions obtained by using a harmonic approximation for the
potential minima. For harmonic wells, U ∼ (axayaz)−1, with
aν the harmonic oscillator length along Cartesian direction ν,
and aν ∼ V −1/4, leading to U ∼ V 3/4. The best fit for Ugg

predicts Ugg ∼ V 0.85, showing a faster rise of interactions
with lattice depth than predicted for a harmonic well. Fur-
ther, in a harmonic potential, the interactions are related as
Uee/Ugg = 3/4 and Ueg/Ugg = 1/2, but due to anharmonicity
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FIG. 10. (Color online) Nonseparability of states in a symmetric
double-well optical tweezer. The von Neumann entropy S of xy and
yz bipartitions and the geometric nonseparability E for the ground
state (g) and the first z excited state (e). While both states are near
separable, the excited state is less separable than the ground state.

Uee/Ugg ≈ 0.714–0.728 and Ueg/Ugg ≈ 0.484–0.49 for the
range of depths in Fig. 9.

4. Separability characteristics of double-well tweezer states

Figure 10 shows the von Neumann entropy of nonsepa-
rability for bipartitions into x and y ⊗ z degrees of freedom
(xy) and x ⊗ y and z degrees of freedom (yz), as well as
the geometric nonseparability, for the states given in Fig. 9. In
spite of the fact that properties, e.g., the tunneling in the excited
state, show significant characteristics of the nonseparability of
the potential, each eigenstate itself is very nearly separable,
requiring a Schmidt rank of χ̃ = 5 across any bipartition to
capture the state in the 2-norm to an accuracy of 10−12 [see
Eq. (38)]. This near-separable character is also borne out in the
separability measures of Fig. 9. For example, the geometric
nonseparability E demonstrates that the ground and excited
states can be represented by their respective nearest separable
approximations with fidelities of ≈ 0.9995 and ≈ 0.9987. As
a general rule, bound states of higher energy are less separable
than bound states of lower energy. Also, it is interesting to note
that the degree of separability of the states of the double-well
optical tweezer are not monotonic functions of the tweezer
depth.

The components of the nearest separable state ψ(r) =
X̃(x)Ỹ (y)Z̃(z), obtained using the method in Appendix B, are
shown in Fig. 11. In addition, the harmonic oscillator approx-
imations for the y and z degrees of freedom, e.g., Yho(y) =
exp[−y2/(2a2

ho)]/
√

aho
√

π with aho = w0(2V/Ew0 )−1/4, are
shown for comparison. The nearest separable state along
the y direction is accurately represented by its harmonic
approximation, while the z state is considerably wider than
its harmonic counterpart and has a different shape, showing
strong anharmonicity. Finally, we stress that even though
two states ψ(r) and φ(r) may both be nearly separable,
ψ(r) ≈ Xψ (x)Yψ (y)Zψ (z) and φ(r) ≈ Xφ(x)Yφ(y)Zφ(z), this
does not imply that Xψ (x) ≈ Xφ(x), etc.
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FIG. 11. (Color online) Nearest separable states of a double-well
optical tweezer and their harmonic approximations. The components
of the nearest separable wave function X̃(x/w0) (solid red line),
Ỹ (y/w0) (dashed blue line), and Z̃(z/zR) (dotted black line) for a
symmetric double-well optical tweezer with depth V = 52 kHz are
shown as functions of their respective dimensionless coordinates. The
harmonic approximations are also shown for y (blue crosses) and z

(black ×s), demonstrating significant anharmonicity in the z degree
of freedom.

B. Optical lattice

In this section, we turn our attention to a nonseparable
lattice of the form (6), where we will fix V = 12 ER , with
ER = �

2π2/2ma2 the recoil energy of 87Sr in a lattice of
spacing a = 406.72 nm, and w0 = 30 μm. The “running-
wave” component of the lattice Vconst will be left as a variable
to show the effect of increasing transverse confinement on the
axial motion. The transverse confinement can be characterized
by the effective oscillator frequency �ω = √

8Ew0 (Vconst + V )
resulting from a harmonic expansion near the Gaussian
potential minimum.

1. Construction of Wannier functions

As discussed in Sec. III B, the states of the nonseparable
1D optical lattice may be variationally obtained in the form

ψmqν(r) = eimφ

√
2π

∑
nnz

cν;m,n,q,nz
Rm,n(r)ϕqnz

(z), (47)

where R(r) are a set of functions obtained from a DVR
calculation using the transverse Gaussian potential and ϕqnz

(z)
are Bloch functions with quasimomentum q and band index
nz obtained from a plane-wave calculation. Here, we briefly
describe how we construct localized Wannier functions in
this nonseparable case by analogy with the separable case
worked out by Kohn [12]. In Kohn’s original scenario,
which is an inversion-symmetric 1D lattice, real Wannier
functions of maximal localization are obtained by using the
transformation property of Bloch functions under inversion
ϕq,nz

(−z) = (−1)nz+1ϕ−q,nz
(z) (we index nz starting from 1)

and the requirement that the Bloch functions are smooth
functions of q to fix the gauge, i.e., phase, ambiguity in
the Bloch functions. Using this choice of phases, maximally
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localized Wannier functions follow from

wnzi(z) = 1√
L

∑
q∈BZ

e−iqzi ϕq,nz
(z), (48)

where L is the number of lattice sites and zi the centering
site location. The resulting Wannier functions transform un-
der inversion as wnz,i(−z) = (−1)nz+1wnz,−i(z): the Wannier
function center is inverted and a phase may be acquired.

In the nonseparable case, we can generalize the inver-
sion symmetry transformation to ψqν(r, − z) = Pνψ−qν(r,z),
where Pν = 1 if the dominant weight of the state ψ lies
in bands nz = 1,3,5, . . . and −1 otherwise. This phase can
also be set unambiguously at the BZ center q = 0, where
translations and inversions commute. The remaining phase
ambiguities are the Bloch function phases in q ∈ (0,π/a),
which become ±1 under the requirement of real Wannier
functions. We fix the gauge here by requiring that the
Bloch functions be smooth functions of q, by analogy with
Kohn’s original work. With these phase conventions, Wannier
functions are constructed from Eq. (47) as

wmνi(r) = 1√
L

∑
q∈BZ

e−iqzi ψmqν(r). (49)

Our construction produces Wannier functions which transform
into each other up to phases with the symmetries of the lattice
and reduce to the maximally localized Wannier functions of
Kohn when the transverse motion separates from the axial
motion. We note that the particular choice of Wannier functions
affects only interaction matrix elements and not tunneling
matrix elements, as the latter are set by the energy as a function
of q alone [see Eq. (50)].

2. Tunneling and interaction parameters

Using the energy dispersion Em,q,ν of state ψmqν(r), the
tunneling of Wannier state wmνi(r) between neighboring lattice
sites is given by

Jm,ν = − 1

L

∑
q∈BZ

e−iqaEm,q,ν, (50)

i.e., the Fourier transform of the band structure in the relative
lattice coordinate. Similarly, the Wannier function energy
[Eq. (9)] is given as the average of the dispersion in the BZ:

Ēm,ν = 1

L

∑
q∈BZ

Em,q,ν . (51)

In Fig. 12, we show the behavior of the lowest-band tunneling
as a function of the Wannier state energy, with the former
measured in units of the separable (1D) lattice lowest-band
tunneling Jsep and the latter measured in units of the recoil
energy, with the zero of energy being the ground-state energy.
We define the lowest band as being the set of states such that∑

n c2
ν;n,q,nz

in Eq. (47) is maximal for nz = 1, where nz labels
the “bare” bands used in the variational expansion of Eq. (47).
For the parameters we consider, the mixing between the bare
bands is slight (�85% of the population is in nz = 1 for the
energy range we consider) and there is no ambiguity in this
definition. Hence, the energy on the x axis of Fig. 12 correlates
dominantly to transverse mode energy. The tunneling generally
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FIG. 12. (Color online) Tunneling vs energy. The tunneling, in
units of the separable lattice tunneling, as a function of Wannier
state energy for V = 12 ER and w0 = 30 μm. The upper pair of
curves corresponds to Vconst = 88 ER , giving a transverse frequency
�ω ∼ 400 Hz, with the red (green) curves corresponding to azimuthal
quantum number m = 0 (m = 200). The lower pair of curves has
Vconst = 388 ER (�ω ∼ 850 Hz), with blue (magenta) corresponding
to m = 0 (m = 200). J depends dominantly on the transverse mode
energy, as intuitively understood through the lowest-order harmonic
expansion of the transverse potential.

increases with increasing energy, which can be understood by
expanding Eq. (6) to lowest order in r:

Vlatt(r,z) = Vconst

(
− 1+2

r2

w2
0

)
+V

(
− 1 + 2

r2

w2
0

)
cos2(kz).

(52)

Hence, to lowest order, the lattice potential depth is lowered
by an amount proportional to 〈r2〉, which is itself proportional
to the transverse mode energy in the harmonic oscillator ap-
proximation. Semiclassically, a particle in a higher transverse
mode spends more time near the classical turning points, and
here the potential depth is smaller due to the nonseparability.
Because of the nonlinear relationship between lattice depth and
tunneling, the relationship between transverse mode energy
and tunneling is also nonlinear. The semiclassical reasoning
for the dependence of tunneling on energy is also supported
by comparing the red and green curves in Fig. 12, which
correspond to the m = 0 and 200 states, respectively. The
tunneling is well represented by a function only of the
transverse mode energy, even when the nature of the excitation
(azimuthal or radial) is very different.

The red and green curves in Fig. 12 correspond to Vconst =
88 ER , giving a transverse confinement harmonic oscillator
frequency of ∼400 Hz. In this case, the tunneling changes by
nearly an order of magnitude in the given energy range, which
can amount to a significant thermal dependence of the effective
tunneling amplitude. As a point of comparison, for strontium
in a magic lattice, 10 ER corresponds to a temperature of
≈1.66μK, which is comparable to the operating temperatures
of optical lattice clocks [13,16]. The blue and magenta curves,
which correspond to the m = 0 and 200 states, are computed
for Vconst = 388 ER , giving a transverse confinement harmonic
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FIG. 13. (Color online) Interaction matrix elements in a nonseparable optical lattice The s- and p-wave interaction integrals (14) and (15),
for m = 0 (top row) and m = 200 (bottom row). n and n′ are eigenstate indices, which correlate to transverse mode quantum numbers. s-wave
(p-wave) interactions show a slow decay (growth) with transverse mode energy.

oscillator frequency of ∼850 Hz. The dependence of the
tunneling on transverse mode energy in the same energy range
is now significantly smaller, less than a factor of 2. Hence, the
axial motion, represented through the tunneling properties of
the lattice, can be effectively decoupled from the transverse
motion by increasing the effective transverse confinement
frequency.

In Fig. 13, we show the s- and p-wave integrals (14)
and (15). We use units a

(�+1)2
ho a, with � = 0 (1) for s- (p-)

wave interactions, where aho is the harmonic length associated
with the radial direction, in order to facilitate comparison
with previous works [13,38] using a harmonic oscillator
approximation. Similar to the case using the harmonic ap-
proximation, we find a slow decay of s-wave interactions with
mode energy, and a slow growth of p-wave interactions with
increasing mode energy. When thermally averaged, this weak
energy dependence leads to quantitatively similar behavior
between the Gaussian, nonseparable trap case and its harmonic
oscillator approximation when the temperature is comparable
or larger than the transverse mode spacing.

C. Nonseparability and anharmonicity of optical lattice states

We now consider the quantitative nonseparability of the
eigenstates of Eq. (6). We decompose a band of states as

ψmqν(r) =
∑

μ

R(m)
μ (r)Z(m)

μ,q(z). (53)

The nonseparability measures for this decomposition are
shown as a function of Wannier state energy for Vconst =

88 ER in Fig. 14. While the states near the bottom of
the trap are nearly separable, more highly excited states can
be very significantly nonseparable. As was also found for the
tunneling, the nonseparability is dominantly a function of the
transverse mode energy, irrespective of its character (azimuthal
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FIG. 14. (Color online) Nonseparability of 1D optical lattice
eigenstates. The von Neumann entropy of nonseparability S and the
geometric nonseparability E as a function of Wannier state energy for
Vconst = 88 ER . Red and blue (green and magenta) curves correspond
to states of azimuthal quantum number m = 0 (m = 200). As was the
case for the tunneling (Fig. 12), the nonseparability is dominantly a
function of transverse mode energy.
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FIG. 15. (Color online) Anharmonicity of nonseparable optical
lattice states. The overlap of the radial part of the wave function,
indexed by n, with the approximate harmonic oscillator wave
functions, indexed by nho, shows that the radial wave function is
spread across many harmonic oscillator modes in excited states. The
values at quasimomentum q = −0.6π/a are representative of general
quasimomentum away from high-symmetry points.

or radial), as can be seen by comparing the red and blue curves
(corresponding to m = 0) with the green and magenta curves
(m = 200).

To quantitatively assess the degree of anharmonicity of the
optical lattice eigenstates, we compute the overlap of the radial
part of these states with harmonic oscillator functions chosen to
match the local curvature of the potential. Namely, we compute

M (q)
ν,nho

=
∑
nz,n

c2
ν;n,q,nz

[∫
dr Rn(r)φnho (r)

]2

(54)

in the notation of Eq. (47). In the lowest-order harmonic expan-
sion of the potential, M

(q)
ν,nho = δν,nho . The function M

(−0.6π/a)
n,nho

is shown in Fig. 15 for Vconst = 88 ER , where n is the approx-
imate radial quantum number. The values at quasimomentum
q = −0.6π/a are representative of general quasimomentum
away from high-symmetry points. For low-lying eigenstates,
M

(−0.6π/a)
n,nho ≈ δn,nho , showing the near-harmonic nature of these

states. However, in higher-lying eigenstates, the character of
the wave function is spread over many harmonic oscillator
modes, demonstrating significant anharmonicity.

VI. CONCLUSIONS AND OUTLOOK

We have studied the properties of particles confined in
nonseparable 3D optical potentials, focusing in particular on
a double-well optical tweezer array and a 1D optical lattice
with transverse Gaussian confinement. Our main methodology
was discrete variable representations (DVRs), which couple
the rapid convergence of spectral methods with the flexibility
and simplicity of grid-based methods, as well as variational
methods built on top of DVR approaches. We found that
parameters relevant to the construction of effective many-body
models, such as tunneling and interaction matrix elements, can

be significantly different from their separable counterparts. In
particular, we found that lowest-band tunneling amplitudes in
a nonseparable lattice can be increased by nearly an order
of magnitude for a state with significant transverse mode
energy compared to a state in the transverse ground state.
Similarly, we found the lowest-lying state with an excitation
transverse to the tunneling direction in a double-well optical
tweezer has a tunneling rate ≈20% larger than the ground state.
The fact that tunneling depends on transverse motional state
could have a range of applications, such as thermometry and
quantum simulation of multicomponent systems with effective
mass imbalance. Interactions were found to be less sensitive to
nonseparability and anharmonicity compared with tunneling
amplitudes.

In addition to discussing how effective model parameters
change with the trap variables, we also presented a quantitative
analysis of the nonseparability of individual eigenfunctions by
adapting methods from the theory of matrix product states
(MPSs). In particular, we developed a canonical form for
nonseparable states in terms of a contraction of low-rank
tensors describing motion along each independent direction,
and discussed how this canonical MPS form is useful for
storage, computation, visualization, and quantification of
nonseparability. Based on this canonical form, we discussed
three measures of nonseparability: the Schmidt rank and von
Neumann entropy of nonseparability, both of which depend on
a specific bipartition of degrees of freedom, and the geometric
nonseparability, a global measure of nonseparability that
quantifies the distance to the nearest separable state. Finally,
we also presented a variational algorithm for determining the
nearest separable state to a given state, and showed how
this nearest separable state can be used to gain intuition
about anharmonicity, to classify quantum states, and to assess
the convergence of algorithms. We found that the low-lying
states of the nonseparable potentials we considered were
nearly separable despite often being significantly anharmonic.
This observation strongly motivates the use of the MPS
canonical form for nonseparable states as an ansatz that can
be variationally optimized at fixed degree of nonseparability
with significantly reduced computational resources compared
to direct diagonalization.
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APPENDIX A: INTERACTION PARAMETERS
FOR RADIAL FUNCTIONS

As mentioned in Sec. III A 2, the Bessel DVR grids are
different for different angular momentum m, and so there is no
single DVR quadrature which can be used to integrate products
of functions which have different values of m. Hence, in order
to find interaction matrix elements between radial functions,
we must use some other basis set. A natural choice is to use the
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sinc DVR in r , adapted for odd-parity potentials to ensure that
all radial functions vanish at r = 0. Using the sinc DVR, all
radial functions are expressed in terms of the same grid, and so
the sinc DVR quadrature can be used to find interaction matrix
elements. This procedure works well for |m| � 3, but is slowly
convergent for |m| � 2. This is due to the fact that the sinc
DVR basis functions do not have the appropriate asymptotic
behavior near r = 0. As |m| increases, the wave function is
very small near this region due to the centrifugal potential, and
so the mismatch of boundary conditions does not affect the
convergence of the algorithm. For the states with |m| � 2, we
use the following alternate procedure:

(1) Solve for the eigenstates of the Gaussian potential using
the Bessel DVR.

(2) Solve for the eigenstates of a radial harmonic oscillator
with the same local curvature near the potential minimum as
the Gaussian potential using the Bessel DVR.

(3) Find the expansion of the Gaussian potential states in
terms of the harmonic oscillator states using the Bessel DVR
quadrature.

(4) Solve for the eigenstates of a Cartesian harmonic
oscillator with the same frequency as the radial oscillator using
the sinc DVR.

(5) Use the Cartesian harmonic oscillator functions to
obtain the radial harmonic oscillator functions on an equally
spaced radial grid using transformation (A1) below.

(6) Using the results of steps 3 and 5, find the values of the
Gaussian potential states on an equally spaced radial grid.

One may object that steps 3–5 are unnecessary, as the
exact wave functions for the harmonic oscillator are known.
However, evaluation of these wave functions directly in terms
of orthogonal polynomials is numerically unstable. In contrast,
using DVR-based eigenvalue methods is numerically stable,
even for very highly excited states.

The expansion of the radial harmonic oscillator states
|m,nr〉 in terms of Cartesian harmonic oscillator states |p〉|q〉,
where “p” labels the x harmonic oscillator state and “q” labels
the y harmonic oscillator state may be accomplished as

|m,nr〉 =
nr+|m|/2∑

k=−nr−|m|/2

(−i)(nr+|m|/2)−k(−1)nr d
(nr+|m|/2)
m/2,k

×
(

− π

2

)∣∣∣∣nr + |m|
2

+ k

〉∣∣∣∣nr + |m|
2

− k

〉
, (A1)

where d
(�)
mm′ (θ ) is the Wigner little-d matrix [39]. Since we do

not need the full 2D wave function but only the radial function,
we can consider |m,nr〉 along the line of polar angle φ = 0 in
which r = x. Here, we have

〈r,φ = 0|m,nr〉

=
nr+|m|/2∑

k=−nr−|m|/2

(−i)(nr+|m|/2)−k(−1)nr

× d
(nr+|m|/2)
m/2,k

(
−π

2

)〈
x

∣∣∣∣nr+|m|
2

+ k

〉〈
0

∣∣∣∣nr+|m|
2

− k

〉
.

(A2)

Due to the fact that 〈x|n〉 is an odd (even) function if n is odd
(even), only k such that (nr + |m|

2 − k) is even contribute to

the sum, and hence the radial wave function is real. In contrast
to the recurrence relations required for the harmonic oscillator
wave functions themselves, d matrices have a numerically
stable recurrence relation [40].

At the end of this procedure, we have the values of the
radial functions evaluated on a grid of equally spaced radial
points, and so we could think of this as being an expansion
of the radial wave functions in terms of an odd-parity sinc
DVR basis and use the associated quadrature to evaluate
overlaps and derivatives. However, due to the mismatch in
boundary conditions between the radial function and the
sinc DVR functions, such an expansion is inaccurate, and
instead standard grid-based techniques for integration, e.g.,
Simpson’s rule, and evaluation of derivatives by high-order
finite differencing will yield more accurate results. In contrast
to performing derivatives and integration with DVR quadra-
ture, where the calculation converges exponentially fast, this
procedure features only algebraic convergence with the step
size �x, with the particular rate of convergence set by the
finite differencing and integration scheme.

APPENDIX B: OBTAINING THE MPS FORM OF A
NONSEPARABLE STATE AND A VARIATIONAL

ALGORITHM FOR FINDING THE
NEAREST SEPARABLE STATE

Similar to the case of the Schmidt form, the MPS represen-
tation of a quantum state can be obtained via the singular value
decomposition (SVD). In particular, let us assume we have a
state ψxi,yj ,zk

, where xi , yj , and zk are discrete indices running
over some finite set of basis functions (e.g., DVR functions).
Then, we can obtain the representation (39) as

ψ(xi ,yj ),zk

−−→
SVD

∑
ν

U(xi ,yj ),νSνVν,zk
, (B1)

Zμyz
(zk) = Vμyz,zk

, Axi ,(yj ,ν) = U(xi ,yj ),νSν, (B2)

Axi,(yj ,ν)
−−→
SVD

∑
μ

Uxi,μSμVμ,(yj ,ν), (B3)

Xμxy
(xi) = Uxi,μxy

, Yμxyμyz
(yj ) = Sμxy

Vμxy,(yj ,μyz). (B4)

Here, (a,b) denotes the Kronecker product of the indices a and
b, and

−−→
SVD denotes matrix decomposition of the left-hand side

into the right-hand side via the SVD. The particular form of
Eq. (39) obtained with Eqs. (B1)–(B4) is a mixed canonical
form [14] with the gauge conditions

∫
dx Xμ(x)Xν(x) = δμ,ν ,∫

dz Zμ(z)Zν(z) = δμ,ν , and
∑

μν

∫
dy Yμν(y)2 = 1.

Finding the nearest separable state for a multipartite system
is not as simple as for the two-partite case [32,33]. However,
given the MPS form of a nonseparable state (39), a variational
algorithm for obtaining the nearest separable state 〈r|ψsep〉 =
X̃(x)Ỹ (y)Z̃(z) can be devised by optimizing the tensors X̃,
Ỹ , and Z̃ individually in a round-robin fashion. Such an
alternating least-squares algorithm is similar to the local
energy optimization coupled with sweeping over lattice sites
used in the DMRG algorithm of condensed matter physics [14].
The optimal local tensor updates in the case at hand are

X̃(x) =
∑

μxyμyz

Xμxy
(x)(Yμxyμyz

· Ỹ )(Zμyz
· Z̃), (B5)
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Ỹ (y) =
∑

μxyμyz

(Xμxy
· X̃)Yμxyμyz

(y)(Zμyz
· Z̃), (B6)

Z̃(z) =
∑

μxyμyz

(Xμxy
· X̃)(Yμxyμyz

· Ỹ )Zμyz
(z), (B7)

where the updated tensor, e.g., X̃(x) is normalized af-
ter the update and Ã · A is shorthand for

∫
dξ Ã(ξ )A(ξ ).

Convergence can be assessed by stationarity of the functional
||ψsep〉 − |ψ〉|2. An appropriate starting guess is X̃(x) =
X1(x), Ỹ (y) = Y1,1(y)/

√
Y1,1 · Y1,1, Z̃(z) = Z1(z), which

would be the expectation for the nearest separable state based
on applying the optimal truncation at each bipartition. This
algorithm can also be straightforwardly generalized to find
the nearest state with fixed Schmidt rank nonseparability χ̃xy

and χ̃yz.
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