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Anomalous charge pumping in a one-dimensional optical superlattice
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We model atomic motion in a sliding superlattice potential to explore “topological charge pumping” and to find
optimal parameters for experimental observation of this phenomenon. We analytically study the band structure,
finding how the Wannier states evolve as two sinusoidal lattices are moved relative to one another, and relate
this evolution to the center-of-mass motion of an atomic cloud. We pay particular attention to counterintuitive
or anomalous regimes, such as when the atomic motion is opposite to that of the lattice. We propose a practical
cold-atom experiment to detect this anomalous behavior. Through numerical simulations, we find that a negative
adiabatic current and a nontrivial Chern number C = −1 are readily measured.
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I. INTRODUCTION

Slow periodic changes in a lattice potential can transport
charge. For a filled band, the integrated particle current
per cycle in such an adiabatic pump is quantized [1]. We
study a simple but rich example of this phenomenon, namely
charge transport in a sliding superlattice, and draw attention
to its counterintuitive properties such as regimes where the
charge moves faster than the potential or even travels in the
opposite direction. The mathematics predicting this anomalous
transport goes back 30 years [2,3], but has not been observed
in experiments. Here we argue that this effect is observable in
a cold-atom experiment.

The quantum mechanics of particles in a one-dimensional
(1D) superlattice is rich, for incommensurate periods boasting
a fractal energy spectrum [4] and a localization transition
similar to what is seen in disordered lattices [5]. While
recent studies have focused on the tight-binding limit (the
Aubry-Andre model) [6–23], we study the continuous limit
of the 1D superlattice where, because of the weak potential,
the single-particle spectra can be calculated perturbatively.
Related cold-atom proposals on quantized transport [24–29]
have focused on the simplest superlattice where one sublattice
constant is half of the other, and the lowest band is therefore
not in the anomalous regime which interests us. Reference
[24] draws attention to the anomalous retrograde motion of
particles in the second band, an approach which complements
our ground-state proposal.

The 1D superlattice can be mapped onto the Harper-
Hofstadter model [4,30]. The topological numbers (Chern
numbers) associated with charge pumping can be mapped onto
quantized Hall conductances [2,31]. Recent experiments in-
volving artificial gauge fields on a 2D optical lattice have aimed
to measure these 2D Chern numbers [32–36]. There are also
related studies based on measurement of Hall drift [37], Bloch
oscillations [38,39], Zak phase [40–42], time-of-flight images
[43–45], edge states [46–51], or density plateaus [52,53].

In this paper, we study the charge transport in a 1D
sliding superlattice, where the moving lattice period is an
arbitrary rational multiple of the static lattice. We analytically
calculate energy-band gaps and the topological invariants
which give the integrated adiabatic current per pumping cycle
[1]. The fact that this current can be made arbitrarily large
and/or opposite to the direction of the sliding potential is
counterintuitive. We present a physical interpretation of this

phenomenon in terms of the quantum tunneling of Wannier
functions between minima in the potential. We propose an
experiment to detect this anomalous adiabatic current, and
derive the optimal parameters. Through numerical simulations,
we confirm that a negative integrated current and a nontrivial
Chern number C = −1 are readily measured in an experiment.
We analyze corrections to adiabaticity, the harmonic trap,
multiband effects, and finite-size effects.

II. MODEL

We consider the Hamiltonian of a 1D superlattice where
one lattice adiabatically slides relative to the other,

H =
∫

dx ψ†(x)

[
− �

2

2m
∂2
x + V1(x,ϕ) + V2(x)

]
ψ(x), (1)

where ψ(x) represents the field operator of the particle, �

is Planck’s constant, and m is the mass of the particle. The
periodic potentials V1(x,ϕ) = 2v1 cos(px − ϕ) and V2(x) =
2v2 cos(qx) are commensurate, with lattice constants 2π/p

and 2π/q, and intensities v1 and v2. We take the relative
phase ϕ to be slowly varying in time. The period of the
Hamiltonian is set by the greatest common divisor of p and q,
i.e., κ ≡ gcd(p,q), as illustrated in the inset of Fig. 1. Treating
1/κ as the unit length, we redefine xκ → x, p/κ → p, and
q/κ → q. Treating Er = �

2κ2/m as the unit energy, we
redefine H/Er → H , v1/Er → v1, and v2/Er → v2. The
dimensionless Hamiltonian in the momentum space is then

H =
∑

k

k2

2
ψ

†
kψk + (

v1e
−iϕψ

†
kψk+p + v2ψ

†
kψk+q + H.c.

)
.

(2)

Here, ψk = 1√
L

∫
dx eikxψ(x), with dimensionless system

length L and dimensionless momentum k. Since states of
momentum k are coupled only to those of momentum k + n

for integer n, we restrict ourselves to the first Brillouin zone
(0 � k < 1) and rewrite the Hamiltonian,

H =
∑

0�k<1

∞∑
n=−∞

1

2
(k + n)2ψ†

nψn

+ (
v1e

−iϕψ†
nψn+p + v2ψ

†
nψn+q + H.c.

)
, (3)

where we have suppressed the k index, writing ψn ≡ ψk+n.
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FIG. 1. Band structure of a 1D superlattice for p = 2, q = 3,
showing energy E vs dimensionless wave vector k for weak
potentials. Inset: The two potentials making up the superlattice
and the unit cell with period set by the greatest common divisor
κ ≡ gcd(p,q). For this choice of p and q, the energy gap between
the third and fourth band is set by the potential strength 2v2, the gap
between the second and third band is set by the potential strength 2v1,
and the small gap is set between the second and third band scales as
∼v1v2.

To illustrate the resulting band structure, we impose a cutoff
on n and numerically diagonalize the Hamiltonian in Eq. (3)
for p = 2 and q = 3. The lowest four energy bands are shown
in Fig. 1, and even for this simple case, the gaps display a
range of behaviors for small v1 and v2. The gap between the
third and fourth band is induced by the potential V2(x) and is
proportional to v2 for weak potentials. The gap between the
second and third band is induced by V1(x) and is proportional
to v1. The small gap between the second and third band is
induced by the combination of these two potentials, which
scales as ∼v1v2. In the following section, we will discuss the
origin of these scalings in the context of understanding the
lowest-energy gap.

III. BAND GAPS AND TOPOLOGY

The eigenstates of the Hamiltonian in Eq. (3) can be found
perturbatively in the limit of v1,v2 � 1. Suppressing the index
k, we write H = H0 + λH1, with

H0 =
∞∑

n=−∞

1

2
(k + n)2ψ†

nψn, (4)

λH1 = λpHp + λ−pH−p + λqHq + λ−qH−q, (5)

where Hp = ∑∞
n=−∞ ψ

†
nψn+p, Hq = ∑∞

n=−∞ ψ
†
nψn+q , and λ

is a formal small parameter, with λp = λ∗
−p = v1e

−iϕ and
λq = λ∗

−q = v2.
For small λ and 0 � k < 1, the eigenstates of the lowest

band will be superpositions of |−1〉 and |0〉, where |m〉 =
ψ

†
m|vac〉. We let δk = k − 1/2 denote the distance of k from the

band crossing point and assume δk > 0. The physics for δk <

0 is analogous. While ordinary perturbation theory works far
from the crossing (δk 
 ε, where ε will be precisely defined
below), one must use higher-order degenerate perturbation
theory to find the eigenstates for δk � ε. As argued in the

Appendix, the resulting effective Hamiltonian is of the form

Heff = PH0P +
∑

s+,s− � 0
r+,r− � 0

λs+
p λ

s−
−pλr+

q λ
r−
−q L(s+,s−,r+,r−), (6)

where P = |−1〉〈−1| + |0〉〈0|, and s+,s−,r+,r− are integers.
The operator L(s+,s−,r+,r−) is the contribution to Heff involving
the absorption of η = sp + rq units of momentum from the
lattices, where s = s+ − s− and r = r+ − r−. By conservation
of momentum, α ≡ 〈−1|L(s+,s−,r+,r−)|0〉 = 0 unless η = 1. We
linearize Heff about δk = 0, and write the operators in the basis
{|−1〉,|0〉}. At the lowest nontrivial order, we have

Heff =
( − 1

2δk α�eiχ

α�e−iχ 1
2δk

)
+ const, (7)

where � = v
|rm|
1 v

|sm|
2 ,χ = −smϕ, and sm,rm correspond to the

absolutely smallest solution to the Diophantine equation sp +
rq = 1. This result agrees with a similar perturbative analysis
carried out by Thouless et al. [2] and Niu [3] for related models.

The off-diagonal terms of Eq. (7) split the energy degen-
eracy at δk = 0 and create an energy gap of size �Eg ≡
2|α�|. For example, if p = 2, q = 3, the absolutely smallest
solution to the Diophantine equation has sm = −1, rm = 1, as
−p + q = 1. Thus the energy gap is 2|αv1v2|, as denoted in
Fig. 1. For larger |sm| and |rm|, the energy gap can be extremely
small. Ordinary perturbation theory would have sufficed in the
regime where δk 
 2|α�|, allowing us to identify ε as 2|α�|.
Properties of higher bands can be analyzed similarly.

By analyzing Eq. (7), we find that the lowest-energy
eigenstate of Eqs. (4) and (5) has the form

|k,ϕ〉 = −sin
β

2
eiχ/2|−1〉 + cos

β

2
e−iχ/2|0〉 + · · · , (8)

where tanβ = −2α�/δk. The neglected terms are higher
order in v1 and v2. For δk 
 2|α�|, sin β

2 ≈ 1 and cos β

2 ≈ 0,
and the coefficients are featureless.

Slowly changing ϕ generates an adiabatic current [1]. For a
completely filled band, the integrated current in one pumping
period (ϕ from 0 to 2π ) is [54]

�Q = 2πC =
∫ 1

0
dk

∫ 2π

0
dϕ �kϕ, (9)

where the Berry curvature is

�kϕ = i(∂ϕ〈k,ϕ|∂k|k,ϕ〉 − H.c.) = sm

2
∂kcosβ. (10)

We see �kϕ is concentrated near the location of the energy gap.
Integrating the Berry curvature is trivial, yielding the Chern
number C = sm. Although our argument requires that v1 and
v2 are small, due to the quantized nature of C, the result should
hold for all nonzero v1 and v2. In our numerical calculations
with larger v1,v2, we find the curvature is roughly uniform over
the Brillouin zone, but as expected its integral is unchanged.

IV. ANOMALOUS CHARGE PUMPING

By appropriately choosing p and q, one can make C =
sm an arbitrary integer [3,55–58]. This means that in one
pumping cycle, a single particle may move arbitrarily far
and/or opposite to the direction of the sliding potential. Such
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FIG. 2. (Color online) (a) Illustration of adiabatic charge trans-
port in a 1D superlattice, where the particle “travels” through three
unit cells to the left when the lattice potential moves to the right by one
period. Solid lines show the potential V1(x,ϕ) + V2(x) for different
values of ϕ. Arrows schematically show how the locations of the
minima shift discontinuously. (b) Illustration of the evolution of two
separated potentials of the superlattice: the right-sliding potential
V1(x,ϕ) (solid red) and the static potential V2(x) (dashed black).
(c) Evolution of the Wannier function. Arrows indicate the “tunnel-
ing” process. (d) The evolution of integrated adiabatic current as a
function of ϕ. In these plots, we choose p = 2 and q = 7, so the
Chern number is C = sm = −3. Other parameters are v1 = 0.5 and
v2 = 0.25.

long-distance and/or retrograde transport seems unphysical.
The magic comes from the adiabatic process: If the potential
moves sufficiently slowly, the particles always stay in a
global minimum of the potential. Due to the structure of the
superlattice, a slight motion of the potential could result in a
dramatic change of the locations of the global minima [see
Fig. 2(a)]. Within a small portion of a pumping cycle, the
particles may “tunnel” to the new global minima which could
be a large distance away from the old minima.

To further quantify our interpretations, we calculate the
integrated current

�Q(ϕ) = 1

2π

∫ 1

0
dk

∫ ϕ

0
dϕ′ �kϕ′ , (11)

and the Wannier function at lattice site j [59],

Wj (x,ϕ) =
∑

0�k<1

eikj�k(x,ϕ), (12)

where the Bloch wave function is

�k(x,ϕ) = 1√
L

∞∑
n=−∞

〈n|k,ϕ〉e−i(n+k)x . (13)

Here we choose a smooth gauge for the Bloch wave function,
so the Wannier function is well localized [60].

Figure 2(d) shows the integrated current as a function of ϕ,
calculated from Eq. (11) using a similar method to Ref. [61].
We see the function is “steplike”: Flat regions correspond to

0.1 

0
v1

v2

FIG. 3. Energy gap �Eg as a function of v1,v2 for p = 2,q = 3.
The gap has a maximum value of �Eg ≈ 0.09 at v1 = 0.23 and
v2 = 0.95.

slow transport, while the particle motion is rapid in the steep
regions. This is further illustrated by the Wannier function
in Fig. 2(c). During the slow transport, the Wannier function
slowly drifts, while during the rapid transport, one peak drops
in amplitude and a second peak rises. This corresponds to
tunneling.

For small v1,v2, the time scale for adiabaticity τ is related
to the size of the gap, 1/τ ∼ |α�| ∼ v

|sm|
1 v

|rm|
2 . Thus when the

Chern number C = sm is large and the potentials are weak,
adiabaticity is hard to maintain in a practical experiment. For
large v1,v2, the gap again falls, owing to the large potential
barriers. Figure 3 shows the energy gap �Eg as a function
of v1 and v2 for p = 2,q = 3. The gap has a maximum value
of �Eg ≈ 0.09 at v1 = 0.23 and v2 = 0.95. An optimized
experiment would be performed with these parameters.

V. EXPERIMENTAL PROPOSAL

To observe this anomalous current, we envision a Fermi
gas confined to a quasi-1D tube, such that only one transverse
mode is occupied. Although the present analysis is 1D,
we expect the phenomena will persist for more general
transverse confinement. Along the tube, we engineer two
longitudinal periodic potentials, V1(x,ϕ) = 2v1 cos(px − ϕ)
and V2(x) = 2v2 cos(qx), via two pairs of counterpropagating
laser beams. The time-dependent phase ϕ = δω t is produced
by a frequency difference δω between two of the beams.
To satisfy the adiabatic condition, we require �δω � �Eg .
The resulting adiabatic particle current can be detected by
observing the motion of the center of mass of the cloud: After
time t = 2πN/δω, the center of mass should move a distance
rc = 2πCN/κ . A dimensionless measure of this displacement
is xc = κrc. The displacement can be measured in situ [62–64]
or after time of flight [65]. Similar experiments were proposed
by Chiang and Niu [24] and Wang et al. [27].

We propose studying the case p = 2, q = 3, as this yields
retrograde motion and has relatively large gaps (see Fig. 3).

In modeling this experiment, one must account for the finite
cloud size. We include this physics by adding a harmonic
potential along the tube, V (x) = mω2

0x
2/2. Such potentials

are always found in such experiments. Within a local density
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approximation, the lowest band will be filled at the center of
the cloud, but only partially filled near the edge. Although our
Chern number argument only applies to the central region, we
still expect the center-of-mass motion to be nearly quantized.
For �ω0 � v1,v2 and particle number much greater than one,
only a very small portion of the particles live at boundaries.
Our numerical simulations (detailed below) confirm this result.
For a typical experiment, ω0 ∼ 10 Hz and v1/�,v2/� ∼
100 kHz [67].

Because of the trap, the displacement rc cannot be made
arbitrarily large. When mω2

0r
2
c /2 is of the order of the band

gap �Eg , atoms can tunnel to the higher bands. In our
numerical simulation, we see that for small δω, the maximum
displacement scales as 1/ω0.

VI. NUMERICAL SIMULATION

In order to see the feasibility of our experimental proposal,
we numerically simulate the dynamical evolution of a 1D
Fermi gas. We take the many-body state to be a Slater
determinant, made up from single-particle wave functions
ψi(x,t) with 1 � i � ν, where ν = 63 is the number of
fermions. This number is chosen because it is similar to
typical atom numbers in 1D experiments [66]. At time t = 0,
ψi(x,0) is the ith eigenstate of the Hamiltonian. We evolve
ψi(x,t) via the time-dependent single-particle Schrödinger
equation and then calculate the center of mass, xc(t) ≡
1/ν

∑ν
i=1

∫
x|ψi(x,t)|2dx. Figure 4 shows the results for p =

2, q = 3 where the Chern number is C = −1. We see xc < 0,
meaning that the particles travel in the opposite direction to the
sliding potential. Remarkably this retrograde motion persists
even for relatively large δω. As δω → 0, the motion becomes
quantized. A typical experiment has Er/� ∼ 100 kHz [67], so
the Chern number C = −1 is readily extracted when δω � 200
Hz. The inset of Fig. 4 shows the evolution of the center of
mass in one pumping cycle for �δω = 0.002Er . We see that
the function is steplike, similar to the ideal case (no harmonic
trap and adiabatic) in Fig. 2(d).
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2
Π

FIG. 4. (Color online) Displacement of the center of mass (in
units of the superlattice) after one pumping period T = 2π/δω

for ν = 63 fermions in a superlattice with p = 2,q = 3,v1 =
0.23Er,v2 = 0.95Er , and a harmonic trap �ω0 = 2.2 × 10−3Er .
Physically, δω is the detuning between the beams producing the lattice
with wave number p. We see xc/2π → C = −1 as δω decreases.
Inset: The evolution of the center of mass for �δω = 0.002Er .
Compare with Fig. 2(d).

VII. SUMMARY

To summarize, we studied topological charge pumping
in a 1D sliding superlattice, with particular focus on the
anomalous regimes where the particles move faster than the
potential, or backwards. We presented a physical interpretation
of this behavior in terms of the quantum tunneling of Wannier
functions between minima in the potential. We proposed a
practical cold-atom experiment to detect this phenomenon
and calculated optimized parameters. Through numerical
simulations, we confirmed that a negative integrated current
and a nontrivial Chern number C = −1 are readily measured.
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APPENDIX

Here we derive an effective Hamiltonian for Eqs. (4) and (5)
in the main text. For small λ, the eigenstates of the lowest band
will be superpositions of |−1〉 and |0〉, motivating projection
operators

P = |−1〉〈−1| + |0〉〈0|, (A1)

Q = 1 − P. (A2)

The states |m〉 = ψ
†
m|vac〉 satisfy H0|m〉 = 1

2 (kx + m)2|m〉.
We seek eigenstates H |ψ〉 = E|ψ〉. We break the wave
function into two parts,

|ψ〉 = P |ψ〉 + Q|ψ〉 ≡ |ψ0〉 + |ψex〉, (A3)

where |ψ0〉 is in the low-energy sector and |ψex〉 is a
superposition of the higher-energy states. The eigenequation
is then decoupled into two equations,

PH |ψ〉 = PE|ψ〉 = E|ψ0〉, (A4)

QH |ψ〉 = QE|ψ〉 = E|ψex〉. (A5)

Inserting the identity P 2 + Q2 = P + Q = 1 on the left-hand
side of Eqs. (A4) and (A5) and substituting |ψex〉 in terms of
|ψ0〉, we obtain a closed equation for |ψ0〉,

Heff|ψ0〉 = E|ψ0〉, (A6)

where

Heff ≡ PHP + PHQ
1

E − QHQ
QHP. (A7)

Using the identity PH0Q = 0 and expanding the second term
of Eq. (A7), we obtain

Heff = PH0P + λPH1P + λ2PH1Q

∞∑
j=0

1

E − QH0Q

×
(

λ
QH1Q

E − QH0Q

)j

QH1P. (A8)
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This equation can be written as

Heff = PH0P +
∑

s+,s− � 0
r+,r− � 0

λs+
p λ

s−
−pλr+

q λ
r−
−q L(s+,s−,r+,r−), (A9)

where the momentum conservation implies that α ≡
〈−1|L(s+,s−,r+,r−)|0〉 = 0 unless sp + rq = 1, where s = s+ −
s− and r = r+ − r−. In our problem, the lowest-order contri-
bution to α has either s+ = 0 or s− = 0. Similarly r+ = 0 or

r− = 0. The lowest-order contribution to the diagonal elements
of Heff corresponds to an identity matrix.

Linearizing Heff about δk = 0 and writing the operators in
the basis {| − 1〉,|0〉}, we have

Heff =
( − 1

2δk α�eiχ

α�e−iχ 1
2δk

)
+ const, (A10)

where � = v
|rm|
1 v

|sm|
2 ,χ = −smϕ, and sm,rm correspond to the

absolutely smallest solution to the Diophantine equation sp +
rq = 1.
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