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Trapped unitary two-component Fermi gases with up to ten particles
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The properties of two-component Fermi gases with zero-range interactions are universal. We use an explicitly
correlated Gaussian basis set expansion approach to investigate small equal-mass two-component Fermi gases
under spherically symmetric external harmonic confinement. At unitarity, we determine the ground-state energy
for systems with up to 10 particles interacting through finite-range two-body potentials for both even and odd
numbers of particles. We extrapolate the energies to the zero-range limit using a novel scheme that removes the
linear and, in some cases, also the quadratic dependence of the ground-state energies on the two-body range. Our
extrapolated zero-range energies are compared with results from the literature. We also calculate the two-body
Tan contact and structural properties.
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I. INTRODUCTION

The properties of two-component Fermi gases interacting
through two-body zero-range potentials with s-wave scattering
length as are universal [1,2]. At unitarity, i.e., for infinitely
large as , the two-body interaction does not define a mean-
ingful length scale and the strongly interacting Fermi gas is
characterized by the same number of length scales as the
noninteracting Fermi gas. Approximate realizations of the
unitary Fermi gas include dilute neutron matter in the crusts of
neutron stars [3] and ultracold atom gases such as 6Li [4] and
40K [5]. The properties of homogeneous and inhomogeneous
unitary Fermi gases have attracted a great deal of experimental
and theoretical attention. For spherically symmetric external
confinement, the harmonic oscillator length aho defines the
only length scale of the system. It is hence interesting to
determine how the properties of trapped unitary Fermi gases
vary with the number of particles.

Harmonically trapped Fermi gases at unitarity have been
treated by quantum Monte Carlo methods [6–13], density
functional theory (DFT) [11,14–17], and basis set expansion
approaches. The accuracy of the fixed-node diffusion Monte
Carlo (FN-DMC) energies [7,8,11,12] depends on the quality
of the many-body nodal surface. The resulting energies provide
upper bounds to the exact ground-state energies and the
zero-range limit is reached through extrapolation [11,12].
Auxiliary-field quantum Monte Carlo (AFMC) methods, on
the other hand, work on a finite lattice and extrapolation to
the infinite lattice limit is required to obtain fully converged
results [12]. The quality of DFT calculations depends critically
on the underlying functional. Since the functional is typically
obtained by matching to data for the homogeneous system,
the analysis of results for the trapped system can provide
insights into gradient corrections and other finite-size features
[15–17]. Trapped unitary Fermi gases with up to six particles
have been calculated by explicitly correlated Gaussian (ECG)
basis set expansion approaches [7,8,18–22] with better than
about 1% accuracy. Application of the ECG method to systems
with more than six particles has been challenging due to the
rapid increase of the number of permutations and the larger
number of degrees of freedom. Recently, Ref. [23] treated
the (N1,N2) = (4,4) system at unitarity using a basis set that
accounts for the most important but not all correlations.

Here we present results for small trapped unitary Fermi
gases with N � 10 particles, where N = N1 + N2 and N1 −
N2 = 0 or 1. Our extrapolated zero-range energy of the (4,4)
system is 0.9% lower than that reported in Ref. [23]. A new
aspect of our work is that we developed an improved scheme
for extrapolating the finite-range energies to the zero-range
limit. This new scheme eliminates the linear and, in some
cases, the quadratic dependence of the ground-state energies
on the two-body range. The scheme provides a consistency
check on the range dependence of our energies and reduces the
errors that result from the extrapolation to the zero-range limit.
Our results suggest that the developed range correction scheme
allows one to obtain a reliable approximation to the zero-range
energy from a single finite-range calculation. The scheme can
be applied to other numerical calculations that work with finite-
range interactions. We use our range correction scheme to
determine the zero-range energies and the Tan contact for two-
component Fermi gases with N � 10 at unitarity. In addition,
we present selected structural properties.

The remainder of this paper is organized as follows.
Section II discusses the theoretical framework and our extrap-
olation scheme to the zero-range limit. Section III presents
our results for systems with up to 10 particles and compares,
where available, with results from the literature. Last, Sec. IV
concludes.

II. THEORETICAL FRAMEWORK

We consider equal-mass two-component Fermi gases with
N1 spin-up and N2 spin-down atoms (N = N1 + N2 and N1 −
N2 = 0 or 1) under external spherically symmetric harmonic
confinement with angular trapping frequency ω. The system
Hamiltonian H (r0) reads

H (r0) =
N∑

i=1

− �
2

2m
∇2

i +Vtr(�r1, . . . ,�rN ) +
N1∑
i=1

N∑
j=N1+1

V2b(rij ,r0),

(1)

where m denotes the atom mass, �ri denotes the position vector
of the ith particle with respect to the trap center, and

Vtr(�r1, . . . ,�rN ) =
N∑

i=1

1

2
mω2�r2

i (2)
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is the trapping potential. V2b is the interspecies two-body
interaction potential that depends on the interparticle distance
rij , rij = |�ri − �rj |. In our work, it is modeled by a finite-range
Gaussian potential with range r0 and depth V0 (V0 < 0),

V2b(r,r0) = V0 exp

(
− r2

2r2
0

)
. (3)

For a fixed r0, V0 is adjusted such that V2b(r,r0) has an
infinitely large s-wave scattering length as and supports one
zero-energy two-body bound state in free space. The ranges
r0 considered depend on the size of the system and vary
from 0.01aho to 0.12aho, where aho denotes the harmonic
oscillator length [aho = √

�/(mω)]. For the Gaussian potential
with one zero-energy bound state, the effective range reff is
approximately equal to 2.032r0.

To numerically solve the Schrödinger equation for the
Hamiltonian given in Eq. (1), we separate off the center-of-
mass degrees of freedom and expand the eigenstates of the
relative Hamiltonian in terms of ECG basis functions, which
depend on a set of nonlinear variational parameters that are
optimized through energy minimization (see below) [18,24].
The unsymmetrized basis functions for states with Lπ = 0+
and 1− symmetry (L denotes the relative orbital angular
momentum and π the relative parity) read exp(− 1

2 �xT A�x)
and Y10(�uT �x) exp(− 1

2 �xT A�x), respectively, where A is a
symmetric and positive definite (N − 1) × (N − 1) parame-
ter matrix, �u = (u1,u2, . . . ,uN−1)T is a N − 1 dimensional
vector, and Y10 is a solid spherical harmonic function [24].
�x = (�x1,�x2, . . . ,�xN−1)T collectively denotes a set of N − 1
Jacobi vectors. The ground state of even-N systems has 0+
symmetry and that of odd-N systems has 1− symmetry. A key
advantage of these basis functions is that the corresponding
overlap and Hamiltonian matrix elements can be calculated
analytically [24].

The fermionic exchange symmetry is ensured by acting
with the anti-symmetrization operator A on the unsym-
metrized basis functions. The number of permutations Np

increases factorially with the number of identical fermions. For
the (5,5) system, e.g., A contains (5!)2 = 14 400 two-particle
exchange operations with alternating plus and minus signs. The
evaluation of each overlap and Hamiltonian matrix element
involves a sum over Np terms that are highly oscillatory. In
a standard 16-digit floating point implementation, numerical
challenges arise from the near-cancellation of the positive and
negative terms for systems with N > 8. The near-cancellation
of these terms of alternating signs can be interpreted as a
relative of the fermion sign problem known from Monte Carlo
simulations [25,26]. To ensure that the matrix elements for
the largest systems considered are accurate to at least 10
significant digits, we implemented our C codes using extended
precision. The eigenenergies and expansion coefficients are
obtained by solving a generalized eigenvalue problem that
involves the Hamiltonian matrix and the overlap matrix. The
numerical error of the resulting eigenenergies is several orders
of magnitude smaller than the errors that arise from the use of
a finite basis set and the extrapolation to the zero-range limit.
In Sec. III, we report the total ground-state energy E(r0) of
the Hamiltonian H (r0), i.e., we add the center-of-mass energy
of 3Eho/2 to the relative energy obtained by use of the ECG

FIG. 1. (Color online) Illustration of the Jacobi coordinates em-
ployed in our work for the (N1,N2) = (5,4) system. The dark vectors
show the Jacobi vectors �x1, �x2, ..., �x8. The spin-up and spin-down
fermions are represented by light vertical up and down arrows.

approach. Here Eho denotes the harmonic oscillator energy
(Eho = �ω).

We use a semistochastic variational approach to choose and
optimize the variational parameters contained in A and �u [24].
Our Jacobi coordinates are chosen such that the first N2 Jacobi
vectors correspond to distance vectors between unlike particle
pairs. The next N2/2 Jacobi vectors correspond to the distance
vectors between the center of mass of the first pair and the
second pair, the distance vector between the center of mass of
the third pair and the fourth pair, and so on. The remaining
Jacobi vectors connect the larger subunits and, for odd N , the
N th particle (see Fig. 1 for an illustration for N = 9). For this
choice of Jacobi coordinates, the first N2 diagonal elements of
the A matrix represent correlations between unlike particles.
We expect that these interspecies distances are, on average,
smaller and more strongly correlated than those between like
particles. This motivates us to choose the first N2 diagonal
elements of the A matrix for each basis function from a
preset nonlinear grid. Specifically, the minimum and maximum
Gaussian widths for the unlike pairs are set to r0/2 and 2aho,
and a cubic grid, which places more points in the small-width
region, is employed. The other diagonal elements are chosen
stochastically from preset parameter windows. As in Ref. [23],
we start with basis functions that are diagonal in A. These
basis functions account for the most important correlations.
Once a certain basis set size is reached (for the larger systems
around Nb = 500), we reoptimize the variational parameters
contained in the diagonal of A, and for odd N in �u, and allow
for off-diagonal A matrix elements. The off-diagonal matrix
element at position (i,j ) of the A matrix is chosen from 0 to the
geometric mean of the ith and j th diagonal elements. We find
that this choice results with high probability in positive-definite
A matrices. The positive-definiteness of the A matrix is tested
through diagonalization. We refer to the reoptimization of
all variational parameters contained in A and, if applicable,
�u of all Nb basis functions as a reoptimization cycle. The
reoptimization cycle is repeated until the lowest energy
changes by less than a preset value. After that, we extend the
basis set by a hundred to several hundred basis functions and
reoptimize the variational parameters of the enlarged basis set
using a variable number of reoptimization cycles. This process
is repeated a few times. At the end, the basis is enlarged to
around 2000 basis functions without additional reoptimization
of the nonlinear variational parameters.

013608-2



TRAPPED UNITARY TWO-COMPONENT FERMI GASES . . . PHYSICAL REVIEW A 92, 013608 (2015)

TABLE I. Ground-state energy of the (3,2) system at unitarity. Column 2 shows the finite-range energy for the largest basis set considered.
The estimated basis set error �E(r0) is reported in column 3. Columns 4 and 5 report the quantities E(1)(r0) and E(2)(r0); error bars are given in
parentheses. The energy derivatives are calculated for the largest basis set considered. Columns 6–8 report the energies EZRA,0(r0), EZRA,1(r0),
and EZRA,2(r0). These energies account for the estimated basis set extrapolation error, i.e., E(r0) − �E(r0) is being used to calculate EZRA,j (r0)
for j = 0, 1, and 2. The error bars of EZRA,1(r0) and EZRA,2(r0) account for the uncertainties of E(1)(r0) and E(2)(r0) but do not account for the
uncertainty of �E(r0). The last row reports the extrapolation of EZRA,j (r0) to the zero-range limit.

r0
aho

E(r0)
Eho

�E(r0)
Eho

E(1)(r0) aho
Eho

E(2)(r0)
a2

ho
Eho

EZRA,0(r0)
Eho

EZRA,1(r0)
Eho

EZRA,2(r0)
Eho

0.07 7.5449 0.0001 1.148(7) −5.13(12) 7.5448 7.4644(5) 7.4518(8)
0.06 7.5332 0.0001 1.201(8) −4.61(25) 7.5331 7.4610(5) 7.4527(9)
0.05 7.5211 0.0004 1.240(12) −4.11(28) 7.5207 7.4587(6) 7.4536(10)
0.04 7.5084 0.0004 1.284(15) −2.85(33) 7.5080 7.4566(6) 7.4543(9)
0.03 7.4954 0.0006 1.297(26) −0.32(46) 7.4948 7.4559(8) 7.4557(10)
0.02 7.4825 0.0009 1.290(120) 0.24(96) 7.4816 7.4558(24) 7.4559(26)

0 7.4557 7.4550 7.4563

The basis set errors reported in Tables I and II of Sec. III and
Tables I–VI of the Supplemental Material [27] are estimated
by analyzing the energy decrease that results from the basis
set enlargements and the reoptimization cycles. Specifically,
we find that the energy decrease decreases with each con-
secutive reoptimization cycle and enlargement of the basis
set by the same number of basis functions, suggesting that
the ground-state energy is converging. Based on extensive
calculations for the smaller systems and selected tests for the
larger systems, we estimate that the basis set error is roughly
equal to 3 times the combined energy decrease of the last
reoptimization cycle and the final basis set enlargement. It
should be noted that our estimation of the basis set error
depends on our implementation of the reoptimization cycle
(e.g., how many “trials” are used to optimize each nonlinear
variational parameter, etc.).

To reach the universal regime where aho defines the only
length scale in the system, we need to extrapolate the numeri-
cally calculated finite-range energies to the zero-range limit. In
previous ECG works [18,19,21–23], this was done by fitting
the finite-range energies by a linear or quadratic function.
We refer to this traditional extrapolation scheme as the
zeroth-order extrapolation scheme. The difference between
the finite-range energies and the extrapolated zero-range
energies is, typically, at the order of a few percentages and
can introduce a non-negligible extrapolation error. Moreover,
for larger systems, it is computationally expensive, maybe
even prohibitively expensive, to obtain energies at very small
ranges. It should also be noted that the extrapolated zero-range
energies do not provide variational upper bounds even though

the finite-range ECG energies do. It is thus desirable to remove
the linear and, ideally, quadratic range dependence. Motivated
by the generalized virial theorem

E(0) = 2Vtr(0) (4)

[Vtr(0) denotes the expectation value of Vtr(�r1, . . . ,�rN ) for
r0 → 0] at unitarity, Werner [28] proposed to remove the linear
range dependence of the ground-state energy by combining it
with the expectation value Vtr(r0) of the trapping potential
Vtr(�r1, . . . ,�rN ) calculated for the same r0,

E(0) = 3E(r0) − 4Vtr(r0) + O
(
r2

0

)
. (5)

While Eq. (5) removes the leading-order range dependence,
it is associated with error bars that come from the basis set
errors of E(r0) and Vtr(r0). In our ECG method, the basis
set is optimized by minimizing the ground-state energy. Not
surprisingly, we find that the convergence of the expectation
value of the trapping potential is not as good as that of the
energy. This motivates us to propose an alternative scheme
that can be carried out to higher orders.

The ground-state energy E(r0) of the N -particle system is
a smooth function of the two-body interaction range r0. The
nmaxth order Taylor series of E(r̄0) around r0 is

E(r̄0) =
nmax∑
n=0

E(n)(r0)
1

n!
(r̄0 − r0)n + O[(r̄0 − r0)nmax+1], (6)

where

E(n)(r0) = ∂nE(r̄0)

∂r̄n
0

∣∣∣∣
r̄0=r0

(7)

TABLE II. Same as Table I but for the (4,4) system at unitarity.

r0
aho

E(r0)
Eho

�E(r0)
Eho

E(1)(r0) aho
Eho

E(2)(r0)
a2

ho
Eho

EZRA,0(r0)
Eho

EZRA,1(r0)
Eho

EZRA,2(r0)
Eho

0.1 12.329 0.010 2.07(10) −18(3) 12.319 12.113(10) 12.011(25)
0.08 12.287 0.018 2.44(16) −16(4) 12.269 12.073(13) 12.015(26)
0.06 12.230 0.022 2.72(25) 12.208 12.045(15)
0.05 12.204 0.025 2.71(32) 12.179 12.043(16)
0.04 12.184 0.035 2.56(55) 12.149 12.047(22)

0 12.015 12.019
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is the nth-order derivative of the ground-state energy with
respect to the range evaluated at r0. E(0)(r0) is simply the
ground-state energy E(r0) of H (r0). E(1)(r0) can be obtained
through the Hellmann-Feynman theorem [29],

E(1)(r0) =
〈

∂H (r̄0)

∂r̄0

∣∣∣∣
r̄0=r0

〉
, (8)

which is exact in the limit that the basis set is complete. The
matrix elements needed to evaluate E(1)(r0) reduce to compact
analytical expressions. E(2)(r0) can be obtained by the finite-
difference method, i.e., by evaluating E(1)(r0) at two nearby r0.

Our goal is to obtain the zero-range energy E(0). Setting r̄0

in Eq. (6) to 0, we obtain

E(0) = EZRA,nmax (r0) + O
(
r

nmax+1
0

)
, (9)

where

EZRA,nmax (r0) =
nmax∑
n=0

E(n)(r0)
1

n!
(−r0)n (10)

is the nmaxth-order approximation to the zero-range energy.
Equations (9) and (10) establish a relation between the zero-
range energy E(0) and the finite-range energy E(r0) and its
derivatives with respect to the two-body range. EZRA,0(r0) is
simply the finite-range energy E(r0) with linear leading-order
range dependence. The leading-order range dependence of
EZRA,1(r0) and EZRA,2(r0) is quadratic and cubic, respectively.
Crucial is that EZRA,1(r0) and EZRA,2(r0) are obtained at finite
r0 without extrapolation. They provide better approximations
to the zero-range energy E(0) than EZRA,0(r0). We refer
to the extrapolations of EZRA,1(r0) and EZRA,2(r0) to the
zero-range limit as the first- and second-order extrapolation
schemes. For a complete basis, EZRA,1(r0) coincides with
the quantity 3E(r0) − 4Vtr(r0), i.e., formally Eq. (9) with
nmax = 1 is equivalent to Eq. (5). It turns out, however, that
our ECG implementation provides a more accurate estimate
for E(1)(r0) than for Vtr(r0). In Sec. III, we independently
fit EZRA,0(r0), EZRA,1(r0), and EZRA,2(r0) and compare the
resulting zero-range energies. The Appendix shows that the
functional forms of EZRA,0(r0), EZRA,1(r0), and EZRA,2(r0)
are correlated and presents the results of a single combined
fit of EZRA,0(r0), EZRA,1(r0), and EZRA,2(r0). The resulting
zero-range energy is found to be consistent with the zero-range
energies obtained from the independent fits.

The ECG calculations become numerically more chal-
lenging with decreasing two-body interaction range r0. The
challenges arise from the need to resolve length scales of
different orders of magnitude. In previous ECG calculations
[21,22], much effort was put on solving the Schrödinger
equation for systems with small r0. In this work, we show
that a reliable approximation to the zero-range energy can be
obtained by calculating EZRA,2(r0) at a range r0 ≈ 0.1aho. We
demonstrate in Sec. III that EZRA,1(r0) and EZRA,2(r0) play
important roles in obtaining the zero-range energy E(0) and
its error bar.

To calculate the two-body Tan contact C(r0) at unitarity, we
use the adiabatic energy relation [30],

C(r0) = 4πm

�2

∂E(r0)

∂
(−a−1

s

) ∣∣∣∣
a−1

s =0

. (11)

To obtain the two-body contact for r0 = 0, we use the zeroth-
and first-order zero-range extrapolation schemes, i.e., we
extrapolate CZRA,0(r0) and

CZRA,1(r0) = C(r0) − ∂C(r̄0)

∂r̄0

∣∣∣∣
r̄0→r0

r0 (12)

to the zero-range limit.
The contact alternatively can be calculated through the pair

relation

C(r0) = N1 × N2 × lim
r→0,r�r0

(4π )2P12(r)r2, (13)

where P12(r) denotes the pair distribution function. The
quantity r2P12(r) with normalization 4π

∫ ∞
0 P12(r)r2dr = 1

tells one the likelihood of finding two unlike particles at
distance r from each other. The behavior of 4πP12(r)r2 around
r ≈ r0 depends on the details of the two-body interaction
potential. Specifically, for finite-range potentials the quantity
4πP12(r)r2 goes to zero as r → 0. For the zero-range potential,
in contrast, 4πP12(r)r2 remains finite as r → 0. Thus, to
extract the finite-range contact via the pair relation, we
consider the region where r � r0 but r 	 aho. In practice,
the condition r � r0 translates to r � 2r0.

We also consider the spherically symmetric radial density
Pj (r) of species j , j = 1, and 2. For even N , we have P1(r) =
P2(r). The quantity Pj (r) tells one the likelihood of finding a
particle at distance r from the trap center. The normalization
is chosen such that 4π

∫ ∞
0 Pj (r)r2dr = 1.

III. RESULTS

This section discusses the energies and other observables of
the systems with N � 10 obtained by the ECG method. We use
the (3,2) system to explain our new range correction scheme.
Column 2 of Table I shows the finite-range energies E(r0)
obtained by use of the ECG approach for various two-body
interaction ranges r0. The reported energies are obtained for
the largest basis set considered. They provide variational
upper bounds for the finite-range Hamiltonian with Gaussian
interaction. Column 3 reports the estimated basis set error
�E(r0). For all r0 considered, the basis set error is less than
0.02%. Columns 4 and 5 show the quantities E(1)(r0) and
E(2)(r0), respectively. While E(1)(r0) increases slightly with
decreasing range r0, this increase is smaller than the decrease of
r0, implying that the range correction E(1)(r0)r0 decreases with
decreasing r0. The magnitude of E(2)(r0) decreases with
decreasing r0. Note that we are not able to estimate E(2)(r0)
reliably for small r0 (the error bars are larger than the
quantity itself). Yet, the error bars of E(2)(r0) allow us to
estimate the maximal correction proportional to r2

0 for each
r0, thereby providing us with another means to estimate
error bars. Columns 6–8 of Table I show EZRA,j (r0) with
j = 0, 1, and 2. These values are obtained by subtracting the
basis set error �E(r0). The leading-order range dependence
of EZRA,0(r0) is linear and we perform a fit of the form
c0 + c1r0 + c2r

2
0 + c3r

3
0 . The extrapolated zero-range energy

is reported in the last row of column 6. The leading-order range
dependence of EZRA,1(r0) is quadratic and we perform a fit
of the form c0 + c2r

2
0 + c3r

3
0 + c4r

4
0 , weighted by the inverse

square of the uncertainty. The extrapolated zero-range energy
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r0/aho

7.46
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7.52
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FIG. 2. (Color online) Ground-state energy of the (3,2) system at
unitarity as a function of r0. Circles, squares, and diamonds show the
energies EZRA,0(r0), EZRA,1(r0), and EZRA,2(r0), respectively, reported
in the last three columns of Table I. The uncertainty of �E(r0) is not
accounted for by the error bars. Solid, dashed, and dotted lines show
polynomial fits to EZRA,0(r0), EZRA,1(r0), and EZRA,2(r0).

is reported in the last row of column 7. The leading-order range
dependence of EZRA,2(r0) is cubic and we perform a fit of the
form c0 + c3r

3
0 + c4r

4
0 , weighted by the inverse square of the

uncertainty. The extrapolated zero-range energy is reported
in the last row of column 8. Table I shows that the zeroth-,
first-, and second-order extrapolation schemes yield zero-
range energies that differ by at most 0.0013Eho. This confirms
that the range dependence of the (3,2) ground-state energy
for the r0 considered is well described by a Taylor series.
Moreover, we note that EZRA,2(r0) for r0 = 0.07aho differs by
only 0.0045Eho from the extrapolated zero-range energy. This
suggests that EZRA,2(r0) obtained at a single (relatively large)
range provides a very good estimate for the zero-range energy.
Circles, squares, and diamonds in Fig. 2 show the energies
EZRA,0(r0), EZRA,1(r0), and EZRA,2(r0), respectively. The fits
(see the discussion above) are shown by lines.

For systems with up to six particles (see the Supplemental
Material [27] for a summary), we believe that our basis sets
for all r0 are very close to complete. Specifically, (i) the energy
changes very little upon further enlargement of the basis set;
(ii) the first- and second-order derivatives E(1)(r0) and E(2)(r0)
are stable and their error bars can be estimated reliably; (iii)
the extrapolations of EZRA,0(r0), EZRA,1(r0), and EZRA,2(r0)
are in very good agreement; and (iv) the quantities 3E(r0) −
4Vtr(r0) and EZRA,1(r0) agree quite well [see the discussion
after Eq. (10)]. For systems with more than six particles, the
construction of a nearly complete basis set is more challenging,
especially for small r0. As an example, we discuss the (4,4)
system; for the (4,3), (5,4), and (5,5) systems, the reader is
referred to the Supplemental Material [27].

Table II summarizes our ECG results for the (4,4) system;
the format is the same as that in Table I for the (3,2) system.
The smallest range considered and the error bars for the
N = 8 system are larger than those for the N = 5 system. For
a fixed r0, the quantities E(1)(r0) and E(2)(r0) for the N = 8
system are about twice as large as for the N = 5 system
and their error bars are notably larger. The overall trends,

0 0.04 0.08
r0/aho

12

12.1

12.2

12.3

E/
E h
o

0 0.04 0.08
r0/aho

)b()a(

FIG. 3. (Color online) Ground-state energy of the (4,4) system
at unitarity. (a) Circles, squares, and diamonds show EZRA,0(r0),
EZRA,1(r0), and EZRA,2(r0), respectively, for the largest basis set
considered. The error bars of EZRA,0(r0) show the estimated basis
set error �E(r0) (see column 3 of Table II); they extend below the
data points but not above. The error bars of EZRA,1(r0) combine the
estimated basis set error and the error of E(1)(r0) (see column 4 of
Table II). Last, the error bars of EZRA,2(r0) combine the estimated
basis set error and the errors of E(1)(r0) and E(2)(r0) (see column 5 of
Table II). Solid and dashed lines show the extrapolations of EZRA,0(r0)
and EZRA,1(r0) to the zero-range limit. (b) Same quantities as in (a)
but corrected for the estimated basis set errors. The open symbols
show the energies EZRA,0(r0), EZRA,1(r0), and EZRA,2(r0) reported in
the last three columns of Table II. The uncertainty of �E(r0) is not
accounted for by the error bars. It can be seen that the basis set error
lowers the zero-range energy by about 0.05Eho or, equivalently, 0.4%.

however, are similar: (i) the energy E(r0) decreases with
decreasing range, (ii) E(1)(r0) increases with decreasing range
for r0 � 0.06aho (for smaller r0, the trend reverses; we believe
that this is a consequence of the numerics and not a real trend),
and (iii) E(2)(r0) becomes less negative with decreasing range.
Our numerics are not good enough to determine E(2)(r0) for
r0 � 0.06aho. It can be seen, however, that the EZRA,2(r0) for
r0 = 0.1aho and 0.08aho agree quite well with the energies
obtained by extrapolating EZRA,0(r0) and EZRA,1(r0) to the
zero-range limit (see the last row of Table II). Since the basis
set error is non-negligible for N = 8, Fig. 3 shows the energies
EZRA,0(r0) (circles), EZRA,1(r0) (squares), and EZRA,2(r0)
(diamonds) before correcting for the basis set error [Fig. 3(a)]
and after correcting for the basis set error [Fig. 3(b)]. We
extrapolate EZRA,0(r0) and EZRA,1(r0) for both the largest basis
set considered [Fig. 3(a)] and the infinite basis set [Fig. 3(b)]
to the zero-range limit by performing fits of the form
c0 + c1r0 + c2r

2
0 and c0 + c2r

2
0 , respectively (see the solid and

dashed lines in Fig. 3). To fit a function to EZRA,1(r0), the data
points are weighted by the inverse square of the uncertainty.
For the (4,4) and larger systems, we do not fit to higher-order
polynomials because (i) the number of data points is five or
less and (ii) the error bars are too large to determine the r3

0
dependence reliably. An alternative fit approach that includes
the r3

0 term is discussed in the Appendix.
Table III summarizes our zero-range ground-state energies

E(0) (column 2) obtained by extrapolating the energies
EZRA,1(r0), which have been shifted down by the estimated
basis set error, to the zero-range limit. The error bars given
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TABLE III. Summary of our zero-range ground-state energies at unitarity and comparison with literature results for systems with N � 10
and N1 − N2 � 1. Column 2 reports the zero-range ground-state energies E(0) calculated in this work. Columns 3 to 16 report ground-state
energies from the literature calculated by use of different methods and their percentage differences from E(0). All energies are reported in units
of Eho. The ground-state energy of the (2,1) system, obtained semianalytically [31], is 4.272724Eho. See text for more details.

(N1,N2) E(0) EECG % EDMC1
a % EDMC2

b % EAFMC2
c % EAFMC4

c % ECI
d % Elattice

e %

(2,1) 4.2727(1) 4.281(4) 0.2 4.279 0.1
(2,2) 5.0091(4) 5.0092(4)f 5.051(9) 0.8 5.028(2) 0.4 5.138 2.6 5.071(+32/−75) 1.2
(3,2) 7.455(1) 7.457(3)g 7.61(1) 2.1
(3,3) 8.337(4) 8.34(9)g 8.64(3) 3.6 8.377(3) 0.5 8.26(1) −0.9 8.21(1) −1.6 8.601 3.2 8.347(+80/−66) 0.1
(4,3) 11.01(2) 11.36(2) 3.2 11.021 0.1
(4,4) 12.02(3) 12.13(1)h 0.9 12.58(3) 4.7 12.04(1) 0.2 11.82(2) −1.7 11.76(3) −2.2 12.179 1.3 11.64(+11/−12) −3.2
(5,4) 15.24(9) 15.69(1) 3.0
(5,5) 16.12(6) 16.80(4) 4.2 16.10(1) −0.1 16.05(+3/−7) −0.4

aFrom Table II of Ref. [7]; the energies have been calculated for the square-well potential with range r0 = 0.01aho, which—at unitarity—
corresponds to reff = 0.01aho.
bRead off from Fig. 4 of Ref. [12]; the FN-DMC energies have been extrapolated to the zero-range limit.
cRead off from Fig. 4 of Ref. [12]; the error bars only account for the statistical uncertainty. A leading-order correction scheme has been applied
to convert the finite lattice results to the infinite lattice limit [12,32].
dFrom Table I of Ref. [13]; the CI energies have been obtained for a finite shell-model space and the two-body coupling constant has been
renormalized by matching the two-particle ground-state energy to the exact energy.
eFrom Table VI of Ref. [10]; the upper and lower limits of the error bars differ and are separated by a slash. The error bars account for statistical,
fitting, finite-volume, and spatial-discretization errors, but do not account for systematic errors due to the contributions from excited states. We
note that odd-N systems were considered in Ref. [9]. The results in Ref. [9] were described as “preliminary” and are not included here.
fFrom Ref. [20]; the energy has been obtained by solving the hyperangular Schrödinger equation.
gFrom Table XXI of Ref. [18]; the energies have been extrapolated to the zero-range limit using the zeroth-order extrapolation scheme.
hFrom Table II of Ref. [23]; the energy has been extrapolated to the zero-range limit using the zeroth-order extrapolation scheme.

in parentheses are estimated by combining the zero-range
extrapolation error, the uncertainty of the basis set error, and
the uncertainty of E(1)(r0).

Our ground-state energy for the (2,1) system agrees
excellently with the semianalytic energy obtained using the
zero-range framework of Ref. [31]. For comparison, Table III
includes the ground-state energies from the literature obtained
by various methods. Column 3 of Table III reports the
zero-range ground-state energies EECG calculated by the ECG
method in previous works [18,20,23]. Our results for the
(2,2), (3,2), and (3,3) systems agree within error bars with
the literature results. For the (3,3) system, we provide a
notably tighter error bar. The ECG energy for the (4,4) system
by Bradly et al. [23] is about 0.9% higher than our (4,4)
energy. Bradly et al. estimate that the error due to the use
of a restricted basis set is about 0.6% for the relative energy,
translating to 0.53% for the total energy. This estimate is in
reasonable agreement with the difference between their energy
and our energy. Column 5 reports the FN-DMC energies
EDMC1 calculated for the square-well potential with range
0.01aho [7]. The deviations between the FN-DMC and our
ECG energies are due to the positive effective range correction
and the approximate nature of the nodal surface of the trial
wave function (the latter dominates). Column 7 reports highly
improved FN-DMC energies EDMC2 [12]. These energies
have been extrapolated to the zero-range limit. The FN-DMC
energies from Ref. [12] agree very well with our ECG energies
(the agreement is better than 0.6% and, for N = 8 and 10, the
error bars overlap). Unfortunately, Ref. [12] considered only
spin-balanced systems. Columns 9 and 11 report the energies
EAFMC2 and EAFMC4 calculated using the AFMC approach
with q2 and q2 + q4 dispersion relations, respectively [12].

These energies have been obtained by applying a leading-order
correction scheme to convert the finite lattice results to the
infinite lattice limit but have not been extrapolated to the
infinite lattice size limit [12,32]. Note that the AFMC energies
for fixed N but different dispersion relations do not agree
within error bars. The reason may be that the corrections due
to the finite lattice spacing behave differently for the different
dispersion relations and that the error bars are purely statistical.
Column 13 reports the configuration interaction (CI) energies
ECI obtained using a limited CI shell-model space [13]. The au-
thors of Ref. [13] noted that the two-body interaction strength
was renormalized using an approach that could be improved
upon. Improvement to both these aspects (enlarged CI model
space and refined renormalization approach) could change the
CI energies. Interestingly, the odd-N CI energies agree quite
well with our ECG energies while the even-N CI energies are
higher by between 1.3% and 3.2%. It is not clear to us what the
origin of the different even- and odd-N behaviors is. Column
15 reports the lattice MC energies Elattice [10]. The lattice MC
energies exhibit shell effects that are absent in the FN-DMC,
AFMC, and—for small N—ECG energies (our energies for
N � 10 do not exhibit shell effects). The lattice MC energy for
N = 8 is 3.2% lower than our ECG, reflecting the shell effects
exhibited by the lattice MC energies in the small-N regime. For
systems with N > 10, the lattice MC energies are higher than
or equal to (within error bars) the FN-DMC energies EDMC2

from Ref. [12]. The difference between the lattice MC energies
and FN-DMC energies for N > 10 is smallest for closed-shell
systems. Besides the results summarized in Table III, we also
compared our ground-state energies with DFT energies [14]
for both even- and odd-N systems. The DFT energies are 5%
to 10% higher than our ECG energies.
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TABLE IV. Zero-range contact C(0) at unitarity for N = 3 − 10.
Column 2 reports the zero-range contact C(0) determined using
the adiabatic energy relation. C(0) for the (1,1) system, obtained
analytically from the implicit eigenequation derived in Ref. [33],
is 4

√
2πa−1

ho = 10.026513a−1
ho . C(0) for the (2,1) system, obtained

semianalytically using the hyperspherical coordinate framework
[31,34,35], is 10.468967a−1

ho .

(N1,N2) C(0)aho

(2,1) 10.469(1)
(2,2) 25.74(1)
(3,2) 25.20(1)
(3,3) 40.39(8)
(3,4) 38.2(2)
(4,4) 55.4(5)
(5,4) 56.9(9)
(5,5) 72.3(8)

In addition to the energies, we calculate the contact at
unitarity. To remove the leading-order range dependence, we
analyze the quantities CZRA,0(r0) and CZRA,1(r0). While the
energies EZRA,0(r0) and EZRA,1(r0) approach the r0 = 0 limit
from above and below, respectively, for all N considered, the
contacts CZRA,0(r0) and CZRA,1(r0) approach the r0 = 0 limit
from either above or below. Specifically, fitting CZRA,0(r0) to
a function of the form c0 + c1r0 + c2r

2
0 , we find that c1 is

positive for N = 4, very close to zero for N = 6, negative
for N = 8, and again positive for N = 10. For the odd-N
systems, c1 is always positive. The pair distribution functions
exhibit an analogous range dependence in the r0 	 r 	 aho

region (see Figs. 9 and 10 of the Supplemental Material for
the N = 5 and 8 systems), suggesting that the intricate N

and r0 dependence of the contact is a real effect and not an
artifact of our numerics. Our convergence studies support this
interpretation. Table IV reports the zero-range contact C(0) for
N = 3 − 10 at unitarity obtained by extrapolating CZRA,1(r0)
to the zero-range limit. The error bars in parentheses account
for the zero-range extrapolation error and the basis set error.
The r0 = 0 extrapolations of CZRA,0(r0) and of the contact
extracted from the pair distribution functions agree with the
values reported in Table IV but have larger error bars. The
contact exhibits an interesting even-odd pattern. Specifically,
for the N = 4 and 5 systems (and the 6 and 7 systems and
the 8 and 9 systems), the contacts are roughly equal, reflecting
the fact that these neighboring even-odd systems contain the
same number of pairs. To zeroth order, the contact scales as N2

times the contact of the two-body system, i.e., linearly with the
number of pairs. Since C(0) scales with N2, the r0 	 r 	 aho

region of the scaled pair distribution functions 4πP12(r)r2

approximately collapse to a single curve if multiplied by N1.
This approximate collapse is illustrated in Figs. 4(c) and 4(d).

Figure 5 shows the radial density P1(r) of the ground state
at unitarity for even N and r0 = 0.06aho. We note that the
convergence of the radial density in the small-r regime is not
as good as that of the pair distribution function, especially
for large N and small r0. P1(r) peaks at r = 0 for the (2,2)
system, is relatively flat in the small-r region for the (3,3)
and (5,5) systems, and peaks around 0.6aho for the (4,4)
system. To estimate the range dependence, we calculate P1(r)
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2(
r)
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/a
ho
-1
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r/aho
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4π
N
1P
12
(r
)r
2 /a
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-1
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)b()a(

(c) (d)

FIG. 4. (Color online) Panels (a) and (c) show the scaled pair
distribution functions 4πP12(r)r2 and 4πN1P12(r)r2, respectively, of
the ground state at unitarity for the (2,2) system (solid line), (3,3)
system (dashed line), (4,4) system (dotted line), and (5,5) system
(dash-dotted line). Panels (b) and (d) show the scaled pair distribution
functions 4πP12(r)r2 and 4πN1P12(r)r2, respectively, of the ground
state at unitarity for the (2,1) system (solid line), (3,2) system (dashed
line), (4,3) system (dotted line), and (5,4) system (dash-dotted line).
The calculations are performed for r0 = 0.06aho.

for different r0 for the (2,2), (3,3), and (4,4) systems. For a
given system, the r � 0.5aho region of P1(r) increases with
decreasing two-body range r0 (see Fig. 8 of the Supplemental
Material [27]). The changes with r0 are relatively small and
the densities displayed in Fig. 5 show the generic behavior of
trapped Fermi gases with short-range interactions. Figure 6
shows Pj (r), j = 1 and 2, for the odd-N systems at unitarity
for r0 = 0.06aho. P1(r) and P2(r) peak at r = 0 for the (2,1)
system, are relatively flat in the small-r region for the (3,2) and
(5,4) systems, and peak around 0.5aho for the (4,3) system.
We find that the range dependence of the radial density for
the odd-N systems is similar to that for the even-N systems
(see Fig. 7 of the Supplemental Material [27]).

To gain insights into the pairing of the particles, Fig. 7
shows the integrated quantities N̄j (r),

N̄j (r) = 4πNj

∫ r

0
Pj (r ′)r ′2dr ′, (14)

0 0.5 1 1.5 2 2.5
r/aho

0

0.05

0.1

0.15

0.2

P 1
(r
)/a
ho
-3

FIG. 5. (Color online) Radial density P1(r) of the ground state at
unitarity for the (2,2) system (solid line), (3,3) system (dashed line),
(4,4) system (dotted line), and (5,5) system (dash-dotted line). The
calculations are performed for r0 = 0.06aho.
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0 0.5 1 1.5 2 2.50
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ho
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FIG. 6. (Color online) Panels (a) and (b) show the radial density
of the majority species P1(r) and the minority species P2(r),
respectively, for the ground state of the (2,1) system (solid line),
(3,2) system (dashed line), (4,3) system (dotted line), and (5,4)
system (dash-dotted line). The calculations are performed for
r0 = 0.06aho.

for the odd-N systems. Solid and dashed lines show N̄j (r)
for the majority (j = 1) and minority (j = 2) species, respec-
tively. N̄j (r) monitors the number of particles of species j

located between zero and r and approaches Nj in the large-r
limit. We find that N̄1(r) and N̄2(r) take, for N fixed, different
values for all r , suggesting that there exists no core region
where the systems are fully paired. This is in contrast to an
earlier FN-DMC study [8] which suggested that the N = 9
system has a fully paired core. It should be noted that a fully
paired core is expected in the large-N limit [36]; however,
how many particles are needed to be in the large-N limit is not
clear.

0 0.5 1 1.5 2 2.5 3
r/aho

0

1

2

3

4

5

6

N_

j(r
)

FIG. 7. (Color online) Solid and dashed lines show the integrated
quantities N̄1(r) and N̄2(r), respectively, for odd-N systems as a
function of r . From bottom to top, the curves correspond to systems
with N = 3, 5, 7, and 9. The horizontal dotted lines at 1 to 5
serve as a guide to the eye. The calculations are performed for
r0 = 0.06aho.

IV. CONCLUSIONS

This paper considered the ground-state properties of
trapped two-component Fermi gases at unitarity with up to
10 particles. The calculations were performed for interspecies
finite-range Gaussian interaction potentials using the ECG
approach. Previous ECG calculations were limited to N = 3–6
and 8. The present work additionally considered the spin-
imbalanced N = 7 and 9 systems with Lπ = 1− symmetry and
the spin-balanced N = 10 system with Lπ = 0+ symmetry. A
new range-correction scheme, which allows for the leading
and—in some cases—the subleading range dependence to be
removed, was introduced. The accuracy of the range correction
scheme was tested extensively for small-N systems (N � 6)
and then applied to larger systems (N = 7–10). Our final
results for the ground-state energy, reported in column 2 of
Table III, are obtained by extrapolating EZRA,1(r0)—corrected
for by the basis set error—to the zero-range limit. The resulting
extrapolated zero-range energies have error bars that range
from 0.002% for N = 3 to 0.6% and 0.4% for N = 9 and
10. The energies agree well with the FN-DMC energies
from Ref. [12], suggesting that the zero-range energies of
harmonically trapped two-component Fermi gases with N �
10 (N1 − N2 = 0 or 1) are now known with an accuracy better
than 1%. The finite-range energies were reported for finite
r0 and all N . These finite-range energies provide variational
upper bounds and are expected to help assess the accuracy
of future finite-range calculations (the range r0 can be easily
converted to the effective range). In addition to the energy, the
pair distribution functions and radial densities were analyzed.
The Tan contacts obtained through the adiabatic and pair
relations were found to agree within error bars.
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APPENDIX: ADDITIONAL COMMENTS ON THE
RANGE-CORRECTION SCHEME

In the main text, we independently fit the quantities
EZRA,0(r0), EZRA,1(r0), and EZRA,2(r0). The resulting zero-
range energies were found to be in good agreement. This
appendix discusses that a single correlated fit yields results that
are consistent with those obtained from the independent fits.

We assume that the ground-state energy E(r0) = EZRA,0(r0)
is a polynomial in the two-body interaction range r0,

E(r0) = c0 + c1r0 + c2r
2
0 + c3r

3
0 + O

(
r4

0

)
. (A1)

Using Eq. (A1) to calculate E(1)(r0) and E(2)(r0) and inserting
the results into Eq. (10), we find

EZRA,1(r0) = c0 − c2r
2
0 − 2c3r

3
0 + O

(
r4

0

)
(A2)
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and

EZRA,2(r0) = c0 + c3r
3
0 + O

(
r4

0

)
. (A3)

As expected, the leading-order range dependencies of
EZRA,1(r0) and EZRA,2(r0) are quadratic and cubic, respectively,
and the functional forms of EZRA,j (r0) are not independent.
Specifically, the quadratic coefficient of EZRA,1(r0) has the
opposite sign but the same magnitude as that of EZRA,0(r0),
the cubic coefficient of EZRA,1(r0) has the opposite sign but
twice the magnitude as that of EZRA,0(r0), and the cubic
coefficient of EZRA,2(r0) is the same as that of EZRA,0(r0).
Interestingly, our independent fits shown in Figs. 2 and 3 of
the main text and Figs. 1–6 of the Supplemental Material
are largely consistent with Eqs. (A1)–(A3). For example, our
fits of EZRA,0(r0) yield a negative r2

0 coefficient and those of
EZRA,1(r0) yield a positive r2

0 coefficient. The magnitudes of
these coefficients, however, depend fairly sensitively on the
number of terms included in the independent fits.

As an alternative, we perform a simultaneous four-
parameter fit of EZRA,0(r0), EZRA,1(r0), and EZRA,2(r0) using
Eqs. (A1)–(A3). Each data point is weighted by the inverse
square of the uncertainty [for EZRA,0(r0) we assume an
uncertainty of 0.3�E(r0) and the uncertainties of EZRA,1(r0)
and EZRA,2(r0) are given in Tables I and II of the main text
and Tables I–VI of the Supplemental Material]. The resulting
zero-range energies for N = 3–10 are 4.2726Eho, 5.0088Eho,

7.454Eho, 8.335Eho, 11.01Eho, 12.02Eho, 15.25Eho, and
16.12Eho, respectively. These energies lie within the error
bars of the zero-range energies reported in Table III. The
simultaneous fit yields a positive c1 coefficient and negative c2

and c3 coefficients for all N . The c1 coefficient obtained from
the independent fit of EZRA,0(r0) differs from that obtained
from the simultaneous fit by less than 10% for all N .

We also apply the simultaneous fit approach to the contact.
We fit our numerically obtained CZRA,0(r0) and CZRA,1(r0) to
functions of the form c0 + c1r0 + c2r

2
0 + c3r

3
0 and c0 − c2r

2
0 −

2c3r
3
0 , respectively, for N < 6, and to functions of the form

c0 + c1r0 + c2r
2
0 and c0 − c2r

2
0 , respectively, for N = 7–10.

The resulting zero-range contacts C(0) for N = 3–10 lie
within the error bars of the zero-range contacts reported in
Table IV.

The observed leading and subleading corrections to the
ground-state energy for systems at unitarity with N1 − N2 = 0
or 1 (positive c1 and negative c2) have the same sign as those
reported for the homogeneous system (see, e.g., Ref. [11]).
For the two-particle system, this can be seen directly from
the analytically known solutions given in Refs. [33,37–39].
It is interesting that this behavior does not change with
increasing number of particles. Importantly, though, the sign
of the leading-order range correction of the trapped system
does depend on the s-wave scattering length (see, e.g.,
Ref. [19]).
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