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Quantum fluctuation-driven first-order phase transitions in optical lattices
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We study quantum fluctuation-driven first-order phase transitions of a two-species bosonic system in a three-
dimensional optical lattice. Using effective potential method we find that the superfluid-Mott insulator phase
transition of one type of bosons can be changed from second order to first order by the quantum fluctuations of the
other type of bosons. The study of the scaling behaviors near the quantum critical point shows that the first-order
phase transition has a different universality from the second-order one. We also discuss the observation of this
phenomenon in the realistic cold-atom experiments based on the in situ density measurements.
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I. INTRODUCTION

Recently, the research of quantum criticality in cold-atom
systems has attracted a great deal of interest. Several schemes
have been proposed to determine the critical properties by
extracting the universal scaling functions from the atomic
density profiles [1–3]. The experimental observations of
quantum critical behaviors of ultracold atoms have also been
reported [4,5]. As a clean and highly controllable system, cold
atoms can be a good playground to study various quantum
critical behaviors.

An intriguing phenomenon near the quantum critical points
(QCPs) is the effect of quantum fluctuation driven first-order
phase transitions. The QCPs may become unstable in the
appearance of competing orders. The nature of the phase
transition can be changed from second to first order by the
quantum fluctuations. This phenomenon was first discussed
by Coleman and Weinberg [6]. They investigated a theory
of a massless charged meson coupled to the electrodynamic
field using effective potential method. Starting from a model
without symmetry breaking at tree level they found that the
one-loop effective potential indicated a new energy minimum
appearing away from the origin. Independently, Halperin,
Lubensky, and Ma [7] discovered the same phenomenon in the
Ginzburg-Landau theory of superconductor to normal-metal
transition and showed that the fluctuations of the electromag-
netic field induce a first-order transition. Quantum fluctuation
driven first-order phase transitions were also discussed in
systems with multiple coupling constants [8,9]. Recently, there
have appeared more examples of the nature of the quantum
phase transition is predicted to become discontinuous as the
QCP is approached [10–17].

In this paper we investigate the quantum fluctuation-driven
first-order phase transitions of a two-species boson system in
a three-dimensional optical lattice. This phenomenon has not
been sufficiently explored in condensed-matter physics. With
the recent progress in the research of the quantum critical
behaviors in cold atom physics we are able to observe this phe-
nomenon in a realistic experiment. Multicomponent bosonic
systems have been studied both experimentally [18–21]
and theoretically [22–29]. Compared with the paradigmatic
superfluid to Mott insulator transition of a single-component
Bose gas in an optical lattice [30–34], multicomponent bosonic
systems have much richer phase diagrams. In our work

we implement Coleman and Weinberg’s effective potential
method [6] to calculate the quantum corrections to the classical
action up to one-loop level. We find that the superfluid-Mott
insulator phase transition of one type of bosons can be driven
from second order to first order by the quantum fluctuations
of the other type. We study the scaling behaviors near the
first-order phase transition and give a feasible proposal to
observe this phenomenon in cold-atom experiments.

II. TWO-SPECIES BOSE-HUBBARD MODEL

To describe Bose-Bose mixtures loaded into optical lat-
tices, we consider the following two-species Bose-Hubbard
Hamiltonian:

H = −
∑
α,〈ij〉

tα(b̂†αi b̂αj + b̂
†
αj b̂αi) −

∑
α,i

μαn̂αi

+
∑
α,i

Uα

2
n̂αi(n̂αi − 1) + UAB

N∑
i=1

n̂1i n̂2i . (1)

Here b
†
αi creates a boson of sort α = A,B at site i. The first

term in the Hamiltonian represents the hopping of bosons of
types A and B between the nearest-neighbor pairs of sites 〈ij 〉
with hopping amplitudes tA and tB . n̂αi ≡ b̂

†
αi b̂αi is the number

operator of the α type boson at the site i. We have two chemical
potential μA and μB to fix the total number of type A and B

bosons. Uα and UAB denote the intra- and interspecies on-site
interaction strengths.

The mean-field analysis shows that the system has three
different phases [24]: (I) both species A and B stay in the
superfluid phases, (II) one species is in the superfluid phase
and the other one is in the Mott insulator phase, and (III)
both species are in the Mott insulator phases. Two examples
of the phase diagrams are shown in Fig. 1. To study the
quantum fluctuation effects in the vicinity of QCPs we may
take the limit of vanishing lattice constant and finally write
down a continuum quantum field theory to describe the
phase transitions. This can be done by following a standard
procedure [35]: (I) writing the partition function in the coherent
state path-integral representation, (II) decoupling the hoping
terms by introducing two auxiliary fields ϕ1 and ϕ2 through
the Hubbard-Stratanovich transformation, and (III) integrating
out the fields b

†
Ai , bAi , b

†
Bi , and bBi . Then the action can be
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FIG. 1. (Color online) Phase diagrams of the two-species Bose-Hubbard model. The axes are either ZtA vs μA or ZtB vs μB , all in units of
UA or UB , where Z is the number of the nearest neighbors around each lattice point. Curves LA and LB denote the superfluid-Mott insulator
phase boundaries for species A and B. Depending on different parameters, LA and LB may divide the diagram into two, three, or four regions,
two examples are presented here: (a) n0

1 = 1, n0
2 = 2, and UAB/UA = UAB/UB = 0.5; (b) n0

1 = 1, n0
2 = 2, and UAB/UA = UAB/UB = 0.2.

Labels “SASB ,” “MAMB ,” “SAMB ,” and “MASB” denote for superfluid phase for both species A and B, Mott insulator phase for both species
A and B, superfluid phase for species A Mott insulator phase for species B, and superfluid phase for species B Mott insulator phase for
species A.

written as

S =
∫

dτ ddx

{
u1ϕ

∗
1∂τϕ1 + v1|∂τϕ1|2 + w1|∇ϕ1|2

+u2ϕ
∗
2∂τϕ2 + v2|∂τϕ2|2 + w2|∇ϕ2|2 + r1|ϕ1|2

+ r2|ϕ2|2 + g1

2
|ϕ1|4 + g2

2
|ϕ2|4 + g3|ϕ1|2|ϕ2|2

}
. (2)

The average of the two Hubbard-Stratanovich fields ϕ1 and ϕ2

are proportional to 〈bA(x,τ )〉 and 〈bB(x,τ )〉. Hence they can
be taken as the superfluid order parameters. All the coefficients
in Eq. (2) can be expressed in terms of the hopping amplitudes
tα , the chemical potentials μα , and the on-site interaction
strengths Uα and UAB ,

r1 = 1

ztA
− n0

A + 1

�A+
− n0

A

�A−
,

r2 = 1

ztB
− n0

B + 1

�B+
− n0

B

�A−
, (3)

where

�A(B)+ = −μA(B) + UA(B)n
0
A(B) + UABn0

B(A),

�A(B)− = μA(B) − UA(B)(n
0
A(B) − 1) − UABn0

B(A), (4)

which denote the particle and hole excitation energy of the
species A(B). The occupation numbers n0

A(B) are defined as

the smallest integer larger than UAB (UAB−UB(A)−2μB(A))+2μA(B)UB(A)

2(UA(B)UB(A)−U 2
AB )

.
The equations r1 = 0 and r2 = 0 generate the mean-field
phase boundaries in Fig. 1. Furthermore, the two-species
Bose-Hubbard model obeys a U(1) × U(1) gauge symmetry,
which implies that the model is invariant under the trans-
formation bα(τ ) → bα(τ )eiθα (τ ), φα(τ ) → φα(τ )eiθα (τ ), and

μα → μα + i∂τ θα(τ ), where α = A,B. This gauge invariance
helps to fix the coefficients of the first- and second-order
time derivatives as [35] u1 = − 1

t2
A

∂tA
∂μA

, u2 = − 1
t2
B

∂tB
∂μB

, v1 =
1
t3
A

( ∂tA
∂μA

)2 − 1
2t2

A

∂2tA
∂μ2

A

, and v2 = 1
t3
B

( ∂tB
∂μB

)2 − 1
2t2

B

∂2tB
∂μ2

B

, where partial

derivatives ∂tA(B)/∂μA(B) and ∂2tA(B)/∂μ2
A(B) can be calcu-

lated from Eq. (3) for fixed ri . Along the mean-field phase
boundaries the parameters u1 and u2 can be expressed as

u1 = z
(
n0

A + 1
)

�2
A+

− zn0
A

�2
A−

,

u2 = z
(
n0

B + 1
)

�2
B+

− zn0
B

�2
B−

. (5)

It’s straightforward to see that at the tips of the insulating lobes
coefficients u1 and u2 vanish. For simplicity we consider the
QCPs at the tips of the insulating lobes; then the action of
Eq. (2) is deduced to a relativistic theory. This also reflects the
particle-hole symmetry at the tips of the insulating lobes. For
example, we take the insulating lobes of n0

A = n0
B = 1. Using

Eq. (5) we obtain

μA(μB) = UA(UB)/(
√

2 + 1) + UAB, (6)

for u1 = u2 = 0. With this relations we can fine-tune the
system around the tips of the lobes. In the harmonic trap this
condition locates a shell in the cloud of gas. By varying the
optical potential depth we will be able to change the hopping
term tα so that the system can go across the phase-transition
point. Furthermore, the interaction couplings can also be
calculated as

g1 = 2
(
n

(0)
A + 1

)2

�3
A+

+ 2
(
n

(0)
A

)2

�3
A−

+
(
n

(0)
A + 1

)
n

(0)
A

�A+�A−

(
1

�A+
+ 1

�A−

)
,

g2 = 2
(
n

(0)
B + 1

)2

�3
B+

+ 2
(
n

(0)
B

)2

�3
B−

+
(
n

(0)
B + 1

)
n

(0)
B

�B+�B−

(
1

�B+
+ 1

�B−

)
,
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g3 =
(
n

(0)
A + 1

)(
n

(0)
B + 1

)
�A+�B+

(
1

�A+
+ 1

�B+

)
+ n

(0)
A n

(0)
B

�A−�B−

(
1

�A−
+ 1

�B−

)

+
(
n

(0)
A + 1

)
n

(0)
B

�A+�B−

(
1

�A+
+ 1

�B−

)
+

(
n

(0)
B + 1

)
n

(0)
A

�A−�B+

(
1

�A−
+ 1

�B+

)
. (7)

In the above equations we ignore the processes of two-particle
or two-hole excitations of one species, since the one-particle
and one-hole excitation are dominant.

III. COLEMAN-WEINBERG EFFECTIVE POTENTIAL

At the tips of the insulating lobes the classical potential of
this theory is posed right on the edge of the symmetry breaking,
that is r1 = r2 = 0 in Eq. (2). We wonder whether the quantum
fluctuations will break the symmetry or not. To answer this
question we implement the Weinberg and Coleman’s effective
potential method [6] to calculate the quantum corrections to
the action of Eq. (2).

The notion of the effective potential has been found to
be very useful in theories exhibiting spontaneously broken
symmetry. It allows one to calculate quantum corrections
to the classical picture of spontaneous symmetry breaking.
This method is often useful in the case with the presence
of a classical external field. For instance, a theory with a
mean-field and quantum fluctuations. The effective potential
method was first developed in high-energy physics [6].
However, it’s also widely used in condensed-matter theories.

Basically, we expand the field in terms of its mean value and
quantum fluctuations. Then we can integrate out the quantum
fluctuations to obtain an effective theory of the mean field. All
the quantum properties are incorporated in this effective theory.
The nature of the effective potential can be totally different
from the classical one. For example, the phase transition can
be changed from second order to first order [10–17].

To obtain the effective potential we expand the fields ϕ1

and ϕ2 in Eq. (2) in terms of their mean fields and quantum
fluctuations ϕ1 → φ1 + δφ1 and ϕ2 → φ2 + δφ2 and keep the
fluctuation up to the second order. Then the action can be
written as

S[φ1,φ2] = S0[φ1,φ2] + 1

2

∫
dτ d3x δ
†G−1δ
, (8)

where S0[φ1,φ2] = ∫
dτ d3x{|∂τφ1|2 + |∇φ1|2 + |∂τφ2|2 +

|∇φ2|2 + g1

2 |φ1|4 + g2

2 |φ2|4 + g3|φ1|2|φ2|2}. The parameters
v1, w1, v2, and w2 have been absorbed into the coordinates.
Field δ
† = [δφ∗

1 ,δφ1,δφ
∗
2 ,δφ2] and δ
 is its Hermitian

conjugate. The matrix G−1 is

⎛
⎜⎜⎜⎜⎝

−∂2 + 2g1φ
∗
1φ1 + g3φ

∗
2φ2 g1φ1φ1 g3φ1φ

∗
2 g3φ1φ2

g1φ
∗
1φ∗

1 −∂2 + 2g1φ
∗
1φ1 + g3φ

∗
2φ2 g3φ

∗
1φ∗

2 g3φ
∗
1φ2

g3φ
∗
1φ2 g3φ1φ2 −∂2 + 2g2φ

∗
2φ2 + g3φ

∗
1φ1 g2φ2φ2

g3φ
∗
1φ∗

2 g3φ1φ
∗
2 g2φ

∗
2φ∗

2 −∂2 + 2g2φ
∗
2φ2 + g3φ

∗
1φ1

⎞
⎟⎟⎟⎟⎠, (9)

where ∂2 = ∂2
τ + ∇2.

After we integrate out the fluctuation fields δ
 the effective potential of our action up to one-loop level can be calculated as

Veff = g1/2(φ∗
1φ1)2 + g2/2(φ∗

2φ2)2 + g3φ
∗
1φ1φ

∗
2φ2 + 1

64π2

{
m4

1 ln m2
1 + m4

2 ln m2
2 + m4

+ ln m2
+ + m4

− ln m2
−
}

+B1|φ1|2 + B2|φ2|2 + C1|φ1|4 + C2|φ2|4 + C3|φ1|2|φ2|2, (10)

where

m2
1 = g1|φ1|2 + g3|φ2|2, m2

2 = g2|φ2|2 + g3|φ1|2, m2
± = 1

2

∣∣(3g1 + g3)|φ1|2 + (3g2 + g3)|φ2|2

±
√

[(3g1 − g3)|φ1|2 − (3g2 − g3)|φ2|2]2 + 16g2
3 |φ1|2|φ2|2|. (11)

The terms with coefficients B1, B2, C1, C2, and C3

in Eq. (10) are the renormalization counterterms. They
can be fixed by imposing the renormalization condi-
tions ∂Veff

∂φ∗
1 ∂φ1

|φ1=0,φ2=0 = 0, ∂Veff
∂φ∗

2 ∂φ2
|φ1=0,φ2=0 = 0, Veff(|φ1| =

M,|φ2| = 0) = g1

2 M4, Veff(|φ1| = 0,|φ2| = M) = g2

2 M4, and
Veff(|φ1| = M,|φ2| = M) = ( g1

2 + g2

2 + g3)M4, where M is
the renormalization parameter and can be chosen arbitrarily.

The minima of the effective potential actually give the
true vacuum states with the quantum fluctuation corrections.

Compared with the classical potential where the vacuum is
right at the origin, the one-loop effective potential in Eq. (10)
exhibits new vacua away from the origin. This can be shown
in the three-dimensional and contour plots of the effective
potential in Fig. 2. Without loss of generality we already
simplified the effective potential by fixing the complex fields to
their real directions so that the effective potential can be easily
visualized in Fig. 2. That is, we take φ1 → φ1R and φ2 → φ2R .
φ1R and φ2R are real fields. Here we take the parameters
g1 < g2 in different values; then we observe that the new
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FIG. 2. (Color online) Three-dimensional and contour plots of
the effective potential of the two-species Bose-Hubbard model.
Coefficients r1 = r2 = 0 for both graph (a) and (b). We use UB as
the energy scale to make all the couplings dimensionless. Here we
take UB/UA = 0.3, then the interaction couplings are g2U

3
B = 101.9

and g3U
3
B = 26.5. We take renormalization parameter M = 〈φ1〉,

where 〈φ1〉 is the vacuum of field φ1. The interaction coupling g1

is eliminated by the condition ∂Veff
∂φ1

||φ1|=〈φ1〉 = 0.

vacua appear at φ∗
1φ1 	= 0,φ∗

2φ2 = 0 in Figs. 2(a) and 2(b).
Hence the U(1) × U(1) symmetry is spontaneously broken to
U(1) symmetry. At the new vacuum the field φ2 stays in the
insulator phase and field φ1 is in the superfluid phase. Notice
that in Fig. 2 we choose renormalization parameter M = 〈φ1〉
since M is arbitrary, where 〈φ1〉 is the vacuum of field φ1.
By setting M = 〈φ1〉 the interaction coupling g1 is eliminated
through the condition ∂Veff

∂φ1
||φ1|=〈φ1〉 = 0. Here we introduce a

dimensional parameter 〈φ1〉 and eliminate a dimensionless one
g1. This is called the dimensional transmutation [6].

However, the appearance of new vacua can be an artifact
since the new vacua may lie outside the range of validity of
the one-loop approximation [6]. In order to investigate the
validity of our result we take the direction of φ∗

2φ2 = 0 in the
effective potential to explore the vacuum. Along this direction
the effective potential can be reduced to

Veff = g1/2(φ∗
1φ1)2 + 1

32π2
g2

3(φ∗
1φ1)2 ln

φ∗
1φ1

M2
. (12)

The effective potential of Eq. (12) includes a term of ln φ∗
1 φ1

M2 .
The logarithm of a small number is negative. Hence the
minimum arose from balancing a term of order g1 against
a term of order g2

3 ln φ∗
1 φ1

M2 . Even though the second term
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FIG. 3. (Color online) Effective potential along the φ∗
2φ2 = 0

direction with different values of g3. The parameters are r1 =
r2 = 0 and g2U

3
B = 101.9. g3 is indicated in the graph. We take

renormalization parameter M = 〈φ1〉. The interaction coupling g1

is eliminated by the condition ∂Veff
∂φ1

||φ1|=〈φ1〉 = 0.

formally arises in a higher order of our expansion, there is
no reason why g1 cannot be of the same order of magnitude
as g2

3. In the realistic system the coupling constant g1 and
g3 can be calculated through Eq. (7). With the condition
Eq. (6) we can derive the couplings approximately as g1 ∼ 1

U 3
A

and g3 ∼ 1
UAUB

( 1
UA

+ 1
UB

). If we tune UA � UB we can have

g2
3 � g1. Hence our result is inside the range of validity of

the one-loop approximation. The new vacuum is illustrated in
Fig. 3. As g3 gets stronger the vacuum becomes deeper.

The excitation spectrum around the new vacuum can
be calculated by expanding the effective action around
the new vacuum of |φ1|2 = ρ, |φ2|2 = 0. Let us write
φ1 → √

ρ + δφ1, φ2 → δφ2. Up to the quadratic order of
the fields δφ1 and δφ2 a straightforward computation yields
S = ∫

dτ d3x{|∂τ δφ1|2 + |∇δφ1|2 + |∂τ δφ2|2 + |∇δφ2|2 −
g2

3
64π2 ρ

2 + g2
3

32π2 ρ(δφ2
1 + δφ∗2

1 + 2δφ∗
1δφ1) + g3ρδφ∗

2δφ2}. The
diagonalization of the mass term of field δφ1 generates two

mass eigenvalues m2
1 = g2

3
16π2 ρ or 0. The massless excitation is

the Goldstone mode, which indicates the breakdown of U(1)
symmetry of field φ1. The field δφ2 has two modes with the
same mass m2

2 = g3ρ.

IV. NATURE OF THE PHASE TRANSITION

We investigate the effective potential with nonzero
parameter r1 and r2. For large enough r1 and r2 the vacuum
of the effective potential is at the origin. Now we vary the
coefficient r1 to study how the vacuum changes. Along the
direction of φ∗

2φ2 = 0 the effective potential is obtained

as Veff = r1|φ1|2 + g1

2 |φ1|4 + (r2+g3|φ1|2)2

32π2 ln(r2 + g3|φ1|2) −
r2

2 ln r2

32π2 − (φ∗
1 φ1)2

32π2M4 (r2 + g3M
2)2 ln(r2 + g3M

2). Here if we
choose the value of r1 small enough a local minimum
will appear away from the origin as show in Fig. 4(a). For
simplicity we take the renormalization parameter M2 = 〈φ1〉2,
where 〈φ1〉 is the average value of the field φ1 at the local
minimum. Using the condition of ∂Veff

∂φ1
|φ∗

1 φ1=〈φ1〉2 = 0 the
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effective potential can be simplified as

Veff = r1|φ1|2 + (r2 + g3|φ1|2)2

32π2
ln(r2 + g3|φ1|2)

+ (φ∗
1φ1)2

2〈φ1〉2

(
−r1 − g3(r2 + g3〈φ1〉2)

16π2
ln(r2 + g3〈φ1〉2) − g3

32π2
(r2 + g3〈φ1〉2)

)
− r2

2 ln r2

32π2
. (13)

As we lower the parameter r1 the vacuum of the above
effective potential jumps from the origin to a new vacuum at
φ∗

1φ1 = 〈φ1〉2 and φ∗
2φ2 = 0, where the type A bosons become

superfluid and type B bosons stay in the insulator phase. This
phase transition occurs at a finite value of r1. The change of
the vacuum is shown in graph (a) of Fig. 4. As r1 approaches
to the critical value r1c there is a first-order phase transition,
where critical value of r1 is

r1c = 1

16π2〈φ1〉2
r2

2 ln r2 + g3

32π2
(r2 + g3〈φ1〉2)

− r2

16π2〈φ1〉2
(r2 + g3〈φ1〉2) ln(r2 + g3〈φ1〉2). (14)

In graph (b) of Fig. 4 we show the dependence of r1c on the
parameter r2. As r2 gets larger the critical value r1c becomes
smaller and even goes to zero, where the second-order phase
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FIG. 4. (Color online) (a) Effective potential along the φ∗
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transition will take place. That is, if the field φ2 is deeply in
the insulator phase the first-order phase transition of φ1 cannot
be induced. This quantum fluctuation-driven first-order phase
transition can only happen near the QCP with the appearance
of competing orders.

At a first-order phase transition certain physical quantities,
such as the order parameter and the energy density, have a
discontinuous behavior and the correlation lengths remain
generally finite. Hence there is no true critical behavior.
However, it turns out to be useful to develop a scaling approach
for these transitions [36,37] with scaling exponents such as
β = 0, α = γ = 1, ν = 1/(d + z), and δ = ∞. In our case the
effective potential at the metastable minimum φ∗

1φ1 = 〈φ1〉2

can be written as Veff(〈φ1〉) = 1/2(r1 − r1c)〈φ1〉2. Introducing
a parameter δ = r1 − r1c which measures the distance to the
critical value r1c, we have Veff ∝ |δ|2−α . We can identify that
α = 1, which reflects the nature of the phase transition, is first
order.

The finite temperature case can be studied through replacing
the frequency integrations in the calculation of the effective
potential by sums over the Matsubara frequencies. With high-
temperature approximation T � r1c the effective potential
is written as Veff = Veff(T = 0) − 2π2

45 T 4 + [r1 + r2 + (2g1 +
g3)φ∗

1φ1] T 2

12 , where Veff(T = 0) is the effective potential in
Eq. (13) and we take kB = 1. The first-order phase transition
at finite temperature occurs at r1 + T 2

12 (2g1 + g3) = r1c, where
r1c is the critical value in Eq. (14). Then the critical temperature
of the first-order phase transition is

Tc =
√

12(r1c − r1)

2g1 + g3
. (15)

Furthermore, at high temperature the effective potential at the
metastable minimum can be cast in a scaling form

Veff = 1

2
|δ|2−α〈φ1〉2

(
1 − 4π2T 4

45|δ|〈φ1〉2

)
= |δ|2−αF

[
T

TX

]
,

(16)

where the crossover line is TX = |δ|zν = |δ| 1
4 . We can iden-

tify that ν = 1/4 with z = 1 in our case. This satisfies
the hyperscaling relation 2 − α = ν(d + z) and the univer-
sality of first-order phase transition, where ν = 1

d+z
[37].

Finite-temperature phase diagram is shown in Fig. 5.

V. EXPERIMENTAL PROPOSALS

The study of quantum criticality in cold-atom systems
is based on in situ density measurements [1–3,5]. General
arguments show that the observables obey universal scaling
relations near the QCPs. The density can be cast as n(μ,T ) −
nr (μ,T ) = T

d
z
+1− 1

zν G(μ−μc

T 1/zν ), where μc is the critical value of
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FIG. 5. (Color online) Phase diagram of type A bosons at finite
temperature. The parameters are set as r2UB = 3, g2U

3
B = 101.9, and

g3U
3
B = 26.5. Tc is the critical line of the first-order phase transition

of boson A. TX is the crossover line.

the chemical potential, nr is the regular part of the density,
and G(x) is a universal function describing the singular part
of the density. Following the scheme developed by Zhou
and Ho [1] we can plot the “scaled density” A(μ,T ) ≡
T − d

z
−1+ 1

zν [n(μ,T ) − nr ] versus (μ − μc)/T
1
νz . The scaled

density curves for all temperatures will collapse into a single
curve. Here it’s important to notice that our calculation of
ν = 1

4 is with respect to the argument δ = r1 − r1c. However,
in the realistic cold-atom experiments we use μ1 − μ1c to
measure the distance to the QCP. Hence a critical exponent
ν̃ with respect to the argument μ1 − μ1c should be obtained.

As we approach the tip of the insulator lob by varying the
chemical potential we have [33] δ = r1 − r1c ∼ (μ1 − μ1c)2.
A straightforward calculation yields ν̃ = 2ν = 1

2 . Then the
scaled density will be in the form of A(μ,T ) = T −2[n(μ,T ) −
nr ] near the first-order QCP, where we have z = 1, d = 3, and
ν̃ = 1

2 . In order to distinguish this case from the second-order
phase transition we also calculate the scaled density near the
second-order QCP, which belongs to the three-dimensional
XY universality class with critical exponents z = 1 and ν̃ =
1 [33]. Then the scaled density is A(μ,T ) = T −3[n(μ,T ) −
nr ]. By testing which form the measured scaled density obeys
we can determine whether the phase transition is in first or
second order.

VI. CONCLUSIONS

In summary, we have investigated the quantum fluctuation
effects in two-species bosons in a three-dimensional optical
lattice. We find that nature of the superfluid-Mott insulator
phase transition of one type of bosons can be changed from
second order to first order by the quantum fluctuations of
the other type of bosons. The scaling behavior of this first-
order phase transition was studied and the critical exponents
were calculated. Finally, we discussed the observation of this
phenomenon in a realistic cold-atom experiment.
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[31] T. Stöferle, H. Moritz, C. Schori, M. Köhl, and T. Esslinger,
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