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The feasibility of complete photoionization experiments, in which the full set of photoionization matrix
elements is determined, using multiphoton ionization schemes with polarization-shaped pulses has recently been
demonstrated [P. Hockett et al., Phys. Rev. Lett. 112, 223001 (2014)]. Here we extend our previous work to
discuss further details of the numerics and analysis methodology utilized and compare the results directly to new
tomographic photoelectron measurements, which provide a more sensitive test of the validity of the results. In so
doing we discuss in detail the physics of the photoionization process and suggest various avenues and prospects
for this coherent multiplexing methodology.
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I. INTRODUCTION

The aim of “complete” photoionization studies is the deter-
mination of the amplitudes and phases of the ionization matrix
elements, which constitute a fundamental description of an
ionization event [1,2]. The matrix elements define the coupling
of the initial state to the final compound state, comprised of an
ion and free electron. In the dipole limit, this matrix element
can be very generally defined as 〈ψe; �+|μ̂.E|�〉. Here �

is the initial wave function of the system, �+ the photoion,
ψe the photoelectron, μ̂ the dipole operator, and E the electric
field. By expressing the continuum wave function ψe as a set of
partial waves, corresponding to different continuum angular
momentum states, the ionization matrix element can be decom-
posed into various geometric and radial components, and the
set of amplitudes and phases of these components constitutes
a complete description of the ionization event. In order to de-
termine these matrix elements from experimental data, an ob-
servable sensitive to the relative phases of the partial waves is
required, and such an interferometric observable is found in the
photoelectron angular distributions (PADs), which are angular
interference patterns dependent on the composition of ψe.

A range of experiments has been performed in order to
provide such complete descriptions of photoionization for a
number of atomic and molecular systems. The key concern
in such experiments is the level of detail required in order to
undertake the relatively complex analysis procedure. Typically
the angular (or geometric) part of the matrix elements can be
calculated analytically [3], leaving only the energy-dependent
radial (or dynamical) components to be determined from the
experimental data. The determination of these components
involves fitting experimental data with the specific ionization
formalism for the ionization event under study. Since, in
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general, there may be many partial waves and the composition
of ψe is not usually known a priori, a large experimental
data set is required for this procedure. In order to obtain a
sufficient data set, experimental data are obtained for a range of
geometric parameters, for example by varying the polarization
state and polarization geometry [4–8] or, for molecules, the
rotational state or axis distribution [9–13] or via molecular
frame measurements [14–16]. Since the dynamical parameters
are invariant to these geometric changes, a data set of sufficient
information content to determine these parameters may be
obtained in this way.

Recently, we demonstrated a new type of measurement
and analysis methodology for complete experiments [17]. This
method can be considered as time-domain polarization mul-
tiplexing. In this case, a multiphoton ionization scheme with
a moderately intense, ultrafast laser pulse was employed to
ionize potassium atoms. The resulting light-matter interaction
can be understood as an intrapulse two-step process, in which
electronic population transfer is driven by the laser field (i.e.,
Rabi oscillations), and the excited-state population created can
subsequently be ionized via two-photon absorption. In this
case, the population dynamics and the ionization dynamics are
dependent on the properties of the laser pulse, as well as the
physical properties of the system, which ultimately determine
the matrix elements. In this scheme, changing the polarization
of the pulse corresponds to changing the geometric parameters
of the ionization, as described above. In the simplest case a
single or pure polarization state is employed, and the geometric
parameters are time invariant. More generally, via the use of
a polarization-shaped pulse, the geometric parameters can be
changed in a time-dependent manner. Since the dynamics and
ionization all occur within a single laser pulse, the process
is fully coherent, and the final, time-integrated, photoelectron
measurement can be considered a time-domain multiplexed
measurement of the set of (instantaneous) polarization states
explored by the shaped pulse.
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Here we discuss further details of the work presented
in Ref. [17], with a focus on extending the details of the
theory presented therein, in particular, the numerical details
of the fitting procedure and a discussion of the benefits and
limitations of this approach. We further present a detailed com-
parison of our results with new maximum information pho-
toelectron measurements, utilizing a tomographic procedure
for the measurement of three-dimensional (3D) photoelectron
distributions and detailed analysis, allowing for a quantitative
comparison of the predicted PADs and experimental PADs
as a function of the polarization geometry (further details
of the maximum information measurements can be found in
Ref. [18]). Finally, the possibilities of extending this treatment
to different classes of ionization is explored, with a particular
emphasis on molecular ionization problems.

II. INTRAPULSE DYNAMICS AND MULTIPHOTON
IONIZATION WITH POLARIZATION-SHAPED PULSES

Here we detail the various steps involved in the treatment
of the three-photon scheme detailed above. For completeness
we include all aspects of our treatment.

A. Electric field

The electric field as a function of time is described as

E(t) = E0e
−(t/τ )2

eiωt , (1)

where E0 is the field strength, the pulse envelope is Gaussian
with temporal width parameter τ , and ω is the carrier (angular)
frequency. Using the notation of Ref. [19] the spectral content
of the pulse is given by

Ẽ(�) = F{E(t)}, (2)

where F represents a Fourier transform.
Polarization-shaped pulses are described as in Ref. [20],

by assuming initially identical and in-phase (x,y) field
components, then applying a spectral phase shift. Hence, a
field described by two Cartesian components with independent
spectral phases (but identical spectral content) can be defined
as (

Ẽx(�)
Ẽy(�)

)
= Ẽ(�)

(
eiφx (�)

eiφy (�)

)
, (3)

resulting in the time-domain components,(
Ex(t)
Ey(t)

)
= F−1

{
Ẽ(�)

(
eiφx (�)

eiφy (�)

)}
. (4)

The field can also be expressed in terms of a spherical basis,
i.e., left and right circularly polarized components:(

EL(t)
ER(t)

)
= 1√

2

(
Ex(t) − iEy(t)
Ex(t) + iEy(t)

)
. (5)

This final form was used in the calculations herein, since
it physically describes the instantaneous pulse angular mo-
mentum, in terms of the projection of the photon momentum
onto the propagation axis, where L equates to m = +1 and
R to m = −1 states. This form can therefore be directly
interpreted in terms of the allowed �m of both bound-bound
and bound-free transitions; this is discussed further below.

Note that this form implies that the light propagates along
the z axis, and the laboratory frame angular momentum m is
defined relative to this propagation axis.

B. Nonperturbative laser-atom interaction

The strong laser field drives Rabi oscillations in the atom,
coupling electronic states |n,l,m〉. In the case of potassium
atoms, as detailed in Ref. [20], the initial population is in
the 4s state and the laser frequency is near resonant with the
|4,0,0〉 → |4,1,m〉 transition, hence single-photon absorption
populates the 4p manifold, while a strong laser field will drive
Rabi cycling between the 4s and the 4p states. The allowed
values of m depend on the polarization state of the light.

The population dynamics during the laser pulse, described
in the spherical basis of Eq. (5), are given by the time-
dependent Schrödinger equation,

d

dt

⎛
⎝ s(t)

p+1(t)
p−1(t)

⎞
⎠ = i

⎛
⎜⎝

0 1
2�∗

L(t) 1
2�∗

R(t)
1
2�L(t) δ+1 0
1
2�R(t) 0 δ−1

⎞
⎟⎠

×
⎛
⎝ s(t)

p+1(t)
p−1(t)

⎞
⎠ , (6)

where s(t), p+1(t), and p−1(t) are the state vector components
for the |4,0,0〉 and |4,1,±1〉 states, �L/R(t) = μL/REL/R(t),
where μL/R are the transition amplitudes, and δ±1 represent
the detuning of the laser from the resonant frequency of the
transition. Here it is clear that the L and R components of the
electric-field drive transitions with �m = +1 and �m = −1,
respectively; this is simply the consequence of the conservation
of angular momentum since the light carries l = 1 unit of
angular momentum, with laboratory frame projection m = 1
for EL and m = −1 for ER . In this sense the (instantaneous)
helicity of the electric field is directly imprinted on the atomic
ensemble.

Here � and E0 are both set to unity for simplicity; μL/R

is also set to unity, i.e., equal probability of transitions to
both |4,1,m〉 states, and δ±1 = 0.05 rad/fs. For determination
of PADs these simplifications are acceptable, as only the
relative population of m = ±1 states will affect the angular
distribution, and these populations are dependent only on the
driving laser-field polarization.

C. Perturbative two-photon ionization and PADs

In the perturbative regime, the dipole transition amplitude
for a transition from a bound state |ni,li ,mi〉 to a continuum
state |k; lf ,mf 〉 is given by the dipole matrix elements,

di→f (k,t) = 〈k; lf mf |μ̂if .E(t)|nilimi〉 (7)

∝ Rn
li lf

(k)Eq(t)〈lf mf ,1q|limi〉, (8)

where μ̂if is the dipole operator; Rn
li lf

(k) is the radial part
of the matrix element, which is dependent on the magnitude
of the photoelectron wave vector k, the principal quantum
number of the initial state n, and the electronic orbital angular
momentum l but assumed to be independent of mi and
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mf ; 〈lf mf ,1q|limi〉 is a Clebsch-Gordan coefficient which
describes the angular momentum coupling for single-photon
absorption, with q = ±1 for the L and R components of
the laser field, respectively. This treatment corresponds to a
single active electron picture, in which the final state is a
pure continuum state, i.e., the photoion is neglected and there
is no angular momentum transfer to the core. Spin is also
neglected. This treatment is sufficient for the potassium atom
case discussed herein; extension to more complex coupling
schemes is discussed in Sec. V.

Under these assumptions, the angular part of both bound-
bound and bound-free transitions is described by matrix
elements of the same form. Using these dipole matrix elements,
two-photon ionization to a single final state |lf ,mf 〉, from an
initial state |ni,li ,mi〉, via a virtual one-photon state |nv,lv,mv〉,
can then be written as

dlf mf
(k,t) = di→v(k,t)dv→f (k,t) (9)

=
∑

ni ,li ,mi

nv,lv ,mv

q,q ′

R
nv

lv lf
(k)Eq ′(t)〈lf mf ,1q ′|lvmv〉

×R
ni

li lv
(k)Eq(t)〈lvmv,1q|limi〉χni,li ,mi

(t). (10)

This form shows the general case, with summation over
all initial states |ni,li ,mi〉 weighted by their populations
χni,li ,mi

(t). Although the bound-free matrix element is labeled
with quantum number nv , in practice, this is unassigned and
will correspond to a quasicontinuum of virtual states within
the laser bandwidth, so it is dropped in the following [21].
In this treatment all energy dependence is contained in the
R(k) radial integrals. For the potassium case considered here,
a slightly simplified form can be written since only the 4p

levels contribute to the ionization, hence ni = 4, and the
time-dependent populations are given by pmi

(t) as defined
in Eq. (6):

dlf mf
(k,t) =

∑
li ,mi

lv,mv

q,q ′

Rlvlf (k)Eq ′(t)〈lf mf ,1q ′|lvmv〉

×R
(4)
li lv

(k)Eq(t)〈lvmv,1q|limi〉pmi
(t). (11)

Integrating over t yields

dlf mf
(k) =

∫
di→v(k,t)dv→f (k,t)dt

=
∫

dt
∑

li ,mi ; lv ,mv

q,q ′

Rlvlf (k)〈lf mf ,1q ′|lvmv〉

×R
(4)
li lv

(k)〈lvmv,1q|limi〉Eq ′ (t)Eq(t)pmi
(t). (12)

The observed photoelectron yield as a function of angle,
the PAD, for a small energy range dk over which we assume
that the R(k) are constant, is then given by the coherent square

over all final (photoelectron) states:

I (θ,φ; k) =
∫

dk
∑
lf ,mf

l
′
f ,m

′
f

dlf mf
(k)Ylf mf

(θ,φ)d∗
l
′
f m

′
f

(k)Y ∗
l
′
f m

′
f

(θ,φ).

(13)

This treatment is very similar to that given in Ref. [20], with the
Clebsch-Gordan coefficients equivalent to the αl,m;l′,m′ param-
eters and the dlf mf

similar to the cl,m. The main difference is
that all |lf ,mf 〉 are accounted for, hence the explicit inclusion
of the radial elements Rll(k). The radial matrix elements
defined here are assumed to be complex, and include both the
scattering phase e−iηl and the geometric phase factor il , which
usually appear in the definition of the photoelectron wave
function [22]. The amplitudes and phases of these parameters
constitute the unknowns which are sought in “complete”
photoionization studies and, physically, define the scattering
of the outgoing photoelectron from the nascent ion core.

The PAD can also be described by a generic expansion in
spherical harmonics with expansion coefficients βL,M , termed
anisotropy parameters, where

I (θ,φ; k) =
∑
L,M

βL,M (k)YL,M (θ, φ). (14)

In general, the βL,M (k) provide a compact way to express the
PADs, and allowed values are constrained by symmetry [1,23].
This expansion can be considered to indicate the information
content of a given distribution, and the resultant multipole
moments L and M are related to the partial-wave expansion
of Eq. (14) by [9]

βL,M =
∑
lf ,mf

l
′
f ,m

′
f

√
(2lf + 1)(2l′f + 1)(2L + 1)

4π

(
lf l′f L

0 0 0

)

×
(

lf l′f L

mf −m′
f M

)
dlf mf

(k)d∗
l
′
f m

′
f

(k) (15)

Further exploration of the information content of PADs for
the case of tomographic 3D photoelectron measurements can
be found in Ref. [18].

D. Pure and shaped laser pulse dynamics

In order to illustrate the theory detailed above, Figs. 1
and 2 show the details of two example calculations, for an
elliptically polarized pulse and a fully polarization-shaped
pulse, respectively. In both cases the panels illustrate, from top
to bottom, the envelope of the laser field and L, R components,
as defined by Eq. (5); the population dynamics driven by the
laser field, in terms of the state vector components s(t), p+1(t),
and p−1(t) defined in Eq. (6); the instantaneous continuum
populations, as defined by Eq. (11) and making use of the
previously determined photoionization matrix elements Rll

(see Ref. [17] and Sec. III); and the cumulative continuum
populations, as defined by Eq. (11).

Both examples provide insight into the dynamics of the ion-
ization process, and it is clear how the L and R components of
the laser field drive both the bound-state population dynamics
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FIG. 1. Time-dependent dynamics for an elliptically polarized
laser pulse. (a) Laser-field envelope for an elliptically polarized
pulse, defined by φy = 0.5 rad [Eq. (5)]. (b) Bound-state popula-
tions [Eq. (6)]. (c) Instantaneous continuum populations dlf ,mf

(k,t)
[Eq. (11)] and (d) cumulative continuum population [Eq. (12)].

and the instantaneous continuum contributions. Since, in this
model, the two steps are decoupled, and the ionization is
assumed to be perturbative, there is no depletion in the
bound-state populations. The ionization step does, however,
follow the bound-state dynamics since the instantaneous
population defines which continuum states can be accessed and
their relative weighting. Thus, the instantaneous continuum
dynamics follow the bound-state dynamics. Furthermore, since
there are no continuum electron dynamics in this model (i.e.,
no laser-continuum coupling or electron-ion recombination),
the final continuum is simply the sum over the instantaneous
continuum contributions [Eq. (12)] and builds up coherently
over the pulse envelope. The resultant PAD, Eq. (13), thus
depends both on the final continuum populationsand on the
accumulated phase for each |lf ,mf 〉 state.

In the case of a “pure” polarization state (Fig. 1), in
this example an elliptically polarized light field defined by
φy = 0.5 rad, there is essentially no dynamic contribution to
the final result since the relative continuum contribution is time
independent. In the language used previously, the geometric
contribution to the ionization is time invariant. However, in the
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FIG. 2. Time-dependent dynamics for a polarization-shaped laser
pulse. (a) Laser-field envelope for an elliptically polarized pulse,
defined by φy = −π rad for the blue half of the pulse [Eq. (5)].
(b) Bound-state populations [Eq. (6)]. (c) Instantaneous continuum
populations dlf ,mf

(k,t) [Eq. (11)] and (d) cumulative continuum
population [Eq. (12)].

case of a polarization-shaped pulse (Fig. 2), where the relative
L and R components do vary significantly over the pulse,
the intrapulse dynamics play a key role in defining the final
continuum wave function. It is this dependence that makes
the final PAD particularly sensitive to the pulse shape, as well
as the ionization matrix elements. While the two cases are
formally identical, there is clearly no polarization multiplexing
in the pure case, since the polarization state is time invariant.
In the polarization-shaped case, the information content is
greatly increased since the final result arises from coherent
addition over all instantaneous polarization states and, thus,
contains additional information relative to a pure case. (Further
examples of polarization-shaped pulses and resultant PADs
can be found in Ref. [17].)

III. PHOTOELECTRON IMAGE GENERATION
AND FITTING

In this section we outline salient details of the numerics
used in applying the above theory to the generation of
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photoelectron momentum distributions which can be com-
pared with experimental data. In the context of complete
photoionization experiments, the use of these momentum
distributions to generate two-dimensional (2D) photoelectron
images and fit experimental data is described.

A. Photoelectron momentum distributions

The theory detailed above provides a definition of the
photoelectron yield as a function of time, energy, and angle,
most compactly defined by the βL,M (k) parameters, but
ultimately depending on the underlying laser and target
properties. The generation of theoretical, time-integrated,
photoelectron momentum distributions from these parameters
simply involves the population of a 3D grid (θ,φ,k) with
the relevant basis set expansion in spherical harmonics as a
function of energy, as defined in Eq. (13) (the radial aspect of
this expansion is discussed below).

The volumetric data defined in this way are equivalent to
the experimental data recorded in a 3D imaging experiment;
examples of such experiments are direct 3D imaging via
techniques with a high temporal and spatial resolution (for
instance, Refs. [24–26], and references therein) or indirect
methods based on tomography in which 3D distributions are
reconstructed from a set of 2D projections [27–29] (see also
Ref. [18]). For comparison with 2D imaging data, further
integration along a spatial dimension is additionally required in
order to project the volumetric data onto a 2D plane. We note
that in both imaging experiments and the numerics applied
here, this summation is treated incoherently. Physically, this
corresponds to a loss of photoelectron coherence before or
at the detector, effectively long after the coherent quantum
mechanical scattering event which determines the momentum
distribution (PADs and energy spectrum) [30,31]. Since the
range of the initial scattering event is microscopic, while
photoelectron propagation and detection are macroscopic and
often involve the application of external fields and, ultimately,
discrete particle counting, this is a physically reasonable
assumption.

In the results reported in Ref. [17] we additionally assumed
that the radial dependence of the ionization matrix elements
over the span of the main spectral feature (200 meV) was
negligible and that the details of the radial distribution could
be simplified to a Gaussian energy spread with no phase
contribution. This allowed for the momentum data generation
and fitting to be simplified, and the radial distribution given by
a Gaussian (defined in energy space),

G(k) = I0√
2πγ

e−(E(k)−E(k0))2/2γ 2
, (16)

where I0 is the intensity, γ is the width, and E(k) and E(k0)
define the radial coordinate and the peak center in energy
space. The final 3D momentum distribution is then defined by

I (θ,φ,k) = G(k)
∑
L,M

βk
L,MYL,M (θ,φ), (17)

where the βk
L,M include the superscript to denote that these

parameters are generally dependent on k, as in Eq. (14) but are
here taken to be constant over the range of k spanned by the
Gaussian envelope G(k). Finally, it is noteworthy that, more
generally, the Gaussian assumed here should be replaced by
an accurate energy spectrum; this point is discussed in Sec. V.

The 2D images obtained by integration of the volumetric
distribution function are then given as

I2D(θ2D,k) =
∫

u

I (θ,φ,k)du, (18)

where u defines the domain of integration [with integration
over the Cartesian X, Y , or Z direction for the corresponding
(y,z), (x,z), or (x,y) image planes, respectively], and θ2D is
defined in the image plane.

Figure 3 illustrates the computed PADs, obtained using the
matrix elements of Ref. [17], for four polarization states of the
electric field. The top row shows the PADs in spherical polar
form, as defined by Eq. (14), while the bottom row shows the
same PADs projected onto spherical surfaces. This is how the
distributions appear in velocity space, as the angle-dependent
photoelectron flux for each k. The 2D projections show the

FIG. 3. (Color online) Illustration of computed PADs and 2D photoelectron images as a function of the pulse polarization defined by φy ,
propagating in the z direction. The top row shows PADs in polar form, I (θ, φ; k), the bottom row shows the same distributions projected onto
a velocity isosphere (single k) and 2D image plane projections I2D(θ2D, k) assuming a Gaussian energy spectrum.
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same angular distributions, combined with a Gaussian energy
spectrum as per Eq. (17) and projected onto 2D Cartesian
planes. These image planes simulate velocity map imaging
data and illustrate how the experimental results will depend
on both the native details of the PAD and the details of
the projection geometry. In this case, the laser propagates
along the Z axis, and the polarization is defined in the (X,Y )
plane, so experimental images will correspond to the image
plane (x,z) or (y,z) (since images cannot be obtained in the
propagation direction in a standard VMI experiment), and
the precise details will further depend on the rotation of the
distribution about the Z axis. (Further details of 2D and 3D
imaging, geometry considerations, and information content
can be found in Ref. [18].)

B. Fitting methodology

As discussed above, within the framework developed herein
the radial matrix elements are the only unknown quantities.
With a sufficient experimental data set one can therefore hope
to obtain these matrix elements via a fit to the data. In this
case the results of such a fit have already been presented in
Ref. [17] and validated via good agreement with both the
original 2D imaging data and additional 3D data obtained via
tomographic imaging experiments. We discuss here further
details of the fitting methodology applied, since in general it is
necessary to approach this complicated problem carefully. In
particular, we applied statistical analysis methodologies which
were previously developed for energy-domain photoionization
experiments [12,32].

In our procedure, the data from 2D measurements were
compared with the calculated 2D images, as illustrated in
Fig. 3 and obtained as detailed above. The calculated images
were then optimized via a fitting routine, with the radial
matrix elements and image generation parameters as the free
parameters for fitting. The criteria for the best fit was simply
the minimization of the sum of least squares,

χ2 =
∑
θ2D,k

(I2D(θ2D,k) − IExpt.(θ2D,k))2, (19)

where I2D is the calculated distribution defined in Eq. (18),
and IExpt. the 2D experimental data. This methodology is com-
pletely general and only relies on the underlying theoretical
framework correctly describing the physics inherent to the
problem. However, the size of the χ2 hyperspace may be
very large since it has dimensions equal to the number of
free fitting parameters. The practical outcome of this is that
the possibility of local minima in the hyperspace is significant,
and the parameters obtained via such a procedure must be
carefully evaluated and tested to confirm their veracity and
robustness.

In this particular case, the full calculation required 12
parameters, consisting of the amplitudes and phases of the 5
radial matrix elements Rll and 2 image generation parameters
(Gaussian center and FWHM) [33]. Since absolute phases
cannot be determined, one phase is chosen to be a reference
and set to 0, leaving 11 free fit parameters. Furthermore, the
image generation parameters do not have a large influence on
the final results, which are primarily sensitive to the angular
coordinate and could, therefore, be bounded quite tightly after

some initial by-eye optimization, thereby reducing the search
space of physical relevance to, effectively, nine dimensions.
In the fitting procedure the Rll were expressed in magnitude
and phase form, Rll = |Rll|eiδll , where 0 � Rll � 1, −π �
δll � π , and Rl1→l2 = R∗

l2→l1
. Fitting was implemented with

a standard fitting algorithm, Matlab’s LSQCURVEFIT, based
on a trust-region-reflective least-squares method. The data
set for fitting consisted of four experimental images, each
corresponding to a different pure polarization state of the light,
similar to the states shown in Fig. 6. The laser pulse was
modeled with τ = 30 fs and four polarization states given by
φy = 0 (linear polarization, ellipticity ε = 0), φy = π/8, π/4
(elliptical polarization states, with ellipticities ε ∼ 0.2, 0.4),
and φy = π/2 (circular polarization, ε = 1). The ellipticities
given here are defined as the ratio of the minor to major
axes of the polarization ellipse, hence ε = 0 for linearly
polarized light and ε = 1 for pure circularly polarized light.
Because the elliptical polarization states may be slightly
different from those obtained experimentally (via the use of
a quarter-wave plate; see Ref. [17] and references therein
for further experimental details), the subsequent fitting was
weighted towards the linear and circular polarization results
by an additional factor of 2 in χ2.

In order to carefully test for local minima the hyperspace
was repeatedly sampled using a Monte Carlo approach, in
which the fitting was repeated N times, with the seed values for
the fitting parameters randomized on each iteration. Statistical
analysis of the fitted parameters derived from such repeated
fits can be employed to probe the behavior of the fitting
algorithm and, also, to gain information on how well the
experimental data define each fitted parameter. Although it
is nontrivial to visualize the full χ2 hypersurface, aspects
can be probed by plotting histograms and correlation plots
of the fitted parameters. A large scatter in the value of a
given fit parameter over a range of fits to the same data
suggests a poorly defined parameter; a consistent result
meanwhile shows that a particular parameter is well defined
by the data set. The experimental data can show different
sensitivities to different parameters depending on the type of
ionizing transitions present, because different transitions will
(according to the magnitude of the geometrical parameters
and symmetry constraints) be more sensitive to certain partial
waves. Additionally, the presence of multiple minima in
the fit may be revealed by the presence of more than one
feature in the histogram, reflecting more than one “best”
-fit result, while correlations appearing between supposedly
uncorrelated parameters can indicate emergent behaviors in the
high-dimensional space or—more prosaically—issues with
the fitting methodology or coding.

In this case we performed 300 fits, and the lowest χ2 was
obtained for 4 of these fits, which we take to be the absolute
minimum. The radial matrix elements ultimately found, as
reported in Ref. [17], are listed in Table I for reference
and discussed further below. Figure 4 gives an illustrative
example of the fitting statistics, in this case showing correlation
histograms between χ2 and the magnitude [Fig. 4(a)] and
phase [Fig. 4(b)] of Rp→d . The plot shows the 40 fit results
within 5% of the lowest χ2. Interestingly, in this case many
of the fits are bunched, with χ2 ∼ 300 (arbitrary units). This
most likely reflects the presence of local minima as defined
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TABLE I. Fitted values for the relative transition matrix element
magnitudes, |Rll |, and phases, δll . The square of the magnitudes is
expressed as a percentage of the total transition amplitude, normalized
to unity for each step. Uncertainties in the last digit are given in
parentheses.

Transition l1 l2 |Rl1l2 | |Rl1l2 |2 δl1l2/rad.

i → v p s 0.34 (3) 12% (4) 0a

p d 0.94 (8) 88% (11) −1.62 (4)
v → f s p 0.85 (8) 72% (12) −0.19 (3)

d p 0.14 (2) 2% (2) −2.08 (8)
d f 0.51 (9) 26% (13) 0.24 (7)

aReference phase; set to 0 during fitting.

above but may also be related to the convergence criteria set
on the fitting algorithm, which, in this case, was set to a limited
number of iterations in order to cap the computational time per
fit and ensure a large seed space for the search; in effect, the
large seed space becomes part of the fitting criteria. Depending
on the seed values, the overall convergence of the fit may be
fast or slow, and the possibility of finding the global minima
will vary depending on the start position in the 11D parameter

FIG. 4. (Color online) Example of fit statistics for Rp→d : (a)
magnitude; (b) phase.

space, as well as the topography of this space and the details
of the fitting algorithm. From the histograms of the bunched
results, it is apparent that |Rp→d | is somewhat well defined
at the larger χ2, with values mostly close to the best result,
while the phase appears much less well defined at this level. At
lower χ2, the parameter space is much sparser, with only a few
parameter sets found, but they appear to converge on a single
parameter set. These observations illustrate the difficulty in
assessing best-fit results without careful analysis: in this case
sampling of only a few fit results would potentially lead to a
parameter set quite different from the global optimal found.
Here statistical analysis and further validation of the results
against additional experimental data (see sect. IV) both serve to
provide confidence that the absolute best-fit, hence physically
correct, results have been obtained.

C. Robustness, uncertainties, and validation

As well as statistically evaluating fit results, the behavior
of χ2 can be more directly probed. In essence, this amounts
to removing the black-box nature of the fitting algorithm
by explicitly looking at the gradient and curvature of χ2 as
a function of the fitting parameters, rather than looking at
only the final fitted results. Additionally, the curvature with
respect to a given parameter can be used to provide uncertainty
estimates on the fitted parameters [34],

σ 2
j = 2

(
∂2χ2

∂a2
j

)−1

, (20)

where σj is the uncertainty in parameter aj . Equation (20)
relates the response of χ2 to a given parameter; the sharper
the response, the better aj is defined by the data and hence the
smaller the uncertainty. In practice, this procedure equates to
varying each fitted parameter by �aj and evaluating χ2 for
this new parameter set, in order to map out 1D cuts through
the χ2 hypersurface. Uncertainties estimated in this manner
were given in Ref. [17] and are listed again in Table I. It is
also noteworthy that a similar, but not identical, procedure
can be performed by refitting all other (n − 1) parameters as
a function of the test parameter aj [14]. This procedure will
also provide 1D cuts through the hypersurface, but along the
n-dimensional topography of the minimum. The drawback of
this alternative procedure is the necessity of performing many
additional fits, which may be computationally expensive; for
this reason it was not explored in this work.

Figure 5 shows 1D cuts through the χ2 hyperspace as
defined above, for the magnitudes and phases of Ri→f . In this
case it is clear that the sensitivity of χ2 is good in most cases,
with 10% changes in aj (i.e., �aj = ±0.1) typically leading
to clear changes in χ2; this is also reflected in the relatively
small uncertainties σ 2

j listed in Table I. In this case, a notable
exception is |R2→3|, which is much less sensitive to �aj for
increases in magnitude. This is the magnitude of the f -wave
channel, which dominates the ionization overall; consequently,
the final PAD is not very sensitive to small increases in the
magnitude of this matrix element, although it does remain
very sensitive to decreases in magnitude and its relative phase.
In general, χ2 is somewhat less sensitive to the phases than
the magnitudes, although the response is still significant. It is
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FIG. 5. 1D cuts through the χ 2 hypersurface for (a) magnitudes
and (b) phases of the Ri→f matrix elements. Cuts are made by varying
each parameter by �aj , here given as a fractional variation from the
best-fit value [i.e., test value a′

j = aj + (aj × �aj ), and a′
j = aj for

�aj = 0), and the resulting change in χ 2 is given as a percentage
relative to the best-fit value.

also noteworthy that the 1D cuts are not symmetric about �aj ,
reflecting the complicated topography of the χ2 hypersurface
and the fact that it is dependent on the relative, rather than the
absolute, values of the matrix elements.

A final, valuable test of the determined matrix elements
is their predictive power and the possibility of testing such
predections against additional experimental results not used
in the original extraction procedure. A consideration of the
sensitivity of the determined matrix elements in these terms is
a useful way to evaluate the results. In previous, energy-domain
studies the (rotational) energy spectrum could be used to
provide the additional, independent data against which the
extracted matrix elements could be further verified [12],
and the possibility of using different polarization geometries
combined with tomographically reconstructed PADs was also
explored [29]. As noted above and discussed briefly in
Ref. [17], comparison of the current results with 3D photoelec-
tron data obtained via tomography was also employed in this
case. The comparison with the experimental data is discussed
in Sec. IV B, while the sensitivity of the computed 3D distribu-
tions to changes in the matrix elements �aj is discussed here.

Figure 6 provides some examples of this sensitivity for the
variation of two different phases by 20% and for two different
polarizations. Although the sensitivity of the 3D distributions
to these phases is inherent in the small uncertainties determined
above, as well as the ability to successfully use a fitting
methodology, it is nonetheless instructive to visualize the
sensitivity in this way. Here it is clear that, while both cases
exhibit a sensitivity to the phase adjustments, the changes in
the linearly polarized case are less significant. In this case, the
width of the central bands increases slightly, and although this
change still correlates with a change in the βk

L,M , the magnitude
of this change means that it will only be revealed by careful
quantitative analysis and may not be obvious in a qualitative
comparison. This conclusion becomes even stronger for 2D
images of this distribution. In the elliptically polarized case
the phase changes are manifested in an increase in flux and
spread of the equatorial lobes of the distribution, and are
much more pronounced compared to the linearly polarized
case. While the sensitivity observed here merely confirms the
earlier analysis, the investigation of the predicted distributions
in this phenomenological manner provides additional insight
into the fitting process, in particular, the magnitude of changes
which might be expected in a given case and, hence, suggests
possibilities for future experimental work, particularly in the
more complex case of shaped pulses, as discussed in Ref. [17].

Overall the methodology outlined here may be viewed as
a pragmatic approach to complete experiments. Utilizing a
combination of fitting, Monte Carlo sampling, direct explo-
ration of the χ2 hyperspace, and further validation of the
results based on their predictive power, a careful validation
of their robustness and validity can be made for the case at
hand. This is distinct from a more formal treatment, such
as that discussed by Schmidtke et al. [35], who derived the
fundamental limits of a fitting approach. In the current work
a comparison with the definitions given in that work was
not made, but the pragmatic methodology herein indicates
that the extraction of the matrix elements is, in this case,
reliable. An extension of this methodology, combined with
a formal treatment, to investigate the additional possibilities in
the polarization-multiplexed case remains for future work.

IV. COMPARISONS WITH TOMOGRAPHIC DATA

Here we focus on a detailed comparison of the results in
Ref. [17] with additional experiments which provided full 3D
data. These results, obtained using photoelectron tomography
techniques (see Ref. [18] for details), provide both a highly
detailed volumetric data and a set of measurements at a
different laser intensity. The former characteristic allows for
a qualitative visual comparison of 3D distributions, which
reveal details of the distributions which may be obscured in the
2D images, and the possibility of full retrieval of the βLM (k)
from the data, which is not possible for non–cylindrically
symmetric 2D images and allows for a more quantitative
comparison of experiment and theory. The use of different
intensities (∼1013W cm−2 for the tomographic data, compared
to ∼1012W cm−2 for the 2D data) provides further evidence
for the lack of any significant strong-field effects on the
angular distributions in this case and the veracity of our
ionization model.
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FIG. 6. (Color online) Calculated 3D distributions I (θ,φ,k) (first column) and sensitivity to changes in the phases δ
f

d→f and δi
p→d for (a)

linear polarization and (b) elliptical polarization defined by ϕy = 0.5 rad.

A. Qualitative comparison

A qualitative comparison of data for the three polarization
states measured is presented in Fig. 7. In this figure the full
3D distributions are shown as nested isosurface plots, and 2D
images in the polarization plane are also shown. In this case,
the experimental data have an additional high-energy feature
in the radial distribution, arising from Autler-Townes splitting,
which becomes significant at higher intensities (see refs. [20]
and [36] and Ref. [18]). In this analysis, only the main feature is
of interest, and the tomographic distributions shown include a
radial mask in order to remove the additional contributions and
facilitate comparison over the main spectral feature. For the 2D
images (bottom row in Fig. 7) no radial mask is employed, and
consequently, the experimental results show a broadening of
the spectrum in the 2D images. Full details of the experimental
data and tomographic reconstruction procedure, as well as the
energy spectra, are discussed in Ref. [18]. It is also of note
that the data shown in Figs. 7(a) and 7(d) here are the same as
shown in Fig. 3 in Ref. [17].

It is clear from Fig. 7 that the experimental data and the
calculations agree in overall form, with the trend in the shape
of the PADs with polarization well reproduced by theory. This
general behavior is not surprising, since this sensitivity was
inherent in the concept of obtaining the photoionization matrix
elements via a fitting procedure from the 2D images recorded
with different polarizations but does indicate that the additional
details observable in the tomographic data do not contradict
the fit results, even at higher intensities which do affect the
energy spectrum.

The 2D images appear to show less satisfactory agreement
but, since these (X,Y ) plane projections include summation
over the Z axis, this is perhaps unsurprising. In particular, the
apparent increase in intensity of the band structures in Fig. 7(c),

relative to the computational results, is due to the additional
(and incoherent) contribution from photoelectrons at different
energies, due to the projection of the broader spectrum onto
the 2D plane, which are not present in the computational
results. The most significant differences are shown in Fig. 7(f),
where the asymmetry in the (X,Y ) plane—the helicity of the
distribution—is reduced relative to the computational results.
This is likely due to a slight difference in the polarization
ellipse relative to the calculations, as well as the summation
over the broader spectrum (as mentioned above), which may
wash out fine details in the projection image. For the results
approaching circular polarization [Fig. 7(i)], the agreement is
better. In this case the contributions from the higher-energy AT
feature are reduced (see Ref. [18]), and the polarization state
of the light may be slightly better matched to that assumed in
the calculation.

Overall these results indicate a reasonably good agreement
between the previously determined matrix elements and the
tomographic data but also indicate the problematic aspects
of a qualitative comparison for these complex distributions.
In general, such comparisons are worthwhile but subject to
perceptual bias, which may be highly dependent on the type of
data visualization used. Naturally a quantitative comparison is
preferable, and this is explored in the following section.

B. Quantitative comparison

To make a more careful comparison of the volumetric
results, βL,M (k) values were extracted from the data (see
Ref. [18] for details). The βL,M (k) over the main feature can
then be directly compared with the predicted βk

L,M based on
the fitted matrix elements. Since the fit results assume that the
matrix elements are approximately constant over the feature,
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FIG. 7. (Color online) Comparison of calculated and experimental tomographic results. (Top) Experimental and (middle) calculated 3D
distributions plotted as intensity isosurfaces. Experimental data are plotted with a radial mask to show only the main part of the radial
distribution. (Bottom) Experimental and calculated 2D projected images in the plane of polarization (X,Y ). In this case no radial mask is
included in the experimental results, and the images show an extended energy range relative to the computational results (the broader spectrum
is due to the presence of Autler-Townes splitting in this case; see text for details). Columns show the results for different laser polarization
states, defined by a quarter-wave plate rotation angle (θλ/4) in the experimental data, and spectral phase φy in the calculations. The states
correspond to ellipticities ε � 0, 0.3 and 0.6 (see ref. [18] for further details).

the experimental βL,M (k) were averaged over the FWHM
of the main spectral feature to yield an energy-averaged
value. These values are plotted in Fig. 8 along with the
calculation results. The range of the experimental βL,M (k)
value is indicated by the error bar in the plot, indicating the
spread of values over the spectrum.

The agreement between the calculation and the experimen-
tal results is generally very good, if not exact. The dominant
terms, with L = 2, 4, and 6 and M = 0, show excellent
agreement, and aside from β6,0 at φy = 0, the experimental
results also show only a small spread of values. For the M 
= 0
terms, which generally have smaller magnitudes than the
M = 0 terms except at large φy , the agreement is generally
good, but less so for the |M| = 2 terms. Here the trends
with polarization are in agreement, but the exact values are
shifted slightly from the calculations. As noted above, these
small discrepancies may be due to slight differences in the
laser polarization and frame rotations used in the calculations
compared with the experiment.

Additionally, the experimental data indicated a significant
energy dependence of the PADs away from the main spectral
feature; small contributions from higher-order terms (L > 6)
and symmetry breaking were also present. These effects are
not accounted for by the net three-photon model and indicate
the presence of additional complexities to the light-matter
interaction. These additional effects are, at this time, not

well understood beyond the clear requirement for ±m-state
symmetry breaking and for higher angular momentum states
to be accessed. These observations are discussed further in
Ref. [18], and it is noteworthy that the ability to resolve
these additional effects via the quantitative analysis of 3D
photoelectron data is a significant outcome.

Despite these additional, but intriguing, complexities, the
major channels observed over the FWHM of the main spectral
feature are seen to agree very well with the previous analysis,
based on 2D data recorded at lower intensities, overall
providing a strong test of the accuracy of the ionization matrix
elements determined in that case. The possibility of gaining
a detailed understanding of the additional effects observed in
the 3D data, starting from the current three-photon model, and
associated ionization matrix elements, remains an interesting
proposition for future work. In the following section we
explore some extensions to our treatment which may facilitate
such understanding.

V. ASSUMPTIONS, EXTENSIONS,
AND PHYSICAL CONSIDERATIONS

In the above treatment, as applied in Ref. [17], some
simplifications have been made for the specific case at hand,
in order to facilitate the determination of the Rll(k) as detailed
above (Sec. III). Here, in order to generalize this treatment
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further, we consider more carefully the assumptions made and
explore other extensions to the theory.

A. Atoms

The intrapulse dynamics above implicitly assume that
only the outermost electrons play a role in the intrapulse
dynamics and that lower-lying bound states can be neglected.
Furthermore, it assumes that the 4p manifold is the only
unpopulated state which plays a role at the one-photon level.
This is expected in this case because the 4s → 4p transition
carries significant oscillator strength and is near resonant with
the laser pulse. However, in general, it is possible that other
states will play a role, particularly as the laser is tuned farther
from the 4s → 4p line. This would result in a more complex
TDSE [Eq. (6)], with additional states appearing, and also
necessitate a more careful treatment of the transition dipoles
μL/R to allow for variation in the transition amplitudes to
different |n,l〉 manifolds. The treatment of the two-photon
ionization would, similarly, increase in complexity with the
addition of further initial/source |n,l〉 manifolds but would
otherwise remain identical.

In the case of atomic ionization with a structureless
continuum, the photoelectron energy spectrum can be
treated somewhat directly as determined from the power
spectral density of the laser pulse [20,30,37]. Such treatment
effectively introduces an additional time-dependent phase
into Eq. (8). In Ref. [20] this phase is defined as eiδωet , with
δωe = ωe + ωIP − ωp − 2ω0, where the angular frequencies
are related to the electron energy (�ωe), the ionization
potential (�ωIP), the ionizing 4p state (�ωp), and the photon
energy (�ω0). This phase will thus oscillate rapidly at the
resultant difference frequency of these terms (effectively
the difference between the total final-state energy and
the incident/input energy) and directly gives rise to a
photoelectron energy spectrum dependent on the pulse
properties, including its temporal duration and structure [38].
This dependence can be considered interferometrically, in the
sense that the resultant (time-integrated) energy spectrum is
the coherent temporal sum and, hence, contains interferences
between all instantaneous momentum distributions; this is
exactly analogous to the PADs considered as the coherent
temporal sum of the instantaneous angular distributions (at a
given energy). In the case of pulses intense enough to create
significant Autler-Townes splitting in the photoelectron energy
spectrum, this treatment could allow for a description of the
changes in the PADs and symmetry breaking, as discussed in
Sec. IV B and correlated with the Autler-Townes doublet in the
spectrum. This consideration is discussed further in Ref. [18].

In the most general case, where multiple, non-degenerate
ionization pathways may be present, interferences may arise
between ionizing transitions with very different angular struc-
tures. In the energy domain this effect has been investigated
by Elliott and coworkers in experiments utilizing fundamental
and second-harmonic light to create final-state interferences
between different intermediates [39–41]. Control over the
relative phase of the two colors allowed for control over the
resultant interferences [40]. A similar concept was also em-
ployed to measure the phase of a bound-state [42]. Practically,
this most general effect could be included in our formalism by
the inclusion of sets of ionization matrix elements correlated
with the distinct sets of ionization pathways, where each set
has a characteristic partial-wave distribution (amplitudes and
phases) and energy-dependent phase factor and would result in
the inclusion of interferences dependent on both geometric and
energetic phase factors. Conceptually, this effect is inherent in
the PADs arising from polarization-shaped pulses, where the
different ionization pathways correspond to different interme-
diate angular momentum states, but in this case all levels are
degenerate and the relevant phase shifts are purely geometric.

B. Molecules

In the case of molecular ionization the situation is more
complex. In this case, the partitioning of the incident photon
angular momentum to molecular rotations, as well as the
outgoing photoelectron, requires a more involved treatment
of the geometric terms, even in a single-active-electron
picture. Furthermore, one might expect that the continuum also
contains structure due to populations of different vibrational
modes of the ion, although it is also possible that these
states have little effect on the R(k) integrals over a small
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energy range. This assumption formally means that separation
of the ionization matrix element into electronic, vibrational
(Franck-Condon), and rotational terms is possible and that
these terms are thus uncoupled. Effectively the electronic
terms define the R(k), and the Franck-Condon factors an
overall transition intensity envelope—but one that does not
affect the partial wave character of the continuum. In some
cases this approximation has been tested and found to hold,
but in other cases—particularly when considering highly
excited vibrational modes—one might expect this assumption
to fail [43,44]. Other sharp continuum structures, such as
autoionizing resonances, could significantly affect the matrix
elements over “small” energy ranges (see, for example,
Ref. [45]), where small means of the order of tens of to
perhaps a few hundred milli–electron volts. In the absence
of continuum structure, the energy dependence of the matrix
elements is expected to be insignificant (hence negligible) over
these small energy ranges and significant but smoothly varying
over larger (eV-scale) ranges. The relevant energy scale to
consider in terms of this response of the matrix elements is
“the ratio of the [asymptotic photoelectron] energy variation
to the ionization potential” [22], so the energy dependence will
be affected somewhat by the bound-state ionization potential
and may be more pronounced for ionization of high-lying
excited states compared to ground-state ionization. The reader
is referred to Ref. [22] for a more general discussion on these
topics in molecular photoionization.

In previous work we have investigated molecular ion-
ization via vibrational and rotational state-resolved energy-
domain experiments [12,29,45,46]. This work demonstrates
the feasibility of performing such experiments and illustrates
the types of angular momentum coupling schemes required.
Although the current work, incorporating intrapulse dynamics
and polarization-shaped pulses, has not yet been extended to
molecular cases, such an extension seems feasible based on
these earlier studies, at least from the perspective of treating the
ionization matrix elements and including the larger number of
continuum l waves required for molecular scattering problems.

The intrapulse dynamics in the molecular case may,
however, be significantly more challenging. Clearly there are
many more degrees of freedom to account for, and the potential
for both nuclear and electronic wave-packet motion during the
pulse, as well as the possibility of dumping a lot of angular
momentum into forming a rotational wave packet during a
strongly coupled initial step (although the evolution of this
wave packet will ultimately be on a much slower time scale).
The incorporation of such coupled rovibronic dynamics is, in
practice, quite difficult due to the high dimensionality of the
problem. It is certainly not sufficient to perform a simple TDSE
of coupled electronic states as employed herein, although the
coupling of more complex wave-packet calculations with the
ionization treatment herein would be feasible. A conceptually
similar, although fully ab initio, coupling of complex vibronic
wave packets with a full photoionization calculation has
recently been presented for the triatomic molecule CS2 [47];
prior to this ab initio treatment a simpler dynamical model was
combined with the relevant angular momentum coupling and
showed a good agreement with experimental results, although
the treatment was only semiquantitative and stopped short of
extraction of the ionization matrix elements [48]. For diatomics

it is probable that a conceptual middle ground is found, in
which the required low-dimensionality wave packet can be
modeled via a simple TDSE treatment with enough accuracy to
be of use. For polyatomics, the complexity of the wave packet
will be the deciding factor, depending directly on the number
and type of states and couplings involved in a given case.
In the most complex cases the problem may be best treated
by fully ab initio calculations including photoionization, the
results of which can be compared directly with experimental
data at a high level, but in simpler wave packets (few level
and/or weakly coupled) a basic TDSE approach may be of
sufficient accuracy to be useful for complete experiments.

In sum, based on experience with similar problems in
molecular ionization in both the energy and the time domains,
it seems feasible that this time-domain multiplexing concept,
employing multiphoton ionization schemes and including
intrapulse dynamics, can also be applied successfully to (at
least some) molecular photoionization problems.

C. Other regimes

Other regimes are also of general interest in photoionization
studies [1], in particular, the strong-field (nonperturbative)
regime. Very generally, the treatment presented herein could
be extended to this regime, and the issues associated closely
follow the discussion above. In the nonperturbative case
the intrapulse dynamics become more complicated, since a
single-active electron picture is no longer likely to be valid,
and a static picture of the bound-state energy-level structure
also breaks down. Similarly, the scattering dynamics of the
outgoing electron will also be time dependent, since the
scattering must now incorporate the laser-induced part of
the potential, not just the (static) atomic or molecular potential.

In theory it is feasible to allow for these effects into the
treatment presented herein, since it is already time dependent,
and as discussed for the atomic and molecular cases above,
additional dynamical effects could be readily incorporated
providing the numerics are tractable and accurate. However,
the main issue in terms of determining the ionization matrix
elements would be the large size of the set of matrix elements
to be determined in a fully time-dependent treatment and the
concomitant complexity of the fitting procedure if a set of
ionization matrix elements were required for each time step.
In such cases it may be possible to posit an effective functional
dependence of the ionization dynamics on the laser field to
mitigate this somewhat, but one would have to more carefully
consider exactly what kind of measurement would allow for a
unique set of (fitted) matrix elements to be extracted from the
(necessarily) time-integrated photoelectron image.

Another regime is that of high-order light-matter couplings
beyond the dipole approximation. In this case the ionization
matrix elements contain higher-order angular momentum
couplings [49,50], hence a more complex angular-momentum
coupling scheme and a larger set of matrix elements must
be determined, similar to the considerations for the molecular
case. As for that case, there is no fundamental reason why such
cases could not be treated within the theoretical framework
presented here, although the feasibility of the fitting procedure
would have to be assessed for any given case based on the size
of the problem.
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Another interesting extension is to ionization time delays,
since the Wigner delay time is given by the energy derivative
of the scattering phase [51,52]. Measurements of this phase,
based on the concept of interfering photoelectron wave packets
created with different energies, have recently been demon-
strated [53,54] and are very similar to concepts herein. In such
measurements, above-threshold ionization creates electron
wave packets at different energies (i.e., multiple spectral
features in the photoelectron spectrum), and further photoab-
sorption from a probe laser field can be used to interfere with
neighboring wave packets. This procedure results in side-band
generation in the photoelectron spectrum, and the phase of the
oscillation of these side-bands with respect to the probe-field
timing provides information on the relative phase of the
photoelectron wave packets: this is know as the RABBITT
technique [54,55] (this concept is somewhat analogous to the
two-pulse photoelectron interferometry in Ref. [30]). The dif-
ference between this concept and traditional “complete” pho-
toionization experiments is that the total photoionization phase
is measured over a broad energy spectrum in RABBITT mea-
surements, as opposed to the measurement of the phases of the
partial waves at a single energy as discussed herein. By extend-
ing our technique to a broad energy range, e.g., via observation
of multiple above-threshold-ionization features or the use of a
broader-bandwidth probe pulse, we would be able to obtain the
partial-wave phases as a function of the energy and, thus, deter-
mine the Wigner delay. Furthermore, by obtaining the phases
for all partial waves, the angle dependence of the Wigner delay
in molecular ionization could also be investigated [56].

D. Maximum information measurements and multiplexing

In all cases discussed above, the main consideration is the
feasibility of performing complete experiments for more com-
plex, dynamical ionization schemes. Such applications will,
naturally, be challenging and require both a detailed theoretical
understanding of the dynamics at hand and high-information
experimental measurements. The majority of this work has
focused on assessing the results obtained for pure polarization
states, in which there is no additional information gained
from the coherent time-domain integration over the laser
pulse, but for more complex cases the additional information
content of polarization-multiplex measurements may be vital.
Specifically, multiplexing provides additional time-domain
interferences in the PADs [see Eq. (12)], with the result
that time-integrated polarization-multiplexed measurements
contain the information of multiple pure-state measurements.

One particularly powerful aspect of using shaped pulses is
the possibility of tailor-made pulses for metrology, designed
to create or amplify specific interfering channels of interest.
Conceptually this is identical to the use of shaped pulses for
control [20,37], however, the pulses would be designed for
the purposes of obtaining detailed information on specific
ionization channels, rather than for the purposes of creating
a specific photoelectron distribution. The examples shown in

Figs. 1 and 2 indicate how this concept operates: there are
different continuum populations created in the two cases; the
time-domain structure is more complex in the shaped pulse
case, and most generally, the pulse shape can be chosen
to select certain ionization channels (within the constraints
imposed by the dynamics of the ionizing system). As well as
polarization shaping, the coherent time-domain treatment may
provide a way to probe additional intereferences due to effects
such as intensity-dependent ionization phases. The presence
of such effects at higher intensities has been determined from
the behavior of the PADs over the Autler-Townes structure of
the photoelectron spectrum, as mentioned above (Sec. IV B),
but remains to be understood in detail.

In all these cases, the PADs will usually be noncyclindri-
cally symmetric, so the use of “maximum information mea-
surements” utilizing 3D measurements and detailed analysis
will also be required. The power of this approach has been
touched on here and is further explored in Ref. [18]; recent
work has also considered 3D photoelectron measurements in
the context of photoelectron circular dichroism [57].

VI. SUMMARY AND CONCLUSIONS

In this work the validity of a fitting approach to complete
photoionization experiments in the multiphoton regime, incor-
porating intrapulse dynamics, as initially reported in Ref. [17],
has been explored. The details of the fitting procedure, based
on statistical sampling of the χ2 hyperspace and further testing
and validation of the results, are outlined as a pragmatic fitting
methodology. The results presented in Ref. [17] are discussed
in detail and compared both qualitatively and quantitatively
with full 3D experimental photoelectron distributions. Finally,
extension of this treatment to more complex ionization
processes is discussed in general terms.

This analysis indicates the validity of the results already
presented, as well as insight into the practicalities of a
pragmatic fitting approach. Although this approach has yet
to be tested beyond the use of pure polarization states, the
use of polarization shaped pulses clearly offers an enhanced
photoelectron metrology, with the possibility of controlling
the information content via the pulse shape, as discussed
in Sec. II (see also Ref. [17]). The use of full 3D experi-
mental measurements is another powerful aid to maximum
information metrology, as indicated herein by comparison of
the computational results with tomographically reconstructed
experimental distributions (see also Ref. [18]). In general, we
anticipate that the combination of these tools represents a
powerful methodology for complete photoionization studies
or other research making use of ionization measurements.
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