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Frequency shift between coherent superposition states induced by the Berry phase
evolving linearly in time
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The frequency shift induced by the Berry phase between two coherent superposition states with m′ = −1 and
m = 1 was demonstrated under constant rotation of a magnetic field with frequency f for angle θ from the
rotation axis. It was found that the frequency shift is v = 2f − 2f cos θ for 0 � θ � π/3, v = −2f cos θ for
π/3 < θ < 2π/3, and v = −2f − 2f cos θ for 2π/3 � θ � π in the case of the right-handed rotation. For the
left-handed rotation, the frequency changes in the opposite sign. The frequency shift is zero at θ = 0, π/2, and
π , and it jumps by 2f in the vicinity of θ = π/3 and 2π/3. We confirm that the frequency shift is given by the
time derivative of the Berry phase which does not depend on the sign of the g factor.
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I. INTRODUCTION

It is well known that a particle of any spin in an eigenstate
of a magnetic field rotating around a circuit C will acquire
the Berry phase γ in addition to the dynamical phase. The
Berry phase for a whole rotation of the magnetic field is given
by γ = −m�(C), where m is the spin component along the
magnetic field and �(C) is the signed solid angle. If C is
a right-handed circuit around a cone of semiangle θ from a
rotation axis, the signed solid angle is �(C) = 2π (1 − cos θ )
[1]. Wilczek and Zee [2] and Cina [3] have suggested that a
manifestation of the geometric phase should be observed in
the evolution of a coherent superposition of states m and m′
for a whole rotation. Then, the difference between the Berry
phase of the two states is given by �γ = −2π (m − m′)(1 −
cosθ ). The cyclic Berry phase has been demonstrated in several
such coherent superposition systems such as linearly polarized
light in an optical fiber [4] and neutron spins in a helically
wound magnetic field [5]. It was also predicted that such a
Berry phase evolving linearly in time will induce a shift of
the transition frequency between two states [6]. The frequency
shift of the spectrum between two states under the rotation
of a magnetic field is thought to be the time derivative of
the Berry phase. Under constant rotation with frequency f ,
the frequency shifts by �v = −�γf/(2π ) from the resonance
frequency under a static magnetic field. This frequency shift
was verified by adiabatic rotational splitting of the nuclear
quadrupole resonance in the free-induction decay signals from
a rotating sample by Tycko [7] and by the Fourier transform of
the nuclear magnetic resonance spectra under a continuously
rotating radio-frequency field by Suter et al. [8].

To verify such a phase shift or frequency shift experimen-
tally, the extradynamical phase shift should be removed. For
this purpose, a superposition state of the ground hyperfine
levels of the |F ′ = 1,m′ = −1〉 state with a negative Landé g

factor to the |F = 2,m = 1〉 state with a positive g factor of
an alkaline atom is suitable because it becomes a magnetic-
field-insensitive transition at the magic magnetic field [9].
Previously, we developed an atom interferometer using the
two-photon microwave–radio-frequency (MW-rf) transition
from the m′ = −1 to m = 1 states of Na atoms at the magic
magnetic field of 67.7 μT and measured the Berry phase for
a whole rotation of the magnetic field for π/3 < θ < 2π/3.

The obtained phase difference between the two states was
�γ = 4π cos θ for the whole rotation of the magnetic field
[10]. On the other hand, the frequency shift of the spectrum
was −2f cos θ under the constant rotation of the magnetic
field at frequency f [11]. These results were different from
the theoretical values of −4π (1 − cos θ ) and 2f − 2f cos θ ,
respectively. Therefore, in our previous papers [10–13], we
claimed that the signed solid angle for the state with a negative
g factor was � − 4π , when that for the state with a positive g

factor was �, to explain our experimental results.
However, Welte et al. recently measured the Berry phase

on superposition states of the magnetic quantum numbers
m′ = −1 with a negative g factor and m = 1 with a positive
g factor of 87Rb using free-induction decay [14] and verified
that the Berry phase is independent of the sign of the g factor,
as predicted from the equation derived by Berry [1]. They
showed that the phase shift varies in accordance with the
equation �γ = −4π + 4π cos θ for 0 � θ � π/2, where a
reasonable boundary condition is �γ (θ = 0) = 0. Certainly,
their phase shifts and others reported previously [4,5] were
not different from those observed by us, except for those of
4π and 2π . Experimentally, an absolute phase difference of
multiple of 2π cannot be distinguished. The solid angles that
we claimed for a negative g factor were the same as those for
a positive g-factor modulo 4π . Therefore, our claim that the
Berry phase for a whole turn depended on the sign of the
g factor was not reasonable. Thus, the problem is how to
explain the frequency shift of −2f cos θ under the constant
rotation of a magnetic field at frequency f . Up to now, no
other experiments have been carried out to investigate the
dependence of the frequency shift on θ , although Simon
et al. observed the frequency shift of a laser by changing the
solid angle on the Poincaré sphere [15]. Tycko examined the
frequency shift only at an angle of cos2θ = 1/3(θ ∼ 0.3π )
as a function of the rotation frequency and explained the
frequency shift as the time derivative of the phase modulo
2π [7]. Therefore, we aimed to demonstrate the behavior of
the frequency shift for the whole angle from the rotation axis.

In this paper, we report the experimental results for the
frequency shift for the angle 0 � θ � π from the rotation axis
and explain the frequency shift measured during the evolution
of a coherent superposition of two different states evolving
linearly in time on the basis of our experimental results.
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FIG. 1. (Color online) Experimental configuration. Cold atoms
trapped in the cell are irradiated by the microwave (MW) and radio-
frequency wave (rf) under the rotational magnetic field B with an
angle θ from the z axis and a rotation angle φ.

II. MEASUREMENT OF FREQUENCY SHIFT

The present measurement method and apparatus were the
same as those described in a previous paper [11], except for
the direction of the rotation axis of the magnetic field. In
the previous experiment, the spectra became smaller as θ

decreases and disappeared at θ < π/3, as the rotation axis
was parallel to the propagation direction of the microwave
(MW). Therefore, the rotation axis in this study was set to
be the z axis, perpendicular to the propagation directions of
MW and rf, as shown in Fig. 1. The dipole antenna produces
the microwave with a frequency of hyperfine splitting and the
loop antenna produces the radio frequency of around 420 kHz.
The two-photon spectra were clearly observed throughout the
range 0 � θ � π . The magnetic field in the x-y plane was
rotated and the static magnetic field was applied parallel to the
z axis. The total strength of the magnetic field was maintained
at 67.7 ± 1.0 μT by regulating the currents of three Helmholtz
coils. The rotation frequency was 400 Hz and the pulse width
of the MW-rf was 5 ms. The amplitudes of the MW and rf
were regulated to get a good signal-to-noise ratio. Thus, we
could obtain the spectrum of the transition from the m = −1
to m = 1 states (−1-1) with a width of 200 Hz.

Before the measurement of the frequency shift, we mea-
sured the phase shift of the spectrum from m′ = −1 to m = 1
states for the whole rotation of the magnetic field using the
atom interferometer comprised of two MW-rf pulses [10] The
phase shift was measured on the basis of the phase at θ = π/2
as a function of angle θ from the rotation axis, as shown in
Fig. 2. Then, the phase shift for the right-handed rotation (or
the left-handed rotation) varies monotonically in accordance
with the function 4π cos θ (or − 4π cos θ ) for 0 � θ � π ,
which confirmed our previous result for π/3 < θ < 2π/3 [10].
However, if we rewrite it on the basis of the phase at θ = 0, it is
in accordance with the function −4π (1 − cos θ ) as in Ref. [14].
Thus, there is no difference between them (modulo 4π ).

Typical spectra of the −1-1 transition, together with those
of the 0-0 transition as a reference, are shown in Fig. 3 for
the case of right-handed rotation with different θ . Figure 3(a)

FIG. 2. (Color online) Observed Berry phase of spectrum from
m′ = −1 to m = 1 states for a whole rotation of the magnetic field
using the atom interferometer as a function of angle θ from the
rotation axis. The phase shift is measured on the basis of the phase at
θ = π/2. (•) Right-handed rotation. (�) Left-handed rotation. Solid
curve and dashed curve are 4π cos θ and −4π cos θ , respectively.

shows the spectrum under the static magnetic field at θ = 0 and
other figures show spectra under the rotation of the magnetic
field for different θ . From Figs. 3(a)–3(f), we confirm that
the peak frequency of the 0-0 spectrum is almost constant
within 50 Hz, but the sideband components with the rotation
frequency of 400 Hz are generated on both sides as θ increases.

FIG. 3. (Color online) Spectrum from m′ = −1 to m = 1 states
(arrow) under the right-handed rotating magnetic field at 400 Hz with
various angle θ from the rotation axis, together with that from m′ =
0 to m = 0 states as a reference. The frequency shifts zigzag as
θ increases. Dashed lines are their resonance frequencies at static
magnetic field.
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Thus, the spectrum is composed of primary component f0

and sideband components fn with the rotation frequency
multiplied by a negative or positive integer n under the rotation
of the magnetic field. On the other hand, under the rotation of
the magnetic field, the primary component f0 of the −1-1
line is shifted as θ increases. At θ = 0.2π [Fig. 3(b)], f0 is
shifted to a higher value together with the small sideband f−1.
At θ = 0.35π [Fig. 3(c)], the frequency undergoes a higher
shift and a second-order sideband f−2 with a frequency 800 Hz
lower than that of the primary component starts to oscillate. At
0.45π [Fig. 3(d)], the peak spectrum jumps to the second-order
sideband f−2 from f0. At 0.50π [Fig. 3(e)], the frequency of
the peak sideband f−2 is again coincident with that under the
static magnetic field and increases as θ increases. This jump of
800 Hz in the frequency of the −1-1 line to a lower sideband
f−4 occurs again at 0.65π [Fig. 3(f)]. Above 0.75π , other
sideband components except for f−4 disappeared and the fre-
quency of f−4 increased to that under the static magnetic field.

The spectral strengths of the primary and sideband compo-
nents fn (n = 0,−1,−2,−3,−4) in the −1-1 spectrum were
summarized as shown in Fig. 4. The spectral strength was
measured on the basis of the strength of the primary component
in the 0-0 spectrum. The strength of f0 becomes maximum
in the −1-1 spectrum for 0 � θ < ∼π/3, but decreases as
θ increases and disappears at θ larger than π/2. When the
strength of f0 decreases, the strength of f−1 starts increasing at
first, but stops increasing at θ = π/3. Meanwhile, the strength
of f−2 increases more rapidly and becomes maximum at
around θ = π/2. The strength of f−4 starts oscillation at
around θ = π/2 and becomes maximum for ∼2π/3 < θ � π .
The sidebands of f−1 and f−3 did not increase to the dominant
component.

The frequency shift of the −1-1 line was summarized as
a frequency shift of the dominant component for various θ in
0 � θ � π at an interval of 0.05π , as shown in Fig. 5. The
behavior of the frequency shift can now be clearly observed.
For the right-handed rotation, the frequency of primary
component f0 is dominant and increases in accordance with
the function 2f − 2f cos θ (solid line), in 0 � θ < ∼π/3.
Above θ ∼ π/3, the sideband f−2 becomes the dominant

FIG. 4. (Color online) Strength of primary and sideband compo-
nents in the −1-1 line as a function of θ . The dashed curves are
guides for the eyes. fo is a carrier component and fn is the sideband
component with the rotation frequency multiplied by integer n.

FIG. 5. (Color online) Observed frequency shift of spectrum
from m′ = −1 to m = 1 states as a function of angle θ from the
rotation axis, which is induced by the Berry phase evolving linearly
in time. Rotation frequency of the magnetic field is 400 Hz. (•, ◦) Main
and subpeaks for right-handed rotation. (�, �) Main and subpeaks
for left-handed rotation. Solid lines and dashed lines are theoretical
curves (see text).

component of the −1-1 line and the frequency shift jumps by
−2f . It then increases as −2f cos θ , crossing zero at θ = π/2,
which confirms our previous result. However, the dominant
component is again replaced by the sideband f−4 and the
frequency shift jumps by −2f . Above θ = 2π/3, f−4 becomes
the dominant component and increases as −2f − 2f cos θ and
reaches 0 at θ = π . For the left-handed rotation, the frequency
changes in the opposite sign. Thus, the frequency shift induced
by the Berry phase evolving linearly in time does not change
monotonically. The behavior of the frequency shift can be
divided roughly into three ranges of θ , namely 0 � θ < π/3,
π/3 < θ < 2π/3, and 2π/3 � θ � π .

III. DISCUSSION

The present results in the range of 0 � θ < π/3 confirmed
the reasonable result that the frequency shift is zero at θ = 0
and verified that the frequency shift of v = 2f − 2f cos θ

for the right-handed rotation is just the time derivative of
the Berry phase for a whole rotation −4π (1 − cos θ ) during
a period T . Then, how can we explain the frequency shifts
observed in other ranges? These results will be explained as
follows. Under the rotation of the magnetic field, the sideband
components fn with the rotation frequency multiplied by
integer n are generated. The frequency of each sideband mode
fn changes according to ν = (2 + n)f − 2f cos θ . Namely,
it is given by a time derivative of the Berry phase plus each
sideband frequency of nf . In the sideband component with
even n, the sideband component whose frequency is the nearest
one to the resonance frequency under the static magnetic
field becomes dominant. Therefore, in π/3 < θ < 2π/3 the
sideband component f−2 becomes dominant and the frequency
shift changes according to −2f cos θ and in 2π/3 � θ � π

the sideband component f−4 becomes dominant and frequency
shift changes according to −2f − 2f cos θ . The boundary
conditions are θ = π/3 and 2π/3.
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For the left-handed rotation, the frequency of fn changes
according to ν = (−2 + n)f + 2f cos θ . Therefore, in the
range of 0 � θ � π/3 the frequency of f0 changes according
to ν = −2f + 2f cos θ , in π/3 < θ < 2π/3 the sideband
component f2 becomes dominant and the frequency shift
changes according to 2f cos θ , and in 2π/3 � θ � π the
sideband component f4 becomes dominant and the frequency
shift changes according to 2f + 2f cos θ . On the other hand,
the strength of the sideband components of f−1, f−3, f1, and
f3 does not become dominant, because the present case is m −
m′ = 2(modulo 4π ). The fact that the frequency shift is zero
for the rotation at θ = π/2 shows that the explanation of the ex-
perimental results in Ref. [16] is not reasonable. Thus, the
frequency shift could be explained by the time derivative of the
Berry phase, not depending on the sign of the g factor [10,11].

On the other hand, in the third range of 2π/3 � θ � π , the
frequency shift −2f − 2f cos θ can be also explained by the
time derivative of the phase shift measured by the Berry phase
for a whole rotation, if we define an axis with a semiangle of
cone smaller than π/2 as the rotation axis. Then, the rotation
axis is reversed to the −z axis, the angle from the −z axis
becomes π − θ , and the sense of the rotation of the magnetic
field is reversed. The Berry phase becomes 4π (1 + cos θ ); thus
the frequency shift is given by ν = −2f − 2f cos θ .

IV. CONCLUSIONS

In conclusion, we measured the frequency shift between
coherent superposition states induced by the Berry phase

evolving linearly in time for a rotation of the magnetic field
with angle θ from the rotation axis. The behavior of the
frequency shift can be divided roughly into three ranges of
the angle θ . In the case of the right-handed rotation, the
frequency shift is v = 2f − 2f cos θ for 0 � θ < ∼π/3, ν =
−2f cos θ for about θ = π/2, and ν = −2f − 2f cos θ for
∼2π/3 � θ � π . The frequency of all sideband components
changes according to (2 + n)f − 2f cos θ , which is a time
derivative of the Berry phase plus each sideband frequency of
nf . The sideband component whose frequency is the nearest
to the resonance frequency under the static magnetic field
becomes dominant in the sideband components with even n.
The boundary conditions are θ = π/3 and 2π/3. As a result,
the frequency shift of the spectrum under the rotation of a
magnetic field at a constant rate is zero at θ = 0, π/2, and
π , and it jumps by 2f in the vicinity of θ = π/3 and 2π/3.
These results can be explained by the time derivative of the
Berry phase and we confirm independence of the sign of the g

factor [1,14].
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