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Resonances with natural and unnatural parities in positron-sodium scattering

Muhammad Umair* and Svante Jonsell†

Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
(Received 26 February 2015; revised manuscript received 23 April 2015; published 20 July 2015)

We present an investigation of resonances in positron-sodium scattering using the complex scaling method. For
the target sodium atoms, the interaction between the core and outer electron is treated using two different types of
analytical model potentials. Explicitly correlated Gaussian wave functions are used to represent the correlation
effects between the outer electron, the positron, and the Na+ core. S-, P -, and D-wave resonances with natural
parity have been calculated for energies extending up to the positronium n = 2 formation threshold. Resonance
states for unnatural parities P e and D0 have been calculated for energies extending up to the positronium n = 3
threshold. Below both positronium thresholds we have for each symmetry identified a dipole series of resonances,
with binding energies scaling in good agreement with expectations from an analytical calculation. The presented
results are compared with other theoretical calculations.
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I. INTRODUCTION

Over the past few years the study of atomic resonances with
positrons has attracted a lot of interest in the field of positron-
atom interactions [1–12]. The phenomena of resonances have
been studied widely in positron-hydrogen scattering since
Mittleman [13] suggested their existence.

Only a few theoretical studies have been made on reso-
nances for the positron-sodium system. In a pioneering work
Ward et al. [14] performed calculations of the positron-sodium
system using the five-state close-coupling method. Recently,
the stabilization method was applied to evaluate the resonances
in this system by Kar and Ho [9] using Hylleraas functions and
by Han et al. [10] using hyperspherical coordinates. Finally,
Jiao et al. [15] studied higher partial-wave resonance states
using the momentum-space coupled-channel optical method.
While reasonable agreement has been reached between the
two groups using the stabilization method, their calculations
concentrate on only S-wave symmetry and relatively low
energies. The groups using other methods include partial
waves up to D waves and show fair agreement among one other
but agree less well with the methods using the stabilization
method.

There have been some experimental measurements of the
total cross section [16,17] and of positronium (Ps) formation
[18,19] for e±-Na scattering, but not with sufficient energy
resolution to map out the resonance structure.

Resonances with unnatural parity satisfy π = (−1)J+1,
where J is the total orbital angular momentum (the spin
is conserved) of the system and π is the parity. Some
work on unnatural-parity resonances for positron-hydrogen
scattering has been performed [20–22], but positron-sodium
scattering has not yet been examined. Recently, Bromley et al.
performed a calculation of some unnatural parity bound states
in positronic complexes [23].

In this study, we report resonances in the positron-sodium
system determined using the complex scaling method for
natural and unnatural parity. The e+-Na system can be
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formulated as a three-body system: a frozen core, a positron,
and an electron. In this way, the system resembles the
hydrogen-positron system, but there are some qualitative
differences. First, the interaction between the Na+ core and the
active electron is Coulombic only at very long range. At shorter
distances the nuclear charge is only partially screened, which
makes it necessary to employ some sort of model potential
for the e−-Na+ interaction. More generally this interaction
should also include electron exchange, but this has not been
explicitly included in our study. The e+-Na interaction is,
like the e+-H interaction, at long distances dominated by
the polarizability of the atom, giving a potential ∝r−4. The
polarizability of Na (162 a.u.) [24] is, however, larger than that
of H (4.5 a.u.), which allows the formation of a truly bound
state of the e+-Na system [25]. Furthermore, the hydrogen
atom has energy levels degenerate with respect to orbital
angular momentum (neglecting fine structure), whereas the
alkali atoms do not. Another characteristic of a positron-Na
system is that the ionization energy of Na (0.19 a.u.) [26] is
smaller than the binding energy of Ps (0.25 a.u.), allowing for
positronium formation even at zero impact energy.

Our calculation is based on the coupled rearrangement
channels method developed by Kamimura and coworkers
[27,28]. Of the earlier works, our method is most similar
to the stabilization method [9,10] but allows more accurate
description of resonances by going into the complex plane. It
is also different in the coordinate system and functional forms
it uses for representing the wave function, allowing relatively
large basis sets to be used. We have investigated two different
types of analytical model potentials for the interaction between
the core and the outermost active electron in our analysis.

Atomic units are used unless otherwise is specified.

II. METHOD

The Hamiltonian H of the system is given by

H = − 1

2μ
∇2

1 − 1

2μ
∇2

2 + V (e−)(r1) + V (e+)(r2) − 1

r12
, (1)

where the subscripts 1 and 2 denote the coordinates of the outer
electron and positron, respectively; r12 is the relative distance
between them. V (e−) and V (e+) are the interaction potentials
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TABLE I. Ground-state energy of the e+-Na system calculated
using different models. The results are compared to the result of Han
et al. [10] using the same model potential as our MP2a, but with
an additional term analogous to a “dielectronic correction” added to
the e+–e− interaction to cancel the core polarization when the two
particles coalesce. We have also included the result of Kubota and
Kino [11], which uses the same numerical method but a different
form of the model potential.

Model Energy

MP1 −0.250312
MP2a −0.250710
MP2b −0.250337
Han et al. [10] −0.250447
Kubota and Kino [11] −0.250401

between the core of the sodium atom and the outer electron
and the positron, respectively. For the electron interaction
with the Na+ core a model potential is required. In principle
any model potential that accurately reproduces the atomic Na
energy levels can be used. In order to assess the size of the
uncertainty in the results coming from the form of the model
potential we have tried and compared two different models
used previously in [9] and [10]. These model potentials have
the form of screened Coulomb interactions. For both model
potentials the Coulomb part ±1/r was treated analytically,
while the remaining screening terms were fitted to a number
of Gaussians. In this way we were able to represent the
potential using a functional form which allows the Hamiltonian
matrix elements to be calculated analytically, including when
complex scaling is used.

Our first model (MP1) is the same as that used by Kar and
Ho [9], given by

V (e−)(r) = −1

r
[1 + (Z − 1) exp(−c1r) + c2r exp(−c3r)],

(2)

where c1, c2, and c3 are variational parameters; Z = 11 for
Na. For e+-Na scattering, we set c1 = 7.902, c2 = 23.51,
and c3 = 2.688, as suggested by Hanssen et al. [29] and
Schweizer and Fabbinder [30]. For V (e+) we use the same
potential as in Eq. (2) but with an opposite sign. Using MP1
we have verified that the ground-state energy of the e+-Na
system (see Table I) and also the ground- and excited-state
energies of Na (shown in Table II) agree with other calculations
and with experimental values [26]. Thus, we conclude that
our fit to Gaussians is accurate enough to obtain good
energies. For the e+-Na interaction we also tried an effective
potential calculated using the Hartree-Fock (HF) method, as
was suggested in [9]. The difference in the results turned out
to be marginal, as can be expected because of the repulsive
interaction that does not allow the positron to penetrate the
core. The corresponding modification to the attractive e−-Na+

interaction should probably give a larger change. In this case,
however, the HF potential cannot be used because, first, it does
not include exchange with the valence electron and, second,
it does not reproduce the correct atomic thresholds of the Na
atom with sufficient accuracy.

TABLE II. Comparison of calculated binding energies of the Na
atom using different model potentials for the core–valence-electron
interaction. The excited-state energies are calculated relative to the
ground state of the Na atom. The experimental energies are calculated
using the ionization energy 0.188857595 a.u. [26] and the weighted
averages of the excitation energies of all fine-structure levels [26].

Present results

State MP1 MP2 Experiment [26]

3s 0.18886 0.18886 0.18886
3p 0.11152 0.11154 0.11154
4s 0.07167 0.07158 0.07158
3d 0.05598 0.05595 0.05594
4p 0.05102 0.05094 0.05093
5s 0.03763 0.03758 0.03758
4d 0.03150 0.03143 0.03144
4f 0.03134 0.03126 0.03127
5p 0.02924 0.02917 0.02919

The second model potential (MP2) used for the valence-
electron–core interaction is the same as that used by Han et al.
[10] and has the form

V−(r) = −1

r
[Zc + (Z − Zc)e−a1r + a2re

−a3r ]

− ac

2r4

[
W3

(
r

rc

)]2

, (3)

where

W3(r) = 1 − e−r3
(4)

is the cutoff function employed to determine the correct
behavior at the origin. The second term in Eq. (3) arises from
the polarization of the core, where ac = 0.9457 is the Na+

polarizability [31]. The 1/r4 tail of the potential cannot be
fitted well using Gaussians. Therefore, in order to get this
long-range part of the potential correctly, the term

Upol(r) = − ac

2r4
(1 − e−r2

)2, (5)

which can be calculated analytically (i.e., without fitting
to Gaussians), was treated separately, while the remainder
V−(r) − Upol(r) was fitted to Gaussians using the same
procedure as described above, i.e., treating the Coulomb part
analytically while fitting the remaining screening function.
[Note that this form differs from (4) but also has the property
that it does not diverge at r = 0, although it differs in that it
does not vanish in this limit. The term in (5) gives a matrix
element which is much easier to calculate analytically when
Gaussian basis functions are used.]

Also in Eq. (3), the nuclear charge is Z = 11, and the
charge of the Na+ core is Zc = 1. The other parameters were
fitted by Liu and Starace [32] to reproduce the experimentally
measured energy levels of the Na atom. Their values are
a1 = 3.32442452, a2 = 0.71372798, a3 = 1.83281815, and
rc = 0.52450638. The atomic Na energies calculated with our
implementation of this model are also shown in Table II, again
confirming that our fit is accurate.
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For V (e+) we used the same potential as in Eq. (3) but
with a reversed sign of the first term, while the second
term represents that the (always attractive) polarizability
was first left unchanged (MP2a). However, this leads to a
double counting of the core polarization when the electron
and positron coalesce, while physically there should be no
polarization induced by the interaction with a neutral system.
In [10] this problem was solved by introducing an additional
term in the electron-positron interaction, but the form of
this term, containing a product of coordinates belonging to
different rearrangement channels, would be very difficult to
use in our method. Instead, we have tried to determine the
error introduced by this imperfection by also comparing it to
calculations where we also reversed the sign of the polarization
term (MP2b). We found that changing this sign does have a
significant impact on the ground state of the e+-Na system
(see Table I). However, we also found that for resonances the
difference between MP2a and MP2b is much smaller, only
about 10−6 a.u. Results for resonances using MP1 and MP2a
are compared in Tables III and VII.

The correlation effects between the electron, the positron,
and the core were calculated using the coupled rearrangement
channels method developed by Kamimura and coworkers
[27,28]. In this method the wave function is expanded using
Jacobi coordinates ({ri , Ri}, i = 1,2,3) in all three possible
rearrangement channels. This gives a very versatile basis set,
capable of adapting to states close to the breakup thresholds
of any pair of particles.

Within this coordinate system we represent the wave func-
tion using a partial-wave expansion of the angular variables
and Gaussians in the radial variables. That is, for a state with
total orbital angular momentum J , M the wave function has
the form

�JM =
3∑

α=1

lmax
α∑

lα=0

Lmax
α∑

Lα=0

imax
αl∑
i=1

Imax
αL∑

I=1

cαlαLαiI φαlαLαiI , (6)

φαlαLαiI = NαlαLαiI r
lα
α RLα

α e−(rα/rαlα i )2
e−(Rα/RαLαI )2

× [Ylα (r̂α) ⊗ YLα
(R̂α)]JM. (7)

Here α denotes the three rearrangement channels, lα and Lα are
the angular momenta along rα and Rα , respectively, and i and
I are numbers of Gaussians along the two radial coordinates.
The angular momenta lα and Lα are chosen to be consistent
with the total J (i.e., |lα − Lα| � J � lα + Lα , up to some
maximum values lmax

α and Lmax
α , which may be different

for different rearrangement channels.) The total numbers of
Gaussian trial functions for each rearrangement channel and
angular momentum are given by imax

αl and Imax
αL . NαlαLαiI is a

normalization constant ensuring that 〈φαlαLαiI |φαlαLαiI 〉 = 1.
The widths of the Gaussians rαlαi and RαLαI are, for each
channel and set of angular momenta, chosen as geometric
progressions,

rαlαi = rαlα1

(
rαlαimax

αl

rαlα1

) i−1
imax
αl

−1

,

RαLαI = RαLα1

(
RαLαImax

αL

RαLα1

) I−1
Imax
αL

−1

, (8)

where the smallest and largest values {rαlα1,

rαlαimax
αl

,RαLα1,RαLαImax
αL

} are set explicitly and used as
nonlinear variational parameters. In this way most Gaussians
will span the short to medium range, while a few more diffuse
Gaussians capture the long-range part of the wave function.
In this work, resonances with very small binding energies
have been calculated, and hence, it was essential to set a large
enough value for the outer radius Ri .

Resonances are calculated using the complex scaling
method (also known as the complex coordinate rotation
method) [2,33–35]. The complex dilation operator U (θ ) acting
on a function f (r) is defined through

U (θ )f (r) = e3iθ/2f (eiθ r), (9)

where the exponential prefactor ensures that the com-
plex scaled function satisfies the normalization condition∫

U (θ )f ∗(r)U (θ )f (r)d3r = 1. The corresponding transfor-
mation of the Hamiltonian is, for the special case V ∝ 1/r ,

H (θ ) = U (θ )HU−1(θ ) = e−2iθ T + e−iθV , (10)

and, more generally, U (θ )V (r)U−1(θ ) = V (eiθ r). For simple
functional forms, such as Gaussians and polynomials, it is easy
to implement the complex scaling. Stationary eigenvalues of
the complex scaled generalized eigenvalue problem

H̃ (θ )cθ = ES̃cθ , H̃ij (θ ) = 〈ψi |H (θ )|ψj 〉,
S̃ij (θ ) = 〈ψi |ψj 〉 (11)

TABLE III. Comparison of our results for S-, P -, and D-wave
resonance energies ER and widths � in the e+-Na system. The
threshold energies shown here are calculated using the respective
model potential (see Table II) and are close to the experimental values.
The notation x[y] means 10−y .

MP1 MP2a

Resonance ER � ER �

S −0.076839 1.54[4] −0.076789 1.51[4]
P −0.075238 1.09[4] −0.075195 1.00[4]
D −0.072653 2.68[4] −0.072596 4.96[4]

Na(4s) Et = −0.07167 Et = −0.07158
S −0.066615 7.20[5] −0.066596 6.91[5]

−0.063628 1.62[5] −0.063622 1.61[5]
−0.062803 4.16[6] −0.062802 4.34[6]
−0.062581 1.14[6] −0.062581 1.16[6]
−0.062522 3.10[7] −0.062522 3.07[7]
−0.062506 8.68[8] −0.062506 8.21[8]

P −0.065813 5.28[5] −0.065800 4.77[5]
−0.063364 5.76[5] −0.063364 5.51[5]
−0.063071 1.90[4] −0.063063 1.99[4]
−0.062704 3.70[6] −0.062703 4.50[6]
−0.062552 8.12[7] −0.062551 8.17[7]
−0.062513 1.89[7] −0.062513 1.11[7]

D −0.064657 1.53[4] −0.064644 1.70[4]
−0.062957 3.50[5] −0.062950 2.57[5]
−0.062599 8.16[6] −0.062595 5.58[6]
−0.062522 1.83[6] −0.062520 1.35[6]

Ps(n = 2) Et = −0.062500

012706-3



MUHAMMAD UMAIR AND SVANTE JONSELL PHYSICAL REVIEW A 92, 012706 (2015)

TABLE IV. Comparison of the S-, P -, and D-wave resonance energy ER and width � for the e+-Na system with other calculations,
calculated using model potential MP2a. The threshold energies are calculated using the same model potential (right column of Table II). The
notation x[y] means 10−y .

Present results (MP2a) Ward et al. [14] Kar and Ho [9] Han et al. [10] Jiao et al. [15]

Resonance ER � ER � ER � ER � ER �

S −0.076789 1.51[4] − 0.07144 7.3[6] −0.07582 4.3[4] −0.0768010 1.4[4] −0.08155 5.55[4]
P −0.075195 1.00[4] − 0.07405 1.2[3] −0.07787 3.36[3]
D −0.072596 4.96[4] − 0.071 1.1[3] −0.07313 6.44[3]

Na(4s) threshold (Et = −0.07158)
S −0.066596 6.10[5] −0.06591 3.1[4] −0.0665606 6.1[5] −0.06641 2.01[3]

−0.063622 1.61[5] −0.0635301 4.1[5]
Ps(n = 2) threshold (Et = −0.06250)

correspond to complex energies E = ER − i�/2 of the sys-
tem, where ER is the resonance energy and � is the width.

III. RESULTS AND DISCUSSION

A. e+-Na resonances with natural parity

Resonance positions and widths found in the e+-Na system
with natural parity are summarized for S-, P -, and D waves in
Tables III and IV. Our results were obtained using about 7000
Gaussian basis functions with different possible combinations
for angular momentum, with maximum values lmax

α = Lmax
α =

4. In Table III, we compare our results using the two different
model potentials, whereas in Table IV we compare our results
to the results obtained in other studies (when available). In
Table IV we give our results using MP2a (see above). We
find that the uncertainty arising from using different model
potentials is much smaller than the differences between earlier
calculations reported in the literature. We estimate that the
numerical uncertainties for the resonance energies and widths
are within a few parts of the last quoted digit.

Earlier works have also reported a number of near-threshold
resonances for which we have not found evidence [9,10,14,15].
The parameters for these resonances, as reported in other
papers, are summarized in Table V. All previous works
have found resonances close to the 3p threshold of S-wave
and P -wave symmetry (only two calculations included P

waves). A closer look at the resonance parameters reveals
fair agreement between the work by Ward et al. using the
close-coupling method [14] and that by Jiao et al. using the
coupled-channels optical method [15]. The main difference

between these two works is that Jiao et al. [15] included Ps
channels, which were not included at all by Ward et al. [14].
The two calculations by Kar and Ho [9] and by Han et al. [10],
both using the stabilization method, on the other hand, differ
quite a lot from these and also between each other. In fact,
according to these works the resonance lies on the other side
of the Na(3p) threshold, i.e., just above it. It was speculated
in [10] that these could be shape resonances supported by
the adiabatic correction to the hyperspherical potential curves,
which creates a small barrier and thus slightly increases the
effective depth of the potential. We find this explanation
unlikely as the barrier does not seem to be high enough
to support the resonance. Close to the 4s threshold another
S-wave resonance has been reported by Han et al. [10]. The
other works have not found this resonance.

We note that when using the stabilization technique, it can
be difficult to discriminate between resonances and low-energy
continuum states since the energies of both vary very little
as the scale of the system is changed. Indeed, we have also
performed stabilization (real scaling) calculations, where we
found states looking similar to resonances just above the
Na(3p) threshold [Fig. 1(a)]. Zooming in on the state does,
however, reveal a small variation with the scaling parameter
α [Fig. 1(b)], and the continuum-state nature of the state is
confirmed by the complex scaling method [Fig. 1(c)]. We
have made considerable efforts to search for resonances in
this energy region by trying many different basis sets but have
not found any. In contrast, a typical complex scaling graph for
a resonance is shown in Fig. 2.

Between the Na(3p) and Na(4s) thresholds we found
one resonance for each angular momentum J = 0, 1, and

TABLE V. Resonance parameters for near-threshold resonances as reported in earlier publications. These resonances were not found by
us. The energy ε is the energy relative to the atomic threshold in the leftmost column (calculated using the numerical results for the atomic
threshold as obtained in the respective publications). The notation x[y] means 10−y .

Ward et al. [14] Kar and Ho [9] Han et al. [10] Jiao et al. [15]

Threshold J ER ε � ER ε � ER ε � ER ε �

3p 0 −0.1159 −4.3[3] 1.5[5] −0.10732 4.20[3] 2.0[4] −0.1108330 7.05[4] 4.1[5] −0.1164 −4.8[3] 1.31[3]
3p 1 −0.1130 −1.4[3] 2.2[4] −0.1131 −1.6[3] 1.75[3]
4s 0 −0.0709401 6.40[4] 4.7[5]
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FIG. 1. (a) and (b) Real and (c) complex stabilization graphs of
e+-Na states around the Na(3p) threshold. The 3p threshold opens
at −0.1115 a.u. All states which curve down as α is increased are
continuum states, with the curvature depending on which threshold
they belong to. The flat plateau at −0.0768 a.u. is a resonance. The
4s threshold opens at −0.0716 a.u. The flat plateau just above the 3p

threshold is not a resonance, as is revealed by zooming in on the state
(b) or going into the complex plane (c).

2. We have not made any calculations for higher angular
momenta. The uncertainty introduced from different model
potentials is less than 10−4 a.u. The S-wave resonance energy
of −0.076789 a.u. and width of 1.51 × 10−4 a.u. agree very
well with the results by Han et al. [10] but are quite a bit higher
in energy than the result by Jiao et al. [15].

For P and D waves, we have different possible combi-
nations of the individual angular momenta (lα,Lα). The total
number of configurations used was 24. Our results in Table IV
are compared with those of Ward et al. and Jiao et al. [14,15].
The energies are in fair agreement with the other available
results, but the widths we obtained are considerably smaller.

Most of the resonances located above the Na(4s) threshold
belong to the dipole series converging to the Ps(n = 2)
threshold, which is discussed in Sec. III C.
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FIG. 2. Complex scaling graph for a resonance. The crosses show
the energy eigenvalues in the complex plane as a function of the
complex scaling parameter θ in steps of 0.01. The stationary point,
indicating the presence of a resonance, is plainly visible. Note that the
real part of the energy ER is shifted up by 2.4 × 10−5 a.u. compared
to the result using the real stabilization method (θ = 0).

B. e+-Na resonances with unnatural parity

We have also calculated resonance states with so-called
unnatural parity, i.e., parity −(−1)J . Since the parity of the
state is given by (−1)lα+Lα , unnatural-parity states are obtained
by choosing basis functions with angular momentum such that
(−1)lα+Lα+J = −1. Adding the requirement that |lα − Lα| �
J � lα + Lα makes it plain that unnatural-parity resonances
exist for J � 1. Table VI shows the total number of basis
functions used for a given angular momentum state, as well as
the individual (lα,Lα) pairs for different angular momentum
combinations. N is the number of configurations used.

For the P e states, both the electron and positron have
the same angular momentum, which couple to form the
total orbital angular momentum J = 1 shown in Table VI.
The numerical results are shown in Table VII. The lowest

unnatural-parity resonance state is located at the energy
position ER = −0.062923 a.u. with a width � = 6.00 ×
10−6 a.u. lying below the Ps(n = 2) threshold. The next two
P e resonances lie below the 4d threshold. Similar to the case
for natural parity, the resonances lying below the Ps(n = 3)
threshold are members of a dipole series. For the D0 symmetry,
we found ten resonances, shown in Table VII.

C. Dipole series

In contrast to hydrogen, the energy levels of Na are not
degenerate with respect to the L quantum number. Thus, there
is no linear Stark effect in Na; that is, the interaction with the
positron cannot, to first order, induce a dipole moment (but
to second order the polarizability gives a long-range potential
∼r−4 as discussed above). However, the energy levels of Ps

TABLE VI. States with total orbital angular momentum J and
parity π = (−1)J+1.

State J (lα,Lα) N Total basis

P e 1 (1,1),(2,2),(3,3),(4,4) 12 7200
D0 2 (2,1); (1,2),(3,2); (2,3),(4,3); (3,4) 18 8200
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TABLE VII. Unnatural-parity resonance energy ER and width �

for P e and D0 waves in the e+-Na system. The notation x[y] means
10−y .

MP1 MP2a

Resonance ER � ER �

P e −0.062924 6.24[6] −0.062923 6.00[6]

Ps(n = 2) (Et = −0.062500)
P e −0.035141 5.00[5] −0.035120 5.24[5]

−0.031872 2.26[5] −0.031841 2.30[5]

D0 −0.034500 4.13[5] −0.034479 4.15[5]
−0.031736 5.79[6] −0.031708 5.75[6]
−0.031594 3.47[5] −0.031571 3.54[5]

Na(4d) (Et = −0.03150) (Et = −0.03143)

D0 −0.031404 1.36[4] −0.031328 1.10[4]
Na(4f ) (Et = −0.03134) (Et = −0.03126)
P e −0.029897 3.88[4] −0.029898 3.59[4]
D0 −0.029530 1.97[4] −0.029524 1.97[4]

Na(5p) (Et = −0.02924) (Et = −0.02917)
P e −0.028454 1.06[4] −0.028453 1.25[4]

−0.027994 3.88[5] −0.027994 3.94[5]
−0.027848 1.25[5] −0.027848 1.27[5]
−0.027801 4.08[6] −0.027801 4.14[6]
−0.027785 1.33[6] −0.027785 1.36[6]

D0 −0.028287 8.63[5] −0.028285 8.76[5]
−0.027924 2.86[5] −0.027924 2.84[5]
−0.027821 7.87[6] −0.027821 7.94[6]
−0.027791 2.34[6] −0.027791 2.36[6]
−0.027782 3.22[7] −0.027781 2.92[7]

Ps(n = 3) (Et = −0.027778)

are degenerate with respect to the l quantum number, and
hence, the Ps-Na+ interaction does to first order give a dipole
interaction, i.e., an interaction-potential with long-range form
proportional to −1/r2. This long-range potential gives, in
principle, an infinite sequence of quasibound states clustering
towards the Ps thresholds, starting at the n = 2 threshold. The
binding energies (and widths) of each sequence follow a fixed
ratio,

εn

εn+1
= exp

(
2π

α

)
, (12)

where the parameter α is unique to each Ps threshold, total
orbital angular momentum J , and parity of the system but
universal with respect to any positive ion it interacts with.
A universal formula for α, calculated using the methods of
Temkin and Walker [36], is given in the Appendix. The results
are summarized in Table VIII, where they are also compared
to the results for hydrogen. Note that the different mass factors
in Ps compared to those in H results in a much closer energy
spacing between the dipole states in Ps. Hence, it is possible
to find a larger number of dipole states below Ps thresholds.
The range of binding energies over which the scaling is valid
is limited from above by ε 	 1/n4 and at the limit of small
binding energies by the size of the fine structure in Ps (which
is of the order of 10−6).

TABLE VIII. Dipole series for Ps and H, the parameter α (see
text), and energy ratios. For some symmetries more than one solution
exists.

Ps H

n J Parity α εn/εn+1 α εn/εn+1

2 0 + 4.77 3.73 2.20 17.43
2 1 − 4.58 3.95 1.86 29.33
2 2 + 4.16 4.54 0.75 4422
3 0 + 7.74 2.25 3.64 5.61
3 1 + 5.64 3.05 2.23 16.75
3 1 − 7.94 2.21 3.74 5.35
3 1 − 4.70 3.80 1.82 31.32
3 2 + 6.88 2.49 3.07 7.73
3 2 + 3.48 6.07
3 2 − 5.30 3.28 1.43 80.55

The resonances closest to threshold are extremely narrow
and need very high accuracy for the calculation. Our numerical
results for the scaling of the dipole states are given in Tables IX
and X. At the n = 2 threshold (Table IX) we find that
the scaling of the S-wave binding energies is in excellent
agreement with the expected scaling. For P and D states
the agreement is slightly less good but still fair. The P -wave
resonance located at ER = −0.063063 a.u. does not seem to fit
into the dipole sequence and has been omitted in Table IX. The
differences probably arise from numerical inaccuracies in the
calculation of these very extended and weakly bound states.
The widths are less accurate, although still reasonable, except
for the resonances of P symmetry. It is possible that these
resonances are distorted by the proximity to the nondipole
resonance at ER = −0.063063 a.u. It is not surprising that the
widths are less accurate since, in general, it is more difficult to
obtain accurate widths, especially when they are very small (of
the order of 10−5 a.u. or less), as in this case. We also see that
the scaling of the first few resonances in the series diverges
slightly more from the analytical result. This is likely to be
physical, as the conditions for the validity of the analytical
representation are not fully satisfied when the binding energy
is too large. Referring to Table III, we also see that the position
of the resonances changes very little with the different model
potentials. Thus, as could be expected, the polarization of the
Na+ core does not play a vital role in the formation of the
resonances in the Ps dipole series.

Turning to the unnatural-parity case there is no dipole series
at the n = 2 threshold. The reason is that the dipole moment at
n = 2 can only come from the coupling of the degenerate 2s

and 2p states in Ps. However, in the coupling scheme leading
to unnatural parity, S waves are not permitted (see Table VI).
Instead, the first dipole series arises below n = 3, with the
dipole coming from the coupling of the degenerate 3p and 3d

Ps states.
At the n = 3 threshold we have extracted only resonance

parameters for the unnatural-parity case because for the normal
parity the number of states gets very large, which makes it hard
to identify the resonances. The agreement is still fair, at least
for the P e symmetry. For the D0 symmetry the error is of the
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TABLE IX. Energy and width ratios of successive resonances
located by the present calculation for Ps(n = 2).

Ej /Ej+1 Numerical result Analytical value

S wave
1/2 3.65 3.73
2/3 3.72
3/4 3.73
4/5 3.73
5/6 3.73

P wave
1/2 3.82 3.95
2/3 4.26
3/4 3.95
4/5 4.04

D wave
1/2 4.76 4.54
2/3 4.73
3/4 4.67

�j/�j+1 Numerical result Analytical value
S wave

1/2 4.29 3.73
2/3 3.71
3/4 3.74
4/5 3.78
5/6 3.73

P wave
1/2 0.87 3.95
2/3 12.23
3/4 5.52
4/5 7.35

D wave
1/2 6.64 4.54
2/3 4.59
3/4 4.12

same order as the difference between the results using different
model potentials. The results are shown in Table X.

IV. CONCLUSION

In conclusion, we have investigated resonance phenomena
in e+-Na scattering. Resonance states with total orbital
angular momentum J = 0–2 have been obtained for natural
parity. Resonance positions and widths have been compared
with other theoretical results. We have compared model
potentials for the e−-Na+ and e+-Na+ interactions with and
without a polarization term and found that the change in the
resonance parameters is quite small, while the ground-state
energy changes much more. The change in the results using
different model potentials is not large enough to explain the
difference between results obtained in earlier calculations
[9,10,14,15]. Some resonances found in previous works could
not be confirmed by our calculation. For other resonances fair
agreement with earlier works was obtained, in particular with
the calculation by Han et al. [10].

We have also reported resonances with unnatural parities.
For both parities we find dipole series converging to Ps

TABLE X. Energy and width ratios of successive resonances
below the Ps(n = 3) threshold with unnatural parity.

Ej /Ej+1 Numerical result Analytical value

P e wave
1/2 3.12 3.05
2/3 3.08
3/4 3.06
4/5 3.05

D0 wave
1/2 3.48 3.26
2/3 3.38
3/4 3.31
4/5 4.05

�j/�j+1 Numerical result Analytical value
P e wave

1/2 3.17 3.05
2/3 3.10
3/4 3.07
4/5 3.06

D0 wave
1/2 3.08 3.26
2/3 3.58
3/4 3.36
3/5 8.08

thresholds. The energy and width ratios of the successive
resonances of these sequences were compared to analytical
results. We found that the sequence binding energies of the
S-wave resonances under Ps(n = 2) converged to exactly
the analytical results. For binding energies with higher L

values the agreement was also fair, while for the widths the
results were less accurate. This is probably due to numerical
inaccuracies because of the difficulty in obtaining an extremely
high numerical accuracy for a calculation adjacent to the
threshold, where the states are very extended and widths are
very small.

At the present time there are no experimental results with
energy resolution high enough to map out the resonance
structure. However, in recent years there has been rapid
progress in the development of positron beams with high-
energy resolution [37], and we hope that in the future such
studies will become available.
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APPENDIX: DIPOLE INTERACTION

The dipole series can be analyzed using a treatment very
similar to the one used for H− by Temkin and Walker [36]. The
long-range form of the wave function under the Ps threshold
n can be expressed as

�(r,ρ) →
∑
l,L

vLl(ρ)Rnl(r)[Yl(r̂) ⊗ YL(ρ̂)]JMJ
, (A1)

012706-7
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where r and ρ are the internal and the center-of-mass
coordinates of positronium, Rnl is the radial part of the Ps
wave function, JMJ is the total orbital angular momentum, L

is the orbital angular momentum of the Ps COM motion, and

[Yl(r̂) ⊗ YL(ρ̂)]JMJ
=

∑
m,M

〈lLmM|JMJ 〉Ylm(r̂)YLM (ρ̂),

(A2)

with 〈lLmM|JMJ 〉 being the Clebsch-Gordan coefficient. The
sum in Eq. (A1) is restricted to terms for which (−1)l+L+J = 1
(−1) for natural (unnatural) parity states. In the ρ → ∞ limit
the Hamiltonian is

Ĥ = ĤPs − 1

2MPs
�ρ + 1

|ρ − r/2| − 1

|ρ + r/2|

→ ĤPs − 1

2MPs
�ρ + 4π

3

r

ρ2

1∑
ν=−1

Y1ν(r̂)Y ∗
1ν(ρ̂),

with ĤPs being the Hamiltonian for Ps and MPs = 2me being
the Ps mass. In the limit of large ρ the Schrödinger equation
reads(

− 1

2MPs
�ρ + 4π

3

r

ρ2

1∑
ν=−1

Y1ν(r̂)Y ∗
1ν(ρ̂) + En − E

)

×�(r,ρ) = 0, (A3)

where En is the energy of the Ps states with principal quantum
number n. Projection with the Ps(nlm) states gives a set of
coupled equations,(

− 1

2MPs
�ρ + En − E

)
vL,l(ρ)YLM (ρ̂)

− 1

ρ2

∑
L′

n−1∑
l′=0

vL′l′ (ρ)(−1)J+l+LDn
ll′

√
(2l′ + 1)(2L′ + 1)

× 〈1l′00|l0〉〈1L′00|L0〉
{

1 l′ l

J L L′

}
YLM (ρ̂) = 0,

(A4)

where l is chosen such that |l − L| � J � l + L, l � n − 1
and (−1)l+L gives the desired parity of the state. Here
Dn

ll′ = 〈Rnl|r|Rnl′ 〉 is the radial dipole element of the Ps state,
and {· · · } is the Wigner 6j symbol. Note that because of the

reduced mass difference, the dipole element for Ps is twice as
large as that for the hydrogen atom.

The coupled equations (A4) can be expressed in terms of a
nondiagonal potential matrix Ṽ as(

∂2

∂ρ2
− 2MPs(En − E + Ṽ )

)
f̃ (ρ) = 0, (A5)

where f̃ (ρ) is the vector given by fi(ρ) = ρvLl(ρ). On the
diagonal the elements of Ṽ are given by −L(L + 1)/(2MPs).
The off-diagonal elements of the potential Ṽ are proportional
to the dipole matrix and further multiplied by MPs, making
the term overall 4 times larger than in the case of hydrogen.
Diagonalizing 2MPsṼ will give one negative root λ, which
can support quasibound state through the long-range potential
−λ/ρ2. One finds that the corresponding long-range solution
has the form f (ρ) = √

ρH
(1)
iα (i

√
ερ), where H

(1)
iα is the first

Hankel function, ε = 2MPs(En − E), and

α =
√

−1/4 − λ. (A6)

This solution is valid for ρ � a, where a is sufficiently large.
The eigenvalues are determined by the short-range boundary
condition at ρ = a. This boundary condition can be expressed
as [36]

α

a
cot[α ln(

√
εa/2) − ϕ] + 1

2a
= K, (A7)

where ϕ = arg[�(1 + iα)]. Solving for ε gives,

ε = 4

a2
exp

{
2

α

[
cot−1

(
K − 1

2a

)
a

α
+ nπ + ϕ

]}
. (A8)

The term nπ (where n is an integer) comes from the periodicity
of the cot function. Thus, the energies of consecutive solutions
scale as

εn

εn+1
= exp

(
2π

α

)
, (A9)

where α can be calculated analytically through (A6) and the
diagonalization of the potential Ṽ given by (A4).

The requirement for the validity of these solutions is that
the boundary condition (A7) is valid (i.e., K does not depend
on ε). This is true if ε 	 λ/a2. On the other hand, the long-
range form of the potential is valid only for a � r0, where
r0 ∼ n2/μ is set by the size of the Ps state, and λ ∼ MPs/μ

from the diagonal elements of the long-range potential. That
is, ε 	 MPsμ/n4.
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