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Campus Moulin de la Housse, Boı̂te Postale 1039, 51687 Reims Cedex 2, France
(Received 6 May 2015; published 16 July 2015)

Nonadiabatic coupling terms between the four lowest singlet states of H3
+ were calculated ab initio. The

analysis according to the criteria suggested by Baer and Alijah [Baer and Alijah, Chem. Phys. Lett. 319, 489
(2000)] shows that as many as four electronic states may be required for an accurate description of the reactions
H + H2

+(v,j ) � H+ + H2(v′,j ′), depending on the collision energy.
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I. INTRODUCTION

When the simplest atom, H, hits the simplest molecule,
H2

+, there are four possible outcomes: elastic or inelastic
scattering, breakup of the H2

+ molecule, or the formation of
H2,

H + H2
+(v,j ) → H+ + H2(v′,j ′). (1)

Here, v and j denote the vibrational and rotational quantum
numbers, respectively. The latter process proceeds either via
charge transfer or via proton exchange, as investigated by Last
et al. [1]. The reaction is of great importance for the chemistry
in diffuse clouds [2] where the fraction of molecular hydrogen
is relatively small so that the hydrogen atom becomes an
important reaction partner for H2

+. Reaction (1) looks simple;
however, it is not. Let us assume that the collision partners
are in their electronic ground states. The lowest electronic
state, X̃ 1A′, of the underlying triatomic, H3

+, dissociates to
H+ + H2(X̃ �+

g ); hence, the entrance channel is located on an
excited electronic state surface. In other words, reaction (1) is
a nonadiabatic reaction.

There are three avoided crossings between the two lowest
singlet states of H3

+, X̃ 1A′ and B̃ 1�+, one in each diatomic
channel. These avoided crossings occur at the internuclear H-H
distance of rac = 2.5017a0, since for this distance the energies
of H2 + H+ and H2

+ + H coincide; i.e.,

V (H2,r = rac) = V (H2
+,r = rac) − 1

2 . (2)

For r = rac, the energy gap between the two electronic states
diminishes with increasing R, the scattering coordinate, and
approaches zero as R goes to infinity. In addition to these
avoided crossing seams, there is a conical intersection line
at equilateral configurations between the first and second
excited singlet states demanded by symmetry. Even though
the minimum of the intersection line is at very high energy
and the depth of the third state is only 20 cm−1 [3], the third
state might affect reaction (1) or its reverse,

H+ + H2(v,j ) → H + H2
+(v′,j ′), (3)

due to the topological effect on the wave function, i.e., the
building up of a geometrical or Berry phase [4].

Reaction (3) is endothermic and possible if the collision
energy is sufficiently high, about four vibrational quanta
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of H2. It was investigated by a three-dimensional quantum
scattering approach in a seminal contribution by Baer et al. [5]
which describes well the experimental data obtained by
Niedner et al. [6] at laboratory energy Elab = 30 eV. In their
article, potential energy surfaces of the two lowest states
were obtained, as well as nonadiabatic coupling terms, using
the diatomics in molecules (DIM) [7] representation. The
infinite-order sudden approximation was used to describe
nonadiabatic transitions. In a recent joint experimental and
theoretical work [8] the low-energy region was studied and a
long-standing discrepancy resolved. A review on the dynamics
and importance of this reaction was published by Gonzalez-
Lezana and Honvault [9].

Many more studies have been performed in recent years
(see, for example, Refs. [10,11] and references therein), all on
two coupled potential energy surfaces. The overall success of
all these theoretical investigations appears to indicate that the
charge transfer processes in reactions (1) and (3) proceed by
and large on two surfaces, at least for the collision energies
considered in those papers.

Barragán [12], investigating these two reactions and also
providing an excellent overview of the literature, raised a ques-
tion of interest for the present study: Are two potential energy
surfaces sufficient? The conclusion was that three or more
electronic states should be considered simultaneously. This
work was followed by a three-state semiclassical trajectory
study [13] which was, however, not really conclusive.

In the present study we offer evidence that four electronic
surfaces are necessary for a complete description. Our investi-
gation is based on the ab initio calculation of nonadiabatic
coupling terms (NACTs) between the four lowest singlet
states and their analysis in terms of the quantization condition
suggested by Baer and Alijah [14]. During the final preparation
of this paper we became aware of a recent study by Adhikari
and co-workers [15], who applied the same method to the
title system and computed NACTs for the three lowest singlet
states. The present contribution extends this to the four lowest
singlet states.

II. THEORY

The investigation of the nuclear motion in molecules is
very often performed within the adiabatic approach aiming
at a separation of nuclear and electronic motions. Since the
separation is not exact, nuclear-electronic kinetic coupling
terms arise that may cause nonadiabatic transitions [16] of
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nuclei evolving initially on one single surface. The adiabatic
equations can be written as

I
∇2

2m
ξ + 1

m
τ (1)∇ξ +

(
1

2m
τ (2) + V − IE

)
ξ = 0, (4)

where summation over all nuclei is implied. I denotes the
identity matrix, ξ † = [ξ1(R), ξ2(R) . . . ,ξN (R)] the nuclear
wave functions corresponding to the electronic wave functions
�1,�2 . . . ,�N , and

τ
(1)
ij = 〈�i |∇�j 〉, (5)

τ
(2)
ij = 〈�i |∇2�j 〉, (6)

Vij = Vi(R)δij . (7)

The matrix elements of τ (1) are coupling vectors (gradients).
For a particular nuclear coordinate Rs , the corresponding
nonadiabatic coupling term is

τ
(1)
ij ;Rs

=
〈
�i

∣∣∣∣∂�j

∂Rs

〉
. (8)

Such coupling terms become large if the electronic states i and
j are close in energy and will be infinite at points of degeneracy.
In these cases, the adiabatic approximation, in which only one
electronic state is retained, breaks down, making a two-state
adiabatic treatment necessary. In view of the singular behavior
of the NACTs one may seek a transformation that minimizes
their size and, in the ideal case of the so-called strictly diabatic
representation, removes them completely. This requires the
existence of a solution, A, to the differential equation

∇ A + τ (1) A = 0. (9)

Baer [17] showed that, in order for such a solution A to exist,
the coupling vectors τ ≡ τ

(1)
ij must satisfy the “curl condition”

curl τ ≡ ∇ × τ = τ × τ. (10)

A unitary transformation of the Hamiltonian with the matrix A
removes the kinetic coupling terms but introduces equivalent
coupling terms into the potential matrix,

W = A†V A, (11)

where V and W are the adiabatic and diabatic potential
matrices, respectively. In the general case, a unique solution
of Eq. (9) cannot be found and therefore a “strictly” diabatic
representation does not exist [18]. One particular part of the
derivative coupling can, however, be removed, namely the
longitudinal part along a certain path. If such a path is chosen
wisely, meaningful diabatic potentials are obtained. Let us
consider a closed path along a circular coordinate ϕ such that

V (ϕ,Ri) = V (ϕ + 2π,Ri), (12)

where Ri denote the remaining internal coordinates. A diabatic
potential matrix should be single valued and thus satisfy just
as the adiabatic potential the condition

W (ϕ,Ri) = W (ϕ + 2π,Ri). (13)

For simplicity and without loss of generality, let us consider
the case of two coupled electronic states. Since the adiabatic-

diabatic transformation matrix can be expressed as

A(ϕ) =
(

cos θ12(ϕ) sin θ12(ϕ)

−sin θ12(ϕ) cos θ12(ϕ)

)

=
(

cos
∫ ϕ

0 τ12;ϕdϕ′ sin
∫ ϕ

0 τ12;ϕdϕ′

−sin
∫ ϕ

0 τ12;ϕdϕ′ cos
∫ ϕ

0 τ12;ϕdϕ′

)
, (14)

a meaningful diabatic potential exists only if the coupling
terms τij ;ϕ satisfy the quantization condition [14]

θ12(2π ) − θ12(0) =
∫ 2π

0
τ12;ϕdϕ = nπ,

n = 0,±1,±2, . . . . (15)

In the three-state case A depends on three angles and can be
expanded as a product of three rotation matrices, e.g.,

A(θ12,θ23,θ13) = A(12)(θ12)A(23)(θ23)A(13)(θ13). (16)

The order of the three matrices on the right-hand side is
arbitrary and, hence, six equivalent representations of the A
matrix exist which belong to two groups: (12) × (23) × (13)
and cyclic permutations, and (12) × (13) × (23) and cyclic
permutations. Inserting A into Eq. (9), a system of coupled
equations is obtained for the transformation angles [19]. For
the first group of matrices A, this system becomes

∇θij = −τij − tan θjk(τjk sin θij − τik cos θij ),

∇θjk = −(τik sin θij + τjk cos θij ), (17)

∇θik = −(−1)p(cos θjk)−1(τjk sin θij − τik cos θij ),

where p = 0 for the first and third products of transformation
matrices, and p = 1 for the second product. These systems
may be integrated subject to the initial condition θlm = 0. The
quantization condition Eq. (13) is then satisfied if θlm(2π ) =
nπ , with n = 0,±1,±2, . . .. Since the first application of this
procedure by Baer and co-workers [20,21], it has been widely
used for the diabatization of potential energy surfaces (see
Ref. [22] and references therein).

III. THE H3
+ SYSTEM

H3
+ is a stable molecule and possesses around 80 000 bound

or quasibound vibrational rotational states [23]. Recently a
very accurate potential energy surface for the ground state,
X 1A′, was obtained by Pavanello and co-workers [24]. It
is based on ab initio electronic energy points computed
with correlated shifted Gaussians [25] and contains diagonal
adiabatic and relativistic corrections. The quality of this
surface permitted the study of nonadiabatic [26] and QED [27]
effects on the vibrational states. Highly accurate calculations
have also been reported by Jaquet and Carrington [28]. For
the two lowest excited singlet states of H3

+ potential energy
surfaces were obtained by Viegas at al. [3] and recently by
Adhikari at al. [15], both using standard ab initio methods.
Figure 1 offers a view of the four lowest singlet states. Table I
contains a summary of characteristic energies of singlet H3

+,
taken from Ref. [3].

To answer the question as to how many electronic states
are needed for an accurate description of the title reaction,
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FIG. 1. (Color online) Potential energy surfaces of the four low-
est singlet states of H3

+ in a hyperspherical representation with the
hyper-radius fixed at ρ = 3.0a0. The equilateral configuration is at the
center of the figure. This configuration corresponds to the minimum of
the ground-state surface, while a conical intersection occurs between
the first and second excited states.

we suggest the following two-step procedure: First, a suitable
coordinate system is chosen, in which a closed path can be
defined such that the major coupling terms are eliminated.
Second, the fulfillment of the quantization condition of the
NACTs for various nuclear configurations and as a function
of the number of electronic states is tested. If the quantization
condition is fulfilled and thus Eq. (13), the electronic states
included are sufficient as they form a Hilbert subspace. The
charge transfer process H2

+ + H → H2 + H+ is nonadiabatic
and involves at least the electronic ground state of H3

+ and the
first excited singlet state [5]. Three avoided crossings occur
if two atoms are separated by rac = 2.5017a0 and the third
atom is at a large distance. There is also a conical intersection
between the first and second excited states at equilateral
triangular configurations. The coupling vector τ23 has thus
a singular polar component along the D3h intersection line.
Can we transform this singular component away? A suitable
coordinate system can be found readily; it is that of democratic
hyperspherical coordinates, which we use in the definition of
Johnson [29]. The three internal hyperspherical coordinates
are ρ, the hyper-radius, and θhyp and φ, the hyperangles.
The three external coordinates are the Euler angles α, β, and
γ . The symbol � is used to denote the five angles. In the
hyperspherical coordinate system, the conical intersection at
D3h configurations is mapped to the north pole, θhyp = 0, with
ρ following (for θhyp = 0) the intersection line. The angle
φ is not defined at the pole, but for small displacement,
θhyp �= 0, encircles the conical intersection. φ is thus a natural

TABLE I. Characteristic energy values for singlet H3
+.

Threshold E/cm−1

2H + H+ 38 292.84
Vmin(H3

+,3 1E) 38 271.55
V (H2,r = rac) 17 675.83
H2

+ + H isomerization barrier 38 060.32
H2

+ + H dissociation energy 15 767.27
Vmin(H3

+,B 1�+) 15 710.20
H2 + H+ dissociation energy 0.0
Vmin(H3

+,X 1A′
1) −37 169.71

representative of the generic cyclic variable ϕ introduced
in Eq. (12). In the hyperspherical coordinates, the matrix
elements between electronic states |�i〉 and |�j 〉 of the nuclear
Hamiltonian read

Hn
ij (ρ,�) = − 1

2μ

{
∂2

∂ρ2
− �2(�) + 15

4

ρ2

}
δij

− 1

2μ

{〈
�i

∣∣∣∣∂2�j

∂ρ2

〉
− 〈�i |�2|�j 〉

ρ2

}

− 1

2μ

{
2

〈
�i

∣∣∣∣∂�j

∂ρ

〉
∂

∂ρ
+ 8 sin2 θhyp

ρ2

×
〈
�i

∣∣∣∣ ∂�j

∂ cos θhyp

〉
∂

∂ cos θhyp

+ 8

ρ2 sin2 θhyp

〈
�i

∣∣∣∣∂�j

∂φ

〉
∂

∂φ

}
, (18)

where μ = √
m1m2m3/(m1 + m2 + m3) is the three-particle

reduced mass and �2(�) the grand angular momentum
operator [30]. As the ∂

∂φ
coupling term contains the factor

ρ−2 sin−2 θhyp, which becomes singular at the pole, we seek
a transformation to remove it. There is a particularity with
respect to these hyperspherical coordinates: the internal angle
φ and the Euler angle γ are connected through the mixed
coupling term ∂2

∂φ∂γ
inside the �2(�) operator, and the cyclic

boundary condition for the wave function becomes

�(ρ,θhyp,φ,α,β,γ ) = �(ρ,θhyp,φ + 2π,α,β,γ + π ). (19)

To eliminate the rotation induced by the γ angle, we set γ =
φ/2.

For our computations of the NACTs, Cartesian coordinates
of the three particles, i = 1,2,3, were required. They were
obtained with help of the general transformation formula

xi = X +
√

2 4
√

3

3
ρ cos(α) cos(β) cos(γ ) sin

(
π

4
+ θhyp

2

)
cos

(
π

4
+ φ

2
+ 2iπ

3

)
+

√
2 4
√

3

3
ρ sin(α) cos(β) sin(γ )

× cos

(
π

4
+ θhyp

2

)
sin

(
π

4
+ φ

2
+ 2iπ

3

)
−

√
2 4
√

3

3
ρ sin(α) sin(γ ) sin

(
π

4
+ θhyp

2

)
cos

(
π

4
+ φ

2
+ 2iπ

3

)

+
√

2 4
√

3

3
ρ cos(α) sin(γ ) cos

(
π

4
+ θhyp

2

)
sin

(
π

4
+ φ

2
+ 2iπ

3

)
,
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yi = Y −
√

2 4
√

3

3
ρ cos(α) cos(β) sin(γ ) sin

(
π

4
+ θhyp

2

)
cos

(
π

4
+ φ

2
+ 2iπ

3

)
−

√
2 4
√

3

3
ρ sin(α) cos(β) sin(γ )

× cos

(
π

4
+ θhyp

2

)
sin

(
π

4
+ φ

2
+ 2iπ

3

)
−

√
2 4
√

3

3
ρ sin(α) sin(γ ) sin

(
π

4
+ θhyp

2

)
cos

(
π

4
+ φ

2
+ 2iπ

3

)

+
√

2 4
√

3

3
ρ cos(α) cos(γ ) cos

(
π

4
+ θhyp

2

)
sin

(
π

4
+ φ

2
+ 2iπ

3

)
,

zi = Z −
√

2 4
√

3

3
ρ cos(α) sin(β) sin

(
π

4
+ θhyp

2

)
cos

(
π

4
+ φ

2
+ 2iπ

3

)
−

√
2 4
√

3

3
ρ sin(α) sin(β)

× cos

(
π

4
+ θhyp

2

)
sin

(
π

4
+ φ

2
+ 2iπ

3

)
, (20)

where X, Y , and Z denote the Cartesian coordinates of the
center of mass. The above expressions may be simplified
by fixing the two remaining Euler angles α and β at the
convenient values α = 0 and β = 0. Equally, the center-of-
mass coordinates were set to zero. Since these coordinates
are not related to the internal motion of the molecule, their
values are arbitrary for the purpose of the present study. In
our computations, we used a grid of coordinates defined by
30◦ � φ � 90◦, �φ = 5◦ and 0◦ � θhyp � 90◦, �θhyp = 5◦.
The hyper-radius was kept at a representative value, ρ = 3.0a0,
which corresponds roughly to the value at the minimum
of the electronic ground state. Cartesian coordinates were
then generated with help of the transformation formulas (20)
to obtain input data for the ab initio calculations. The
MOLPRO [31] package was employed at the CISD/cc-pV5Z
level of theory. NACTs were generated by the three-point finite
differences procedure DDR with �φ = 0.1◦.

IV. RESULTS AND DISCUSSION

Before integrating the coupled equations (17), the computed
NACTs need to be inspected carefully and corrected if the
phase of one of the electronic wave functions has changed
within our set of calculations. We keep the phases of the
θhyp = 5◦ functions. The behavior of the NACTs connecting
the four lowest singlet states are shown in Fig. 2. At θhyp = 0◦,
the north pole, the angle of longitude, φ, is not defined. All
coupling terms are zero, except for τ23, which is one-half due
to the conical intersection between states 2 and 3. Particular
values of the angle φ, φC2v,ac = 30◦,150◦,270◦ and φC2v,ob =
90◦,210◦,330◦, define C2v configurations. In the former case,
φC2v,ac, one of the angles between the three particles, is an
acute angle and becomes zero at the equator, θhyp = 90◦, as
the positions of two particles coincide. In the latter case,
φC2v,ob, one of the angles between the three particles is an
obtuse angle and becomes 180◦ at the equator, meaning that
the three particles are in a symmetric linear configuration.
The NACTs become very spiky as θhyp increases, i.e., as the
nuclear configurations pass from equilateral to linear. Cuts of
the four potential energy surfaces are shown in Fig. 3. Near the
pole, the lowest electronic state is well separated from the
upper ones. As the equator is approached, the developing
singularity due to coinciding nuclear positions at φ = φC2v,ac

can clearly be seen. The NACTs may be classified according

to their symmetry with respect to a reflection at the angles
φ = φC2v,ac and φ = φC2v,ob as shown in Table II.

To investigate if the three lowest singlet states form
a Hilbert subspace, we integrate Eq. (17) for two angles
of θhyp, θhyp = 20◦ and θhyp = 60◦. The Livermore solver
DLSODE from ODEPACK [32], appropriate for stiff systems of
differential equations, was utilized for this purpose. The order
of the transformations in Eq. (16) is in principle irrelevant;
however, the numerical integration is more stable if the
leading nonadiabatic term, in this case either τ12 or τ23, is
rotated first. Our results in Fig. 4 demonstrate that the three
lowest states are isolated only at the smaller angle θhyp = 20◦.
All transformation angles θ become multiples of π after
integrating in φ over a 2π interval. Direct integration over
the free τ12 according to Eq. (15) yields a final value close to
zero (θ12 = 0.11). If it were zero, it would indicate a two-state
quantization. On the other hand, the fact that θ12 remains close
to zero indicates that the coupling is very weak, consistent
with Fig. 3. Similarly, if one integrates over the free τ23, not
shown here, a final value close to π is obtained (θ23 = 3.21).
These small deviations from zero or π , respectively, are likely
not due to numerical inaccuracy, as they are compensated in a
three-state quantization. At the angle of θhyp = 60◦ neither the
two-state nor the three-state quantization condition is satisfied.
Our interpretation is that a fourth electronic state plays a
role. The question then arises whether the singlet states 2–4
form a Hilbert subspace, or whether we have an effective four-
state or more problem. Figure 5 demonstrates that at θhyp = 60◦

TABLE II. Symmetry behavior of the NACTs with respect to the
angles φ = φC2v ,ac = 30◦ + n × 120◦ and φ = φC2v ,ob = 90◦ + n ×
120◦ (s, symmetric; a, antisymmetric).

τ12;s τ13;s τ23;s τ14;s τ24;s τ34;s

s = φ

φC2v ,ac a s s a a s
φC2v ,ob s a s a s a

s = ρ

φC2v ,ac s a s s s a
φC2v ,ob a s a s a s

s = θhyp

φC2v ,ac s a a a s a
φC2v ,ob a s a s a s
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FIG. 2. (Color online) NACTs in the coordinate φ between the four lowest singlet states. The value of the hyper-radius, ρ, was fixed
at ρ = 3.0a0. The hyperangle θhyp was varied between θhyp = 5◦ and θhyp = 70◦. In hyperspherical coordinates θhyp = 0◦ corresponds to the
equilateral triangular configuration, while θhyp = 90◦ describes linear configurations.

such a three-state description (states 2–4) is appropriate, while
at θhyp = 20◦ this is not the case. Here, states 1–3 provide
a three-state picture. Hence, in the interaction region of

reaction (1), where the three internuclear distances are not
too different, up to four electronic states may be needed to
describe accurately its dynamics.
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FIG. 3. (Color online) Cuts of the four lowest singlet potential energy surfaces in the coordinate φ at ρ = 3.0a0 and two values of the
hyperangle θhyp, θhyp = 20◦ (left) and θhyp = 80◦ (right).
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FIG. 4. (Color online) NACTs and transformation angles θij for the sequence (12) × (23) × (13) and two values of the hyperangle,
θhyp = 20◦ (left) and θhyp = 60◦ (right).

FIG. 5. (Color online) NACTs and transformation angles θij for the sequence (34) × (23) × (24) and two values of the hyperangle,
θhyp = 20◦ (left) and θhyp = 60◦ (right).
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FIG. 6. (Color online) Cuts of the four lowest singlet potential energy surfaces in the coordinate φ at ρ = 8.0a0 and two values of the
hyperangle θhyp, θhyp = 20◦ (left) and θhyp = 80◦ (right).

In the asymptotic region of reaction (1), as is well known,
nonadiabatic transitions between the two lowest surfaces
are favored since these get close in energy; see Eq. (2).
The asymptotic region is reached as the hyper-radius, ρ, is
increased. As an example, we show in Fig. 6 cuts through
the four lowest electronic state surfaces at ρ = 8a0. We
turn our attention here to the two lowest states. As we
approach the equator, θhyp → 90◦, deep gorges are formed,
which correspond to the configurations H2(r = 1.4a0) + H+

on the lower surface and to H2
+(r = 2.0a0) + H on the upper

surface. On either surface, the obtuse symmetric configurations
(φC2v,ob = 90◦,210◦,330◦) form a kind of rotational barrier
between two equivalent structures of the atom-diatom types
described above. At the diatomic distance of r = 2.5a0,
the two surfaces become closest and indeed degenerate as
ρ → ∞.

Dynamics in the asymptotic region is best analyzed in
Jacobi coordinates. If the collision partners hit at C2v con-
figuration, which would have to be close to the acute φ value
φC2v,ac, the nonadiabatic coupling term τ12;φ is small, or indeed
zero at φ = φC2v,ac according to the symmetry properties
shown in Table II, and hence nonadiabatic transition is likely
due to the action of NACTs in the remaining coordinates, ρ or
θhyp, which pass there through a maximum. In a near collinear
collision, however, τ12;φ is big, which makes a transition
between the two states more likely. In Fig. 7, potential energy
surface cuts are shown for these two approaches, for both
r = 2.0a0 and r = 2.5a0. Figure 8 shows the NACTs between

states 1 and 2 in hyperspherical coordinates. It is interesting
to see that the role of τ12;θhyp and τ12;φ is interchanged for the
two orientational approaches. In the perpendicular approach,
τ12;φ is zero by symmetry, while τ12;θhyp assumes a maximum
(or minimum), according to Table II. In the linear approach,
the opposite is true. For the diatomic distance of r = 2.0a0,
the nonzero term has a maximum (or minimum) at around
R ≈ 6a0, which tends to infinity at r = 2.5a0. Equivalent
behavior is found for τ12;ρ . Orientation does not have a large
effect on this coupling term.

V. CONCLUSIONS

We have analyzed the NACTs in hyperspherical coordinates
between the four lowest singlet surfaces of H3

+. In particular
we have investigated how many electronic states are necessary
to satisfy a quantization criterion for the corresponding NACTs
and, hence, need to be included a priori to describe the nonadi-
abatic reactions (1) and (3). As is well known, different mech-
anisms are possible depending on the energy. At low energy,
charge transfer takes place and proceeds via surface hopping
between the two lowest electronic potential energy surfaces
in the asymptotic region, making it a two-state process. At
higher energy, another mechanism, proton exchange, becomes
feasible. In the interaction region (transition-state region) of
this reaction, nonadiabatic dynamics cannot be restricted, in
general, to the two lowest electronic states. As we have verified
for certain nuclear configurations, a diabatization of the lowest

un
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f
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f

FIG. 7. (Color online) Cuts of the four lowest singlet potential energy surfaces in the atomic-diatomic Jacobi coordinate R for two values
of the diatomic distance, r , r = 2.0a0 (left) and r = 2.5a0 (right), and for two orientations, C2v (solid lines) and linear (dashed lines).

012704-7



ALIJAH, FREMONT, AND TYUTEREV PHYSICAL REVIEW A 92, 012704 (2015)

FIG. 8. (Color online) NACTs τ12;ρ , τ12;θhyp , and τ12;φ as a function of the Jacobi coordinate R, for two values of the diatomic distance, r ,
r = 2.0a0 and r = 2.5a0, and for two orientations, C2v and linear.

H3
+ surfaces requires at least four electronic states, though

three-state transformations are sufficient at restricted configu-
ration ranges. To be sure, there are two competing mechanisms
for proton exchange of reaction (1): At lower energy, hopping
takes place in the entry channel and the system advances to the
exit channel without barrier on the lower surface. At higher
energy, exchange might take place on the surface of the first
excited state by overcoming a large barrier. Hopping to the
electronic ground state may then occur in the exit channel. The
present results indicate that for such a scenario of competing

mechanisms as many as four electronic states are required
for an accurate description, while at lower energy a reduced,
two-dimensional treatment is adequate. Work is in progress to
generate the complete surfaces of NACTs.
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