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Repulsive Casimir-Polder potential by a negative reflecting surface
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We present a scheme to generate an all-range long repulsive Casimir-Polder potential between a perfect negative
reflecting surface and a ground-state atom. The repulsive potential is stable and does not decay with time. The
Casimir-Polder potential is proportional to z−2 at short atom-surface distances and to z−4 at long atom-surface
distances. Because of these advantages, this potential can help in building quantum reflectors, quantum levitating
devices, and waveguides for matter waves.
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I. INTRODUCTION

The quantum force induced by a vacuum electromagnetic
field, which is named after Casimir [1,2], is becoming more
and more important in developing nanoengineering [3–5]. As
machine parts become as small as micro- and nanometer
scales, these tiny objects will stick together because of the
attractive Casimir force, and that can cause the failure of
nanomachines. This negative influence of the Casimir force
can be turned into a benefit if the attractive Casimir potential
turns into repulsion. Casimir repulsion can keep nano-objects
from sticking together and can make nanomachines work
without friction. For this reason, there has been increasing
interest in finding quantum repulsions.

Some schemes for producing the repulsive Casimir force,
both theoretically [6–10] and experimentally [11,12], have
been reported. By mediating a dielectric material 3 between
material 1 and material 2, if the permittivities of them satisfy
ε1 > ε3 > ε2, the interaction between material 1 and material
2 will be repulsion [11–13]. Quantum repulsion is also found
between a perfectly conducting material (ε → ∞) and an
infinitely permeable material (μ → ∞) [14,15], as well as
between two parallel magnetodielectric plates [16]. Some
authors suggest that an atom with anisotropic polarizability
may feel repulsive Casimir-Polder (CP) force near conducting
ellipsoids [17], edges [18], and dielectric materials having
anisotropic permittivities [19].

The idea of using materials with abnormal electromagnetic
properties to produce repulsive Casimir forces is attrac-
tive [20–22]. It has been published that quantum repulsion
can be produced by left-handed material. By sandwiching
an infinite perfect lens between two conducting plates, the
Casimir potential between the two conducting plates can be
turned into repulsion [23]. This scheme works in a certain
interplate separation range which is decided by the thickness
of the metamaterial; if the plates are moved farther away, the
Casimir force becomes attractive again. Similarly, a repulsive
resonant CP interaction between an excited atom and a perfect
mirror can also be achieved by covering the mirror with a
layer of left-handed material [24], but this resonant interaction
decays with time because of spontaneous radiation.

Negative reflection, which is very different from negative
refraction, is another kind of amazing abnormal phenomenon
and has been found in some situations. Negative reflection
means the reflected beam and the incident light are at the same

side of the interface normal, and this phenomenon has been
reportedly achieved in a uniaxial medium [25], Faraday chiral
medium [26], photonic crystals [27], hybrid metamaterial
slab [28], and ferrite films [29]. Motivated by the successes
in using metamaterials to achieve quantum repulsions and
the discovery of negative reflections, we theoretically study
the potential for producing a repulsive Casimir force by
electromagnetic negative reflecting materials.

In this paper, we present a proposal to investigate the
CP interaction between a negative reflecting surface and a
two-level atom in the ground state. We assume the negative
reflecting surface is “perfect” which means, for an incident
beam of plane wave with any frequency and polarization,
the reflected light is still plane wave and its wave vector
is exactly opposite that of the incident wave. The reported
negative reflections are not so “perfect” yet, but we think, with
the developments in artificial materials, these good properties
will be gradually approached. Quantum electrodynamics is
employed in this theoretical research. We use the Wigner-
Weisskopf method to deal with the atom-reservoir interaction
problem and calculate the interaction energy. The result we
get shows that quantum repulsion can be achieved by negative
reflecting material. For the atom that is in the ground state,
the CP potential does not decay with time and is repulsive
in all ranges of atom-plate separation. With these features,
negative reflecting materials have the potential for being used
as atomic mirrors and atomic waveguides and being employed
in levitating, trapping, and even cooling particles.

This paper is organized as follows. The formalism of the
interaction between a ground-state atom and an electromag-
netic vacuum is reviewed in Sec. II; then we introduce the
negative reflection in Sec. III. In Sec. IV, we analyze the
dynamical evolution of the atom-vacuum system, followed by
Sec. V in which we give out the analytical expression of the CP
interaction energy and the conditions to produce a repulsive
CP potential. Some properties of the potential are discussed in
Sec. VI; then we make conclusions in Sec. VII.

II. BASIC FORMULAS

In this section, the basic formulas describing the atom-
reservoir interaction are reviewed.

As shown schematically in Fig. 1, a two-level atom is
located above the negative reflecting surface. The position of
the atom is zêz and êz is the unit vector along the z direction.
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FIG. 1. (Color online) A two-level atom in the ground state is
located above the negative reflecting surface, and the atom-surface
distance is expressed by z.

For the surface in the x-y plane, z represents the distance
between the atom and the surface. To describe the atom-surface
interaction in a Schrödinger picture, we use the Schrödinger
equation

i�
∂|ψ〉
∂t

= Ĥ |ψ〉, (1)

in which |ψ〉 is the quantum state of the atom-reservoir system
and Ĥ is the total Hamiltonian.

The total Hamiltonian Ĥ reads

Ĥ = ĤA + Ĥc.m. + ĤF + ĤINT. (2)

In detail, the atomic Hamiltonian is

ĤA =
∑
i=e,g

�ωiσii , (3)

where ωi are the eigenfrequencies of atomic state |i〉 and σii =
|i〉〈i| are the atomic flip operators. The atomic center-of-mass
motion Hamiltonian is written

Ĥc.m. = p̂2

2ma

, (4)

in which p̂ is the atomic center-of-mass momentum operator
and ma is the mass of the atom. The electromagnetic
Hamiltonian can be given as

ĤF =
∑
kλ

�ωk

(
â
†
kλâkλ + 1

2

)
, (5)

where â
†
kλ and âkλ are respectively the creation and annihi-

lation operators for a photon of mode kλ; ωk are the light
frequencies. And the atom-field interaction Hamiltonian in
dipole approximation can be expressed as [30]

ĤINT = −d̂a ·
(

Ê + 1

ma

p̂ × B̂
)

, (6)

where d̂a is the dipole momentum operator of the atom, while
Ê and B̂ are electrical and magnetic operators, respectively.
For the gas at room temperature and cold-atom ensemble, the
average velocity of atoms is much slower than light speed in
vacuum ( p/ma � c), so the contribution from B̂ in Eq. (6) is
small enough to be dropped. So we have

ĤINT = −d̂a · Ê(ra). (7)

For this reason, the atomic internal dynamics and the atomic
center-of-mass motion can be decoupled, and the atom-surface
interaction is independent of the center-of-mass velocity of the
atom. In this paper, we do not discuss the translational motion
of the atom for simplicity, and the atomic position ra is treated
as a classical variable. According to the analysis above, the
total Hamiltonian Eq. (2) reduces to

Ĥ = ĤA + ĤF + ĤINT, (8)

and state |ψ〉 can be written as

|ψ〉 = Cg|g〉|0〉 +
∑
kλ

De,kλ|e〉|kλ〉, (9)

where |g〉|0〉 indicates the atom is in the ground state with
no photon existing, while |e〉|kλ〉 means the atom is excited
and a photon with wave vector k and polarization λ exists.
By solving Eq. (1), the atom-surface interaction energy can be
given by

Vint = 〈ĤINT〉 = 〈ψ |ĤINT|ψ〉. (10)

III. NEGATIVE REFLECTION

In this section, the method we used to describe the negative
reflection of electromagnetic waves is introduced. As shown
in Fig. 2, the negative reflecting surface is located in the x-y
plane, and the region of z > 0 is a vacuum. A beam of unit
plane wave with determined wave vector k and polarization
λ, which is incident on the negative reflecting surface, can be
expressed by

W (kλ,r) = êkλe
ik·r (λ =⊥ , ‖) . (11)

We assume that the negative reflective surface is perfect, so the
reflected light is still a plane wave, with its wave vector exactly
opposite that of the incident wave (k → −k). To express the
reflected light, we structure a phenomenological scattering
matrix

S(k) =
[
g⊥→⊥(k) g⊥→‖(k)
g‖→⊥(k) g‖→‖(k)

]
, (12)

FIG. 2. (Color online) A scheme for the negative reflection of an
electromagnetic wave. For a negative reflecting surface, the incident
wave and reflected wave are at the same side of the normal line. When
the wave vector of the reflected wave is exactly opposite that of the
incident wave, the negative reflection is called perfect.
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and then the expression of the reflected wave can be written as

S(kλ,r) = ∑
λ′=⊥,‖

gλ→λ′(k)êkλ′e−ik·r (λ =⊥ , ‖), (13)

where êk⊥ and êk‖ are respectively unit vectors perpendicular
and parallel to the incident plane. We have introduced complex
reflection coefficients gλ→λ′(k) here to describe the amplitude
reflection of the electric field, and λ → λ′ implies the po-
larization change or conservation between the incident and
reflected waves. For the conservation of energy, the reflection
coefficients must satisfy

∑
λ,λ′=⊥,‖ |gλ→λ′(k)|2 � 1. If the

absorption of the incident waves is negligible, “=” will stand
in the inequality, and otherwise “<” will do. Equations (12)
and (13) imply a broadband optical negative reflection which
is difficult to achieve nowadays. But, the response of the atom
to an electromagnetic field is limited by the lifetime of the
atomic excited state, so the negative reflection only needs to
be achieved for a wave band that covers the response band of
the atom. In this paper, we assume this condition is satisfied
and further assume negative reflection is achieved for broad
incident angles in this wave band. According to Eqs. (11)
and (13), the total electric field in the region of z > 0 can be
expressed as

E(r) =
∑
kλ

Ekλ M(kλ,r)

=
∑
kλ

Ekλ[W (kλ,r) + S(kλ,r)], (14)

in which Ekλ are electric wave amplitudes. To quantize
the field, we can replace the amplitudes Ekλ in Eq. (14)
with annihilation operators and normalization constants. The
electric field operator can be written as

Ê(r) =
∑
kλ

Ê(kλ,r)

=
∑
kλ

Akâkλ M(kλ,r) + H.c. (15)

We assume the absorption of incident light by the surface is
negligible (

∑
λ,λ′=⊥,‖ |gλ→λ′(k)|2 = 1), so the normalization

constant Ak = √
�ωk/ε0V /2. � is the modified Plank constant,

ωk is the angular frequency of the photon, ε0 is the permittivity
of the vacuum, and V is the volume of quantization.

IV. DYNAMICAL ANALYSIS

By considering electric dipole interaction only, the interac-
tion Hamiltonian should be written from Eq. (7) as

ĤINT = −
∑
ij

∑
kλ

Akσ̂ij âkλdij · M(kλ,r)

−
∑
ij

∑
kλ

A∗
k â

†
kλσ̂ij dij · M∗(kλ,r), (16)

where Ak = √
�ωk/ε0V /2 and dij (i,j = e,g) are the dipole

transition matrix elements between atomic states i and j .
According to Eq. (13), the expression of mode function
M(kλ,r) depends on the electromagnetic reflecting properties

of the surface. The atomic flip operators σ̂ij are defined by

σ̂ij = |i〉〈j |(i,j = e,g). (17)

Derived from Eq. (1), the equations of motion for Cg(t) and
De,kλ(t) can be given as

Ċg(t) = i

�

∑
kλ

De,kλ(t)Akdge · M(kλ,r), (18)

Ḋe,kλ(t) = − i(ω0 + ωk)De,kλ(t)

+ i

�
Cg(t)A∗

k deg · M∗(kλ,r), (19)

where ω0 = ωe − ωg is the angular transition frequency
between atomic states |g〉 and |e〉. To solve these equations,
we first derive the formal solution of Eq. (19):

De,kλ(t) = De,kλ(0)e−i(ωk+ω0)t + i

�
A∗

k deg · M∗(kλ,r)

×
∫ t

0
dτCg(τ )e−i(ωk+ω0)(t−τ ). (20)

For the atom initially in the ground state, we set De,kλ(0)
to be 0. Furthermore, the integral can be dealt with via the
Wigner-Weisskopf method,∫ t

0
dτCg(τ )e−i(ωk+ω0)(t−τ ) ≈ Cg(t)

[
− i

(ωk + ω0)

]
. (21)

Making use of relationship (21), Eq. (20) can be rewritten as

De,kλ(t) = A∗
k deg · M∗(kλ,r)

�(ωk + ω0)
Cg(t), (22)

and by substituting Eq. (22) into Eq. (18), we can get the
equation about Cg(t):

d

dt
Cg(t) = i

�2

∑
kλ

|Ak|2 deg · M∗(kλ,r)dge · M(kλ,r)

ωk + ω0
Cg(t).

(23)
It is not difficult to find the solution

Cg(t) = Cg(0)eiαt , (24)

in which

α = 1

�2

∑
kλ

|Ak|2 G(kλ,r)

ω0 + ωk

, (25)

and G(kλ,r) = deg · M∗(kλ,r)M(kλ,r) · dge.
Real coefficient α is an energy-level shift which decides

the interaction between the atom and the surface. According
to Eq. (25), the value of α depends on the properties of
the negative reflecting surface, in other words, the complex
reflection coefficients gλ→λ′ . For this reason, to produce a
repulsive CP force, the values of gλ→λ′ need to be properly
chosen. In the next section, we discuss the properties of the
atom-surface interaction potential and give the proper choice
of gλ→λ′ to produce a repulsive CP force.
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V. GENERATION OF REPULSIVE
CASIMIR-POLDER POTENTIAL

Obtained from Eqs. (16) and (24), the atom-surface inter-
action potential is proportional to level shift α:

Vint = 〈ĤINT〉 = −2�α. (26)

The atom is in a half-free space, so to calculate Eq. (26) we go
to the continuum limit

∑
k

→ V

(2π )3

∫
d3k. (27)

Under this limit, the expression of level shift α can be rewritten
as

α = 1

4�ε0(2π )3

∫
d3k

k

k0 + k

∑
λ

G(kλ,r). (28)

To calculate the integral, we introduce a spherical coordinate
system in the k space for convenience:

α = 1

4�ε0(2π )3

∫ ∞

0
dk

k3

k0 + k

∫
�

d�
∑

λ

G(kλ,r), (29)

where
∫
�

d� represents an angular integral.
Making use of Eqs. (11) and (13), the integrand∑
λ G(kλ,r) can be expressed by

∑
λ

G(kλ,r) = deg ·

⎡
⎢⎣ I − k̂k̂

+∑
λ,λ′(gλ→λ′ êkλ êkλ′e−i2k·r + g∗

λ→λ′ êkλ′ êkλe
i2k·r )

+∑
λ,λ′′,λ′ g

∗
λ→λ′′gλ→λ′ êkλ′′ êkλ′

⎤
⎥⎦ · dge, (30)

in which I is a unit matrix and k̂ = k/k is the unit vector pointing towards the direction of the wave vector. According to Eq. (30),
α can be separated into two parts,

α = β1 + β2, (31)

where

β1 = 1

4�ε0(2π )3

∫ ∞

0
dk

k3

k0 + k

∫
�

d�deg ·
{∑

λ,λ′
[gλ→λ′(k)êkλ êkλ′e−i2k·r + g∗

λ→λ′(k)êkλ′ êkλe
i2k·r ]

}
· dge (32)

and

β2 = 1

4�ε0(2π )3

∫ ∞

0
dk

k3

k0 + k

∫
�

d�deg ·
[

I − k̂k̂ +
∑

λ,λ′′,λ′
g∗

λ→λ′′(k)gλ→λ′(k)êkλ′′ êkλ′

]
· dge. (33)

Here β2 is the vacuum Lamb shift. The expression of Eq. (33) is obviously divergent but can be dealt with via Bethe’s method.
As β2 is position independent, it will not contribute any mechanical force. For this reason, β2 can be ignored here, and we do not
discuss it below.

The integrand in Eq. (32) oscillates and diverges as k → ∞, which creates difficulties in calculating β1. To overcome the
difficulties, we can renormalize the integral by introducing a convergence factor e−γ |k−k0| and taking the limit γ → 0+ after
finishing all calculations [31]. Thus, we get

β1 = 1

4�ε0(2π )3 lim
γ→0+

∫ ∞

0
dk

k3

k0 + k
e−γ |k−k0|

∫
�

d�deg ·
{∑

λ,λ′
[gλ→λ′(k)êkλ êkλ′e−i2k·r + g∗

λ→λ′(k)êkλ′ êkλe
i2k·r ]

}
· dge. (34)

The physical idea behind Eq. (34) is that the atom can only respond to a limited wave band whose center frequency is ω0.
Furthermore, as discussed in Sec. III, we assume that for the very limited atomic response wave band, a wide-angle negative
reflection is achieved, and the variations of gλ→λ′(k) with respect to k are much slower than that of the convergence factor
e−γ |k−k0|. For this reason, the reflection coefficients gλ→λ′(k) can be replaced with gλ→λ′(k0) in Eq. (34) as

β1 = 1

4�ε0(2π )3 lim
γ→0+

∫ ∞

0
dk

k3

k0 + k
e−γ |k−k0|

∫
�

d�deg ·
{∑

λ,λ′
[gλ→λ′(k0)êkλ êkλ′e−i2k·r + g∗

λ→λ′(k0)êkλ′ êkλe
i2k·r ]

}
· dge. (35)

Now the integrand is well behaved.
To calculate the angular integrals in Eq. (35), we express the unit vectors by

k̂ = sin θ cos φ êx + sin θ sin φ êy + cos θ êz,

êk‖ = − cos θ cos φ êx − cos θ sin φ êy + sin θ êz, (36)

êk⊥ = sin φ êx − cos φ êy,
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and, as shown in Fig. 1, we set the position of the atom to be r = z êz; êx , êy, and êz are unit vectors along the x, y, and z

directions, respectively. Thus, we have

β1 = 1

4�ε0(2π )2 lim
γ→0+

∫ ∞

0
k3dke−γ |k−k0|

⎧⎪⎨
⎪⎩

[ sin (2kr)
2kr

+ 2 cos (2kr)
(2kr)2 − 2 sin (2kr)

(2kr)3

] d2
x +d2

y

k0+k

−[ 4 cos (2kr)
(2kr)2 − 4 sin (2kr)

(2kr)3

] d2
z

k0+k

⎫⎪⎬
⎪⎭(g‖→‖ + g∗

‖→‖)

+ 1

4�ε0(2π )2 lim
γ→0+

∫ ∞

0
k3dke−γ |k−k0| sin (2kr)

2kr

d2
x + d2

y

k0 + k
(g⊥→⊥ + g∗

⊥→⊥), (37)

in which dx , dy , and dz are respectively the x-, y-, and
z-direction components of the dipolar transition momentum
d = deg = dge; gλ→λ(k0) are written as gλ→λ for simplicity.

Equation (37) can be calculated by the residue theorem and
becomes

β1 = − k0

4�ε0(2π )2

∫ ∞

0
du

u3e−2uz

k2
0 + u2

×
[
f1(uz,d)(g‖→‖ + g∗

‖→‖)

+f2(uz,d)(g⊥→⊥ + g∗
⊥→⊥)

]
, (38)

in which

f1(uz,d) =
[

1

2uz
+ 2

(2uz)2 + 2

(2uz)3

](
d2

x + d2
y

)

−
[

4

(2uz)2 + 4

(2uz)3

]
d2

z ,

f2(uz,d) = 1

2uz

(
d2

x + d2
y

)
.

This result is very different from that in the standard CP
scenario (the interaction between a two-level atom and a
perfect mirror) [2]. By interacting with a perfect mirror, the
level shift of the atomic ground state is

αconducting = k0

�ε0(2π )2

∫ ∞

0
du

u3e−2uz

k2
0 + u2

×
{[

1
2uz

+ 1
(2uz)2 + 1

(2uz)3

](
d2

x + d2
y

)
+2

[
1

(2uz)2 + 1
(2uz)3

]
d2

z

}
, (39)

which is positive definite. Associated with the minus sign
in Eq. (26), we can see the standard CP potential is always
attractive. But in the negative reflection case discussed in
this paper, the sign of the level shift depends on the signs
of the reflection coefficients and the polarization of the atom.
This feature makes it possible to tune the CP potential into
repulsion.

According to the integral in Eq. (32), the integrand
contains the product of the polarization unit vectors of the
incident waves and the scattered waves. That means it is the
interferences of the incident waves and scattered waves that
do contribute to the CP potential. We find that, in the perfect
negative reflection case, the polarization directions of incident
waves and scattered waves are always parallel to each other,
whereas in the standard CP case, they are not. Because of
these different reflecting properties, the angular integrals give
different results in the negative reflection case and the standard

CP case. This is the origin of the difference between Eqs. (38)
and (39).

Now we consider a case in which the atom is isotropically
polarized. For the atom in the ground state, this choice is
reasonable. Denoting d = |d| and setting d2

x = d2
y = d2

z =
d2/3, then Eq. (38) can be calculated,

β1 = − d2k3
0

�ε024π2

Re(g⊥→⊥ + g‖→‖)

z̃

∫ ∞

0
dξ

ξ 2e−2ξ z̃

1 + ξ 2
, (40)

in which k0 ≡ ω0/c, and c is light speed in vacuum. The
position of the atom is expressed by dimensionless values
z̃ ≡ k0z.

By checking the expression of term β1, we find it is z

dependent, and decided by reflection coefficients g⊥→⊥ and
g‖→‖. This term represents that the interaction between the
atom and the vacuum electromagnetic field is modified by the
negative reflecting surface. When the relative distance between
the atom and the surface changes, the ground-state level of
the atom-surface-vacuum interaction system will be shifted,
which leads to a CP force between the atom and the surface.
The vacuum electromagnetic reservoir acts as a medium to
produce this force.

Up to here, we can give out the analytic expression of the
CP potential energy. By defining

I (z̃) =
∫ ∞

0
dξ

ξ 2e−2ξ z̃

1 + ξ 2
(41)

and

V (z̃) ≡ I (z̃)

z̃
, (42)

the atom-surface CP potential can be expressed as

Vint = d2k3
0

12π2ε0
Re(g⊥→⊥ + g‖→‖)V (z̃). (43)

The condition to produce a CP repulsion

As mentioned above, whether the CP force is repulsive
or attractive is decided by the sign of the real part of
(g⊥→⊥ + g‖→‖). According to Eq. (43) and Fig. 3, we find
that in the condition of

Re(g⊥→⊥ + g‖→‖) > 0, (44)

the atom-surface CP interaction is repulsive.
This result can be understood as follows. The atom

immersed in an electromagnetic vacuum may jump to the
excited state and go back to the ground state by emitting
and reabsorbing a photon, respectively. And the atom can get
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FIG. 3. (Color online) The monotonic, positive-definite function
I (z̃) diverges for z̃ → 0 and converges towards zero for z̃ → ∞.
These features of function I (z̃) make it possible to produce an all-
range long repulsive CP force.

recoil momentum when it emits and absorbs the photons. No
mechanical force will press on one atom in free space because
the average of these recoil momenta is zero. But, when the
atom is located near a negative surface, as shown in Fig. 4,
the photon emitted from the atom may be backward reflected
by the negative reflecting surface before it is reabsorbed,
and the atom will get recoil momenta twice which push the
atom away from the surface. As the average of these recoil
momenta, the atom will feel a repulsion from the surface.
Furthermore, according to Eq. (30), it is the interferences of
incident waves and scattered waves which contribute to the
atom-surface interaction. If the signs of reflection coefficients
are positive, the vacuum electromagnetic field near the surface
is “enhanced” and leads to a stronger atom-vacuum interaction,
so the atom tends to leave far away from the surface to get
a lower potential energy. On the contrary, if the signs of
the reflection coefficients are negative, the vacuum field near
the surface is “decreased” and the atom tends to get closer to

FIG. 4. (Color online) If a photon is emitted by the atom, nega-
tively reflected by the surface, and reabsorbed by the atom again, the
atom can get recoil momentum from the photon twice and be pushed
away from the surface. On average, a repulsion normal to the surface
can be produced between the surface and the atom.

the surface. The signs of the reflection coefficients are decided
by the phase changes of the incident waves when they are
reflected on the surface, so these phase changes play important
roles in producing CP repulsion.

VI. ANALYSIS OF THE RESULTS

We have proved that when Eq. (44) is satisfied, a repulsive
CP potential can be produced by a perfect negative reflecting
surface. In the following, we check the properties of this
potential.

According to Eq. (43), the CP potential depends only on the
reflection coefficients g⊥→⊥ and g‖→‖, which imply polariza-
tion conservations, while the other two reflection coefficients
g⊥→‖ and g‖→⊥, which imply polarization changes, do not
contribute. Figure 5 can help in explaining the result. Figure 5
shows a typical one-loop process of a ground-state atom
interacting with a vacuum field. An atom in the ground state
may jump to the excited state by emitting a virtual photon, and
go back to ground state by absorbing the photon. Enlightened
by the graph, we can just imagine that the atom is excited by a
virtual light beam incident on the surface. Obviously, the atom
should have a polarization identical to the virtual light beam.
When the incident beam is reflected by the surface, only the
polarization-conservative part can be felt by the atom, while the
polarization-changing part cannot. For this reason, the reflec-
tion coefficients g⊥→‖ and g‖→⊥ cannot contribute to the atom-
surface interaction, and they do not appear in potential Eq. (43).

Now we discuss the space translation symmetry of the
atom-surface system. If we assume the surface is infinite,
when the atom moves a relative displacement parallel to
the surface, the situations before and after the motion are
physically equivalent. So the atom-surface interaction will
not result in a force parallel to the surface. This analysis is
in agreement with Eq. (43). The atom-surface potential only
depends on z, which means the force repressing the atom is
along the direction normal to the surface. When the potential is
repulsive, atoms will always be pushed away from the surface.
This characteristic of the CP potential is suitable for building
quantum levitating and reflecting devices.

FIG. 5. Time-ordered graph for interaction of one atom with
virtual photons. The thin straight line represents the atom in the
ground state, while the thick straight line represents the atom in
the excited state. The dashed semicircle represents a photon in mode
(k,λ). The arrow points out the direction of time evolution. This
graph can help in understanding Eq. (43). Once the atom jumps to the
excited state and emits a photon, the directions of the polarizations
of the excited atom and the photon will be parallel. If the polarization
of the photon was changed when it was reflected on the surface, the
photon would not interact with the atom again. So only the reflection
coefficients g⊥→⊥ and g‖→‖ appear in Eq. (43).
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In the following, we discuss the properties of potential
Eq. (43) in the near-field case (z → 0) and the far-field case
(z → ∞).

The near-field and far-field behaviors of the CP potential

Rewriting I (z̃) as

I (z̃) = 1

2z̃
−

∫ ∞

0
dξ

e−2ξ z̃

1 + ξ 2
, (45)

if z̃ → 0, ∫ ∞

0
dξ

e−2ξ z̃

1 + ξ 2
→

∫ ∞

0
dξ

1

1 + ξ 2
= π

2
, (46)

and the CP potential

Vint(z̃ → 0) ∝ 1

2

(
1

z̃2
− π

z̃

)
. (47)

Equation (47) shows that when the atom-surface separation
tends to zero, the CP potential is approximately inversely
proportional to z̃2. This behavior is very different from that
of the standard CP potential [2], which is proportional to
z−3. According to Eq. (39), when z → 0, the 1/(2uz)3 terms
become dominant, so the level shift of the atomic ground state
in a classical CP scenario is given by

αconducting(z → 0) = k0
(
d2

x + d2
y + 2d2

z

)
�ε0(2π )2

×
∫ ∞

0
du

e−2uz

k2
0 + u2

1

(2z)3 . (48)

Making use of Eq. (46), we have

αconducting(z → 0) ∝ 1

(2z)3 . (49)

But in the negative reflection case, as the atom is isotropi-
cally polarized (d2

x = d2
y = d2

z = d2/3), the terms containing
(2uz)−2 and (2uz)−3 in Eq. (38) just cancel each other.
According to Eq. (38), the level shift α is

αnegative ∝ 1

2z

∫ ∞

0
du

u2e−2uz

k2
0 + u2

, (50)

and according to Eqs. (45) and (46), we get the z−2 behavior
of the level shift,

αnegative(z → 0) ∝ 1

2

(
1

z2
− k0π

z

)
, (51)

which agrees with Eq. (47). Because the terms containing
(2uz)−2 and (2uz)−3 in Eq. (38) vanish, the (2uz)−1 terms
become dominant and lead to a z−2 behavior of the CP potential
in near-field limit.

To check the far-field properties of the CP potential, we
express the function I (z̃) as

I (z̃) = 1

4

∂2

∂z̃2

∫ ∞

0
dξ

e−2ξ z̃

1 + ξ 2
. (52)

Making use of function δ(ξ ),

δ(ξ ) = lim
z̃→+∞

z̃e−2|ξ |z̃, (53)

FIG. 6. (Color online) The functions V (z̃), Vapp0(z̃), and Vapp∞(z̃)
are plotted. It can be seen that V (z̃) converges towards Vapp0(z̃) for
z̃ → 0 and fits Vapp∞(z̃) when z̃ → ∞. This result shows the CP
potential decays very fast for large atom-surface separation.

Eq. (52) can be written as

I (z̃ → +∞) = 1

4

∂2

∂z̃2

[
1

z̃

∫ ∞

0
dξ

δ(ξ )

1 + ξ 2

]
, (54)

which is easy to calculate,

I (z̃ → +∞) = 1

4z̃3
, (55)

and the CP potential is inversely proportional to z̃4:

Vint(z̃ → +∞) ∝ 1

4z̃4
. (56)

We define

Vapp0(z̃) = 1

2

(
1

z̃2
− π

z̃

)
(57)

and

Vapp∞(z̃) = 1

4z̃4
. (58)

The comparison of function V (z̃) with Vapp0(z̃) and Vapp∞(z̃)
is shown in Fig. 6.

This analysis shows that the CP potential decreases very
fast (∝ z−4) for large atom-surface separation. This feature is
very useful in building good quantum reflectors. According to
Fig. 6, when z̃ < 1, the atom will be strongly pushed away
from the surface; but in the region of z̃ > 1, the CP potential
is so small that the atom can be thought free.

VII. CONCLUSION

In summary, we have studied a perfect negative reflecting
surface and investigated the CP interaction between the
surface and a ground-state atom. Quantum electrodynamics
is employed in analyzing the atom-reservoir interaction. We
estimate the level shift of the ground state of the atom-vacuum-
surface interacting system and give the analytic expression
of the atom-surface interaction energy. The result proves
the possibility of producing an all-range long repulsive CP
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potential between an atom and one negative reflecting surface.
This potential is proportional to z−2 at short atom-surface
distances and to z−4 at long atom-surface distances. For an
atom in the ground state, this repulsive potential does not
decay with time. With these advantages, the scheme advised
in this paper has the potential for building quantum reflectors,
levitating devices, and trapping devices and can help in
building frictionless nanomachines.
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APPENDIX: OPPOSITE SIGNS ON THE RIGHT-HAND
SIDES OF EQS. (38) AND (39)

We think it is necessary to discuss the opposite signs on
the right-hand sides of Eqs. (38) and (39). Using the method
introduced in Sec. III, we separate the total electric field
near the perfect conducting surface into incident field and
reflected field. For the incident field, the unit vectors have been
defined in Eq. (36). And for the reflected field, we consider

the properties of specular reflection (kx êx + ky êy + kz êz →
kx êx + ky êy − kz êz) and then define

k̂′ = sin θ cos φ êx + sin θ sin φ êy − cos θ êz,

êk′‖ = − cos θ cos φ êx − cos θ sin φ êy − sin θ êz, (A1)

êk′⊥ = sin φ êx − cos φ êy,

in which k′ represents the wave vector of the reflected wave.
According to Eqs. (36) and (A1), the level shift α in the
standard CP scenario can be calculated as

αconducting = − k0

�ε0(2π )2

∫ ∞

0
du

u3e−2uz

k2
0 + u2

×

⎧⎪⎪⎨
⎪⎪⎩

1
2uz

(
d2

x + d2
y

)Re (g‖→‖)+Re (g⊥→⊥)
2

+[
1

(2uz)2 + 1
(2uz)3

](
d2

x + d2
y

)
Re(g‖→‖)

+2
[

1
(2uz)2 + 1

(2uz)3

]
d2

z Re(g‖→‖)

⎫⎪⎪⎬
⎪⎪⎭.

(A2)

Note that the sign on the right-hand side of Eq. (A2) is a minus,
which agrees with that in Eq. (38). But for specular reflection,
the reflection coefficients g‖→‖ = g⊥→⊥ = −1. Substituting
the values of the reflection coefficients into Eqs. (A2) and (39)
can be done. We can see that the difference in the signs on
the right-hand sides of Eqs. (38) and (39) is because of the
minus values of the reflection coefficients in normal specular
reflection.
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