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The dynamic dipole polarizabilities for the four lowest triplet states (2 3S, 3 3S, 2 3P , and 3 3P ) of helium are
calculated using the B-spline configuration interaction method. Present values of the static dipole polarizabilities
in the length, velocity, and acceleration gauges are in good agreement with the best Hylleraas results. Also the
tune-out wavelengths in the range 400 nm–4.2 μm for the four lowest triplet states are identified, and the magic
wavelengths in the range 460 nm–3.5 μm for the 2 3S → 3 3S, 2 3S → 2 3P , and 2 3S → 3 3P transitions are
determined. We show that the tune-out wavelength of 2 3S state is 413.038 28(3) nm, which corroborates the
value of Mitroy and Tang [Phys. Rev. A 88, 052515 (2013)], and the magic wavelength around 1066 nm for the
2 3S → 3 3P transition can be expected for precision measurement to determine the ratio of transition matrix
elements (2 3S → 2 3P )/(3 3P → 6 3S).
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I. INTRODUCTION

Precise calculations of dynamic dipole polarizabilities for
atoms are of interest due to their importance in a number of
applications. First, dynamic dipole polarizabilities can be used
directly to analyze the ac Stark shift to pursue higher-precision
atomic clocks [1,2]. Second, investigation of the dynamic
dipole polarizabilities can derive the magic wavelengths and
tune-out wavelengths, which open a new route to determine
the line strength ratio [2,3] and to test the relativistic and
quantum electrodynamic (QED) effects upon the transition
matrix element not on the energy [4,5]. And third, since
both the trapping potential depth and the photon-scattering
rate are dependent on the polarizabilities, the calculations
of the dynamic dipole polarizabilities can provide reliable
reference for experimental design to trap atoms in efficiency
[6,7].

As the simplest two-electron system, the accurate theo-
retical calculations and experimental measurements of the
energy levels for helium can be used to test the the three-body
bound QED theory [8,9], to determine the fine-structure
constant with high precision [10–12], to extract the nuclear
information without resorting to any model [13,14], and
to develop the multielectron atomic structure theory [9,15].
Recently, the resonance transition 2 3S → 2 3P and the doubly
forbidden transition 2 3S → 2 1S of helium isotopes have
attracted great interest for the determination of nuclear charge
radius difference [7,13,14,16]. Combining the laser cooling
with magneto-optical trap techniques, the transitions 2 3S →
2 3P and 2 3S → 3 3P of helium are also demonstrated to
produce high density quantum gas [17]. The key point to
improve the experimental measurement precision for helium
is to set the laser frequency at the magic wavelength to
eliminate effectively the ac Stark shift induced by the trap
light.
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At present, there are many literatures focusing on the
accurate calculations of the energy and polarizabilities [18–24]
for the ground state of helium. For example, the nonrelativistic
ground-state energy has been achieved up to 46 digits [25],
and the static dipole polarizability of the ground-state helium,
which includes the effect of mass polarization, the relativistic
and leading QED corrections, has been determined to 1.383
191(2) within 2 ppm accuracy [26]. However, compared
with the ground state, there are several calculations of
dynamic polarizabilities for the triplet states of helium. For
the metastable state 2 3S of helium, Glover et al. listed the
rigorous upper and lower bounds of the dynamic dipole
polarizabilities [27]. Chung provided dynamic polarizabilities
for frequencies up to the second excitation threshold by using a
variation-perturbation scheme [28]. Chen used a configuration
interaction (CI) scheme with B-spline functions [29] to
improve the convergence of the dynamic dipole polarizabilities
[30,31]. And Rérat et al. presented the dynamic dipole polar-
izabilities of helium at both real and imaginary frequencies
using the time-dependent gauge-invariant method [32]. In
2005, Chernov et al. calculated the dynamic polarizabilities
[33] by using the quantum defect Green-function formalism.
For other triplet states of helium, there are few reports which
can be referenced [33,34].

In this work, we perform the calculations of static dipole po-
larizabilities for the low-lying triplet states 2 3S, 2 3P , 3 3S, and
3 3P of helium with the configuration interaction method based
on B-spline basis set in the length, velocity, and acceleration
gauges. Then the dynamic dipole polarizabilities of 2 3S, 2 3P

for frequencies below the second excitation threshold and 3 3S,
3 3P for frequencies below the first ionization threshold are
calculated utilizing oscillator strengths and energy differences
obtained in the length gauge. In addition, using the dynamic
dipole polarizabilities, the magic wavelengths for the three
transitions 2 3S → 3 3S, 2 3S → 2 3P , and 2 3S → 3 3P , and
the tune-out wavelengths for the four lowest triplet states 2 3S,
2 3P , 3 3S, and 3 3P are determined with high accuracy. The
atomic units are used throughout this paper unless specifically
mentioned.

1050-2947/2015/92(1)/012515(11) 012515-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.88.052515
http://dx.doi.org/10.1103/PhysRevA.88.052515
http://dx.doi.org/10.1103/PhysRevA.88.052515
http://dx.doi.org/10.1103/PhysRevA.88.052515
http://dx.doi.org/10.1103/PhysRevA.92.012515


ZHANG, TANG, ZHANG, AND SHI PHYSICAL REVIEW A 92, 012515 (2015)

II. DIPOLE POLARIZABILITY

The dynamic dipole polarizability for the magnetic sublevel |LgMg〉 is

αLgMg
(ω) = α1(ω) + 3M2

g − Lg(Lg + 1)

Lg(2Lg − 1)
αT

1 (ω), (1)

where α1(ω) and αT
1 (ω) are the dynamic scalar and tensor dipole polarizabilities respectively; they can be expressed as the

summation of all allowed-transition intermediate states, including the continuum,

α1(ω) =
∑
n�=g

f (1)
gn

(�Egn)2 − ω2
, (2)

αT
1 (ω) =

∑
n�=g

(−1)Lg+Ln

√
30(2Lg + 1)Lg(2Lg − 1)

(2Lg + 3)(Lg + 1)

{
1 1 2
Lg Lg Ln

}
f (1)

gn

(�Egn)2 − ω2
, (3)

where �Egn is the transition energy between the initial state |NgLgMg〉 and the intermediate state |NnLnMn〉, ω is the photon
energy of external electric field, and the dipole oscillator strength fgn have different expressions in the length (L), velocity (V ),
and acceleration (A) gauges respectively,

f (L)
gn = 2|〈NgLg‖

∑
i=1,2 riC

(1)(r̂i)‖NnLn〉|2�Egn

3(2Lg + 1)
, (4)

f (V )
gn =

2|〈NgLg‖
∑

i=1,2
d

dri
C(1)(r̂i) + b(�k; ��)r−1

i C(1)(r̂i)‖NnLn〉|2(�Egn)−1

3(2Lg + 1)
, (5)

f (A)
gn = 2|〈NgLg‖

∑
i=1,2 Zr−2

i C(1)(r̂i)‖NnLn〉|2(�Egn)−3

3(2Lg + 1)
, (6)

where
∑

i=1,2 riC
(1)(r̂i) is the electronic dipole transition

operator of the two-electron system, Z is the nuclear charge
number, �k or �� are the orbital quantum number of a electron,
and the function b(�; λ) is defined as{

b(�; � − 1) = � + 1,

b(�; � + 1) = −�.
(7)

According to the Eqs. (2) and (3), for the case of Lg = 0 ini-
tial state, the dynamic scalar and tensor dipole polarizabilities
are

α1(ω) = α1(P,ω), (8)

αT
1 (ω) = 0, (9)

where α1(P,ω) represents the contributions of the intermediate
state with the angular momentum number Ln = 1.

For the initial state of Lg = 1, the dynamic scalar and tensor
dipole polarizabilities are expressed as

α1(ω) = α1(S,ω) + α1(P,ω) + α1(D,ω), (10)

αT
1 (ω) = −α1(S,ω) + 1

2α1(P,ω) − 1
10α1(D,ω), (11)

where α1(S,ω) and α1(D,ω) are the contributions of the natural
parity state (ss)S and (sd)D respectively, and α1(P,ω) is the
contribution from the unnatural parity state of (pp′)P electron
configuration.

In order to calculate the dynamic dipole polarizabilities,
the fundamental atomic structure information of energies and
wave functions need to be obtained first. In our calculations, the
configuration interaction method based on B-spline functions
are adopted to get the energies and wave functions for helium.

III. CONFIGURATION INTERACTION
WITH B-SPLINE FUNCTION

The Hamiltonian for the two-electron system is given in
second-quantized form as

H =
∑

i

εia
†
i ai + 1

2

∑
ijk�

gijk�a
†
i a

†
j a�ak, (12)

where εi is the ith energy eigenvalue of the single-particle
Schrödinger equation, gijkl is the two-particle matrix element
of the Coulomb interaction, and a

†
i and ai are creation and

annihilation operators for the ith electronic state respectively.
The single-particle quantum state is presented as |ni�imimsi

〉,
here ni is the principal quantum number, �i is the orbital
angular momentum, mi and msi

are the orbital and spin angular
momentum projection, respectively.

The two-electron wave function ψij (LS) is expressed as
a linear combination of configuration-state wave functions
φij (LS),

ψij (LS) =
∑
ij

cijφij (LS), (13)

and the configuration-state wave function has the following
expression:

φij (LS) = ηij

∑
mimj

∑
msi

msj

〈�imi ; �jmj |LM〉

× 〈1/2msi
; 1/2msj

|SMS〉a†
i a

†
j |0〉, (14)

where ηij is a normalization constant given by

ηij =
{

1, i �= j,
1√
2
, i = j.

(15)
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The Clebsch-Gordan coefficients 〈�imi ; �jmj |LM〉 and
〈1/2msi

; 1/2msj
|SMS〉 represent �� and ss coupling, respec-

tively, |0〉 is the vacuum state, and a
†
i |0〉 represents the

ith eigenwave function of the single-particle Schrödinger
equation with energy eigenvalue εi . The configuration-state
wave functions are independent of magnetic quantum numbers
of mi , mj , msi

, and msj
. From the interchange symmetry of

the Clebsch-Gordan coefficients, it follows that

φji(LM) = (−1)�i+�j +L+Sφij (LM), (16)

which implies φii(LM) = 0 unless L + S is even.
According to the expansion of the wave functions, the

matrix elements of Hamiltonian are

〈ψij (LM)|H |ψk�(LM)〉
=

∑
k�

(εi + εj )cij ck�δikδj� +
∑
ij,k�

Vij,k�cij ck�, (17)

where the potential-energy matrix element Vij,k� between
different configurations is

Vijk� = ηijηkl

[∑
ν

(−1)�j −�k+L+ν

{
�i �j L

�� �k ν

}
Xν(ijk�)

+
∑

ν

(−1)�j −�k+S+ν

{
�i �j L

�k �� ν

}
Xν(ij�k)

]
. (18)

The quantity Xν(ijk�) in the above equation is given by

Xν(ijk�) = (−1)ν〈�i‖Cν‖�k〉〈�j‖Cν‖��〉Rν(ijk�), (19)

where 〈�i‖Cν‖�k〉 is angular reduced matrix element,

〈�i‖Cν‖�k〉 = (−1)�i

√
(2�i + 1)(2�k + 1)

{
�i ν �k

0 0 0

}
. (20)

The two-electron radial integral Rν(ijk�) of the Coulomb
interaction is written as

Rν(ijk�) =
∫∫

r2
1 dr1r

2
2 dr2Ri(r1)Rk(r1)

rν
<

rν+1
>

Rj (r2)R�(r2),

(21)

where r< and r> are the minimum and maximum of r1 and r2,
and Ri(r) is the radial wave function of the ith single-electron
orbital.

Using the variational method, the followed configuration
interaction equations can be obtained:∑

k�

[(εi + εj )δikδjl + Vijkl]ckl = λcij , (22)

where λ and cij are the eigenenergy and the expansion
coefficients of eigenwave function for two-electron atom,
respectively.

Before solving the CI equations, the energies and wave
functions for single-electron orbital are obtained first. In our
calculations, B-splines are used to expand the radial wave
function for the ith single-electron orbital,

Ri(r) =
∑

j

ci
jBj (r), (23)

where ci
j are the expansion coefficients, and the following

exponential knots are employed:⎧⎪⎪⎨
⎪⎪⎩

ti = 0, i = 1,2, . . . ,k − 1,

ti+k−1 = R0
exp

[
γR0

(
i−1
N−2

)] − 1

exp[γR0] − 1
, i = 1,2, . . . ,N − 1,

ti = R0, i = N + k − 1,N + k.

(24)

where R0 is the box size, which needs to be chosen large
enough to make sure the contributions to dynamic dipole po-
larizabilities from higher excited states are included, especially
when the photon energy ω is large. The nonlinear parameter
γ also needs to be adjusted to get more accurate ground-state
energy of helium, then the value of γ is fixed the same for all
the triplet states to simplify the integral of B-splines.

IV. RESULTS AND DISCUSSIONS

In our calculation, R0 = 200 a.u. and γ = 0.038×R0 are
used throughout the paper. Using the fixed values of R0

and γ , the ground-state energy of helium under S-wave
approximation with 30 B-splines of order 7 is −2.879 028 4
a.u., which has seven significant digits with the S-wave limit
value −2.879 028 767 29 a.u. [35].

A. Energies and oscillator strengths

Table I presents the convergence studies of the energies
for the metastable state 2 3S and the oscillator strengths of
2 3S → 2 3P transition in the length gauge of helium as the
number of basis set and partial waves increased. For the energy,
increase of the number of partial wave changed less than the
number of B-spline N increased. This convergent style for
the energy suggests that we can fix partial wave (in our work
we fix �max = 10), then increase the number of B-spline N

to avoid too enormous a number of CI. Considering both the
effect from N and �max, the extrapolated values are given in the
last line of the Table I. The final converged value for the energy
is −2.175 229 36(2) a.u., which is in excellent agreement
with the result −2.175 229 378 176 a.u. of Cann and Thakkar
[36]. The extrapolated oscillator strength 0.539 086 4(3) has
six significant digits, compared with the value 0.539 086 1 of
Drake [37].

A similar convergence pattern exists for the energies and
oscillator strengths in the velocity and acceleration gauges
for the other triplet states of helium. The final convergent
results of the energies are presented in Table II. Our energies
are more accurate than the values [38] by two orders of
magnitude, which are obtained by using the B-splines CI
method with different number of configuration states, and our
results for the 2 3S and 2 3P states have eight significant digits,
compared with the explicitly correlated calculations [36] and
the Hylleraas results [37].

Table III gives a comparison of the oscillator strengths for
some selected transitions. For the dipole oscillator strength
of the 2 3S → 2 3P transition, the value in the acceleration
gauge is less accurate than the results from length and velocity
gauges, but our results for the 2 3S → 2 3P transition in three
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TABLE I. Convergence of the energies (in a.u.) for the metastable state 2 3S and the oscillator strengths f
(L)

2 3S→2 3P
in the length gauge

of helium as the number of B-splines N and partial waves �max increased. The numbers in parentheses of the extrapolated values give the
computational uncertainties.

Energy f
(L)

2 3 S→2 3P

�max N = 30 N = 35 N = 40 N = 30 N = 35 N = 40

2 −2.175 220 414 7 −2.175 220 430 6 −2.175 220 434 5 0.539 818 238 0 0.539 818 210 8 0.539 818 205 6
3 −2.175 227 095 0 −2.175 227 116 4 −2.175 227 122 0 0.539 204 607 9 0.539 204 551 9 0.539 204 538 8
4 −2.175 228 582 8 −2.175 228 609 3 −2.175 228 616 5 0.539 117 154 6 0.539 117 068 1 0.539 117 046 0
5 −2.175 229 025 5 −2.175 229 055 9 −2.175 229 064 7 0.539 096 977 2 0.539 096 862 6 0.539 096 831 3
6 −2.175 229 184 7 −2.175 229 218 3 −2.175 229 228 3 0.539 090 770 9 0.539 090 632 7 0.539 090 593 1
7 −2.175 229 250 1 −2.175 229 285 9 −2.175 229 297 0 0.539 088 462 0 0.539 088 305 2 0.539 088 258 3
8 −2.175 229 279 6 −2.175 229 317 1 −2.175 229 328 9 0.539 087 479 3 0.539 087 308 8 0.539 087 255 9
9 −2.175 229 293 9 −2.175 229 332 6 −2.175 229 345 0 0.539 087 017 3 0.539 086 836 5 0.539 086 779 0
10 −2.175 229 301 3 −2.175 229 340 7 −2.175 229 353 6 0.539 086 782 6 0.539 086 594 7 0.539 086 533 6
Extrap. −2.175 229 36(2) 0.539 086 4(3)

TABLE II. Comparison of the energies (in a.u.) for the four lowest triplet states of helium. The numbers in the parentheses are the
computational uncertainties.

State Present Ref. [38] Ref. [36] Ref. [37]

2 3S −2.175 229 36(2) −2.175 228 8 −2.175 229 378 176 −2.175 229 378 236 791 30
3 3S −2.068 689 07(2) −2.068 688 8 −2.068 689 067 283 −2.068 689 067 472 457 19
2 3P −2.133 164 17(2) −2.133 163 4 −2.133 164 181 6 −2.133 164 190 779 273(5)
3 3P −2.058 081 08(2) −2.058 080 6 −2.058 081 077 2 −2.058 081 084 274 28(4)

TABLE III. Comparison of the oscillator strengths in three different gauges for helium. The numbers in the parentheses are the computational
uncertainties. The values of Ref. [36] are the average of the length and velocity gauges, the results of Ref. [37] are in the length gauge, and
Ref. [39] lists the values in three different gauges.

Present Ref. [39]

Transition f (L)
gn f (V )

gn f (A)
gn Ref. [36] Ref. [37] f (L)

gn f (V )
gn f (A)

gn

2 3S → 2 3P 0.539 086 4(3) 0.539 086 5(2) 0.539 078(6) 0.5391 0.539 086 1 0.5392(8) 0.539(3) 0.56(3)
3 3S → 3 3P 0.890 851 8(2) 0.890 851 8(4) 0.890 83(3) 0.8910 0.890 851 3 0.890(2) 0.889(7) 0.85(6)
2 3P → 3 3D 0.610 225 5(2) 0.610 225 5(2) 0.610 224 7(3) 0.610 24 0.610 225 2 0.611(2) 0.609(2) 0.609(3)
2 3P → 2 3P e 0.180 480 28(2) 0.180 480 3(2) 0.180 480 3(3)
3 3P → 4 3D 0.477 594 3(2) 0.477 594 3(2) 0.477 593(3) 0.477 60 0.477 593 8 0.474(3) 0.476(1) 0.494(5)
3 3P → 3 3P e 0.135 420 99(2) 0.135 420 99(3) 0.135 420 98(4)

TABLE IV. Convergence of the static dipole polarizabilities (in a.u.) in three different gauges for the metastable state 2 3S of helium as the
number of B-splines N and partial waves �max increased. The numbers in parentheses give the computational uncertainties.

α
(L)
1 (0) α

(V )
1 (0) α

(A)
1 (0)

�max N = 30 N = 35 N = 40 N = 30 N = 35 N = 40 N = 30 N = 35 N = 40

2 315.433 490 315.433 397 315.433 373 315.171 086 315.170 980 315.170 949 312.742 586 312.745 210 312.745 924
3 315.606 026 315.605 905 315.605 872 315.571 449 315.571 315 315.571 274 315.072 959 315.076 939 315.078 064
4 315.626 281 315.626 136 315.626 095 315.618 705 315.618 550 315.618 502 315.463 517 315.468 762 315.470 301
5 315.630 187 315.630 024 315.629 976 315.627 938 315.627 769 315.627 715 315.562 445 315.568 761 315.570 684
6 315.631 213 315.631 037 315.630 984 315.630 396 315.630 219 315.630 160 315.594 442 315.601 601 315.603 855
7 315.631 548 315.631 364 315.631 306 315.631 205 315.631 023 315.630 960 315.606 534 315.614 322 315.616 846
8 315.631 678 315.631 487 315.631 426 315.631 515 315.631 330 315.631 265 315.611 603 315.619 840 315.622 577
9 315.631 735 315.631 540 315.631 476 315.631 649 315.631 462 315.631 396 315.613 883 315.622 434 315.625 333
10 315.631 763 315.631 565 315.631 500 315.631 712 315.631 524 315.631 457 315.614 962 315.623 727 315.626 746
Extrap. 315.631 5(2) 315.631 4(2) 315.63(2)
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TABLE V. Comparison of the static dipole polarizabilities (in
a.u.) for helium. The numbers in parentheses give the computational
uncertainties.

State α
(L)
1 (0) α

(V )
1 (0) α

(A)
1 (0) Ref. [40]

2 3S 315.6315(2) 315.6314(2) 315.63(2) 315.631 47(1)
3 3S 7937.584(2) 7937.583(2) 7937.4(2) 7937.58(1)
2 3P 46.707 93(4) 46.707 94(4) 46.71(2) 46.707 748 2(3)
3 3P 17 305.67(3) 17 305.67(4) 17 311(2) 17 305.598(3)

gauges are correspondingly much more accurate than the
values in different gauges of Ref. [39] by three orders of
magnitude. All of our results in Table III are more accurate
than the previous values of Refs. [36,39]. For the oscillator
strengths of other transitions, our results in the length and
velocity gauges are in excellent agreement with the Hylleraas
calculations of Drake [37]. In addition, the oscillator strengths
from the initial states 2 3P and 3 3P transit to the unnatural
parity states 2 3P e and 3 3P e are also listed in the Table III.

B. Static dipole polarizabilities

Table IV gives the convergence of the static dipole po-
larizabilities for the metastable state 2 3S of helium as the
number of basis set and partial waves increased, and the last
line lists the extrapolated values. From this table, we can see
in the length and velocity gauges that the convergence style
is the same, and the results are decreased as the number of

basis sets N increased for the same �max. However in the
acceleration gauge, the values are increased as the number of
basis sets N increased for the same �max. The final convergent
value in the length gauge is 315.631 5(2), which has six
significant digits compared with the most accurate Hylleraas
value 315.631 47(1) of Yan [40].

Table V presents a comparison of static dipole polariz-
abilities for the four lowest triplet states of helium. The results
between the length and velocity gauges are in good agreement.
The values obtained in the acceleration gauge are less accurate
than the results in the length and velocity gauges by two orders
of magnitude. Present results for the 2 3S and 3 3S states in the
length and velocity gauges agree with the Hylleraas values
[40] at the 10−7 level of accuracy, and our values for the 2 3P

and 3 3P states in the length and velocity gauges agree with
the Hylleraas values [40] at the 10−6 level of accuracy. In the
acceleration gauge, present α

(A)
1 (0) for 2 3P and 3 3P states

just have three significant digits compared with the Hylleraas
values of Ref. [40].

C. Dynamic dipole polarizabilities

Table VI lists the dynamic dipole polarizability for the
metastable state 2 3S of helium for some selective photon
energy from 0 to 0.12 a.u.; the figures in parentheses represent
computational uncertainties. It is seen from this table that all
of our values have at least five significant digits except the
results of ω = 0.04 a.u., ω = 0.110 a.u., and ω = 0.115 a.u.,
which have four significant digits.

TABLE VI. Comparison of the dynamic dipole polarizabilities (in a.u.) of the 2 3S state for the He atom. The numbers in parentheses give
the computational uncertainties.

ω Present Ref. [27] Ref. [28] Ref. [31] Ref. [32]

0.000 315.6315(2) (315.61, 316.83) 315.63 315.630 315.92
0.005 320.0105(2) (319.99, 321.23) 320.01 320.009 320.31
0.010 333.9323(2) (333.91, 335.21) 333.93 333.931 334.25
0.015 360.1322(2) (360.10, 361.53) 360.12 360.130 360.50
0.020 404.8286(2) (404.79, 406.43) 404.81 404.825 405.28
0.025 482.3411(3) (482.29, 484.29) 482.31 482.335 482.95
0.030 631.4758(3) (631.39, 634.10) 631.42 631.463 632.41
0.035 1001.751(2) (1001.53, 1006.08) 1001.59 1001.71 1003.68
0.040 3192.7(2) (3190.16, 3207.18) 3190.67 3192.17 3205.28
0.045 −2097.602(3) (−14 717.51, −2050.70) −2098.66 −2097.89 −2097.0
0.050 −725.4477(2) (−729.45, −718.73) −725.60 −727.490 −726.27
0.055 −416.4749(2) (−419.07, −413.67) −416.54 −416.492 −417.20
0.060 −281.127 19(2) (−283.14, −279.41) −281.16 −281.137 −281.78
0.065 −205.599 18(2) (−207.31, −204.30) −205.63 −205.606 −206.21
0.070 −157.5702(2) (−159.14, −156.44) −157.59 −157.575 −158.17
0.075 −124.336 28(2) (−125.87, −123.25) −124.35 −124.340 −124.94
0.080 −99.863 44(2) (−101.47, −98.72) −99.88 −99.867 −100.49
0.085 −80.8752(2) (−82.67, −79.60) −80.89 −80.878 −81.55
0.090 −65.363 52(2) (−67.54, −63.84) −65.37 −65.366 −66.11
0.095 −51.884 20(2) (−54.81, −49.93) −51.92 −51.888 −52.74
0.100 −39.052 27(2) (−43.49, −36.31) −39.11 −39.059 −40.07
0.105 −24.690 53(2) (−32.65, −20.33) −24.82 −24.709 −26.03
0.110 −2.1515(2) −2.66 −2.248
0.115 93.381(2) (−6.27, 128.35) 84.66 91.175 74.32
0.120 −125.6637(4) −137.94
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TABLE VII. Convergence of the dynamic dipole polarizabilities (in a.u.) for some selective photon energy ω for the metastable state 2 3S

of helium as the box size R0 increased. The numbers of B-splines and partial waves are set as N = 40 and �max = 10 respectively.

R0 ω = 0.020 ω = 0.110 ω = 0.140 ω = 0.160 ω = 0.164

50 404.828 532 675 −2.151 541 215 1.645 391 572 −45.869 633 168 −26.113 507 642
100 404.828 556 614 −2.151 521 839 1.909 710 113 −5.056 386 587 −17.496 811 920
200 404.828 586 773 −2.151 507 768 1.909 749 852 −4.663 840 402 −10.341 706 169
300 404.828 617 985 −2.151 493 277 1.909 789 064 −4.663 839 680 −10.341 970 925
Extrap. 404.8286(2) −2.1515(2) 1.9098(1) −4.6638(2) −10.342(1)

Table VI also makes a comparison of the present results
with available values from other literatures [28,31,32]. All of
ours results lie within the boundary of Glover and Weinhold’s
[27], which gives the rigorous upper and lower limits for the
dynamic dipole polarizability at a wide photon energy range. In
the low photon energy region, our values are in good agreement
with Ref. [31], which are also obtained by using the B-spline
CI method. For example, our values have the five significant
digits compared with theirs. As the photon energy ω increased,
the differences between present results and values of Ref. [31]
increased; especially for ω = 0.115 a.u., the difference of the
dynamic polarizabilities can reach about 2.2a3

0 . The reason for
this is the results for large ω depend on the choice of the box
size R0 of the B-spline. As ω increased, R0 should be chosen
big enough to make sure the transition to high-excited states,
especially the transition energies of those excited states near
ω, can be included in the calculation of polarizabilities.

It is seen from the Table VII, which presents a convergence
study of the dynamic dipole polarizability of helium in the
metastable state 2 3S for some selective ω as the box size R0

increased, that the numbers of B-splines and partial waves are

set as N = 40 and �max = 10 respectively. The convergence
pattern shows that when the photon energy ω is small, the
dynamic dipole polarizability can converge very well under
small box size. Taking ω = 0.020 a.u. and ω = 0.110 a.u.
for examples, the dynamic dipole polarizabilities under R0 =
50 a.u. have six and five significant digits. But for the larger
photon energies of ω = 0.140 a.u. and ω = 0.160 a.u., if the
box size R0 = 200 a.u. is adopted, the values are α1(0.140) =
1.909 749 852a3

0 and α1(0.160) = −4.663 840 402a3
0 . If the

box size is set as R0 = 50 a.u., then the values are α1(0.140) =
1.645 391 572a3

0 and α1(0.160) = −45.869 633 168a3
0 , which

are not convergent compared with their extrapolated values
of α1(0.140) = 1.9098(1)a3

0 and α1(0.160) = −4.6638(2)a3
0 .

However, the box size is not the bigger the better for the
B-spline CI calculation; oppositely, the loss of accuracy will
occur under the same number of B-spline for the big box
size. This can be seen from the values of ω = 0.160 a.u.
and ω = 0.164 a.u. The dynamic dipole polarizabilities under
the R0 = 300 a.u. are not better than the values under R0 =
200 a.u. So in order to get more accurate values, the number of
B-spline should be increased, which makes the number of CI

TABLE VIII. Dynamic polarizabilities (in a.u.) of 3 3S, 2 3P , and 3 3P states for the He atom. The numbers in parentheses give the
computational uncertainties.

State 3 3S
2 3P 3 3P

ω α1(ω) α1(ω) αT
1 (ω) α1(ω) αT

1 (ω)

0.000 7937.584(2) 46.707 93(3) 69.5964(2) 17 305.67(3) 336.768(3)
0.005 10 199.363(2) 45.832 74(4) 70.8984(2) −8051.87(2) 3534.464(2)
0.010 71 124.62(5) 42.976 03(4) 75.0559(2) −23 498.47(2) 23 293.67(2)
0.015 −7892.735(2) 37.3217(2) 82.9492(2) 3942.877(2) −3345.9627(4)
0.020 −3062.782(2) 26.972(2) 96.591 95(3) 4749.082(4) −3445.013(2)
0.025 −1685.264(2) 7.4367(2) 120.658 74(3) 4962.08(2) −246.35(2)
0.030 −1031.851(2) −33.776 38(2) 167.923 35(6) −2249.18(2) 111.731(2)
0.035 −305.1046(2) −145.8045(2) 287.9533(2) 502.52(2) −765.454(5)
0.040 −792.8559(2) −860.666(3) 1013.44(2) −1078.384(2) 53.0407(4)
0.045 −512.4321(2) 924.3286(4) −757.2164(4) −1078.7(2) 78.96(2)
0.050 −602.5701(5) 498.7080(2) −311.6507(2) 152(2) 14.1(2)
0.055 −703.68(2) 447.8331(3) −231.6643(2)
0.060 −620.32(3) 517.4623(6) −255.4211(4)
0.065 −563.39(2) 907.7(2)
0.070 561.824(2) −27.2995(3)
0.075 1635.892(8) −167.107(2)
0.080 −1497.409(7) 137.702(2)
0.085 −418.409(2) 26.1352(2)
0.090 −185.5369(3) −1.0091(2)
0.095 −29.424(2) −39.1638(3)
0.100 211.866(3) −18.9742(3)

012515-6



DYNAMIC DIPOLE POLARIZABILITIES FOR THE LOW- . . . PHYSICAL REVIEW A 92, 012515 (2015)

FIG. 1. (Color online) Dynamic dipole polarizabilities (in a.u.)
of helium for the photon energy 0.035 � ω � 0.06 a.u. The solid
black line denotes the dynamic polarizabilities for 2 3S state, and the
dashed blue line represents the dynamic polarizabilities for 3 3S state.
The crossing points denoted as solid magenta circle are the tune-out
wavelengths, and the crossing points marked as blank red circle are
the magic wavelengths. The vertical lines are the resonance transition
positions, and the green line is a horizontal zero line.

increased exponentially and slows down the convergent rate
of our calculations. So in our practical calculations, we need
to choose appropriate R0 to get accurate values for large ω and
to avoid a large number of CI at the same time.

Table VIII lists some selective values of dynamic dipole
polarizabilities of 2 3P , 3 3S, and 3 3P states for the He atom.
For the 2 3P state, the dynamic dipole polarizabilities for
ω below the second excitation threshold are listed, and for
the 3 3S and 3 3P states, the dynamic dipole polarizabilities
for ω below the first ionization threshold are obtained. All
of our results are very accurate except a few values for the
photon energy ω near resonance transition energy or ionization
threshold.

FIG. 2. (Color online) Dynamic dipole polarizabilities (in a.u.) of
helium for the photon energy 0.06 � ω � 0.10 a.u. The solid black
line denotes the dynamic polarizabilities for 2 3S state, and the dashed
blue line represents the dynamic polarizabilities for 2 3P (M = 0)
state. The crossing points denoted as solid magenta circle are the
tune-out wavelengths, and the crossing points marked as blank red
circle are the magic wavelengths. The vertical lines are the resonance
transition positions, and the green line is a horizontal zero line.

FIG. 3. (Color online) Dynamic dipole polarizabilities (in a.u.) of
helium for the photon energy 0.06 � ω � 0.10 a.u. The solid black
line denotes the dynamic polarizabilities for 2 3S state, and the dashed
blue line represents the dynamic polarizabilities for 2 3P (|M| = 1)
state. The crossing points denoted as solid magenta circle are the
tune-out wavelengths, and the crossing points marked as blank red
circle are the magic wavelengths. The vertical lines are the resonance
transition positions, and the green line is a horizontal zero line.

The dynamic dipole polarizabilities for the lowest four
triplet states of helium are also plotted in the Figs. 1–6 as
the photon energy ω. For the nonzero angular momentum
state, the polarizability depends upon its magnetic quantum
number M because of both scalar and tensor polarizabilities
existing, so the dynamic dipole polarizabilities for 2 3P and
3 3P states are divided into two cases as M = 0 and |M| = 1.
The crossing points between a curve and the horizontal zero
line are labeled as tune-out wavelengths, denoted as a solid
magenta circle, and the crossing points between two curves
are the magic wavelengths, denoted as a blank red circle. The
vertical lines are the resonance transition positions.

FIG. 4. (Color online) Dynamic dipole polarizabilities (in a.u.) of
helium for the photon energy 0.02 � ω � 0.04 a.u. The solid black
line denotes the dynamic polarizabilities for 2 3S state, and the dashed
blue line represents the dynamic polarizabilities for 3 3P (M = 0)
state. The crossing points denoted as solid magenta circle are the
tune-out wavelengths, and the crossing points marked as blank red
circle are the magic wavelengths. The vertical lines are the resonance
transition positions, and the green line is a horizontal zero line.
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FIG. 5. (Color online) Dynamic dipole polarizabilities (in a.u.) of
helium for the photon energy 0.04 � ω � 0.05 a.u. The solid black
line denotes the dynamic polarizabilities for 2 3S state, and the dashed
blue line represents the dynamic polarizabilities for 3 3P (M = 0)
state. The crossing points denoted as solid magenta circle are the
tune-out wavelengths, and the crossing points marked as blank red
circle are the magic wavelengths. The vertical lines are the resonance
transition positions, and the green line is a horizontal zero line.

D. Tune-out wavelengths

Table IX lists the values of tune-out wavelengths in
the 400–4200-nm region, marked as a solid magenta circle
in Figs. 1–6. For the metastable state of helium, Mitroy
and Tang [4] have obtained the tune-out wavelength of
413.02(9) nm by incorporating Hylleraas matrix elements
for the transition to 2 3P and 3 3P manifolds and core-
polarization model matrix elements for other transitions, and
they predicted that the tune-out wavelength around 413 nm
can be used to test the QED effect. Recently, an experimental
measurement of Ken Baldwin’s group reports the tune-out
wavelength being 413.0938(9 Stat.)(20 Syst.) nm [5] and
another theoretical calculation by Notermans et al. [7] gives the

FIG. 6. (Color online) Dynamic dipole polarizabilities (in a.u.) of
helium for the photon energy 0.01 � ω � 0.05 a.u. The solid black
line denotes the dynamic polarizabilities for 2 3S state, and the dashed
blue line represents the dynamic polarizabilities for 3 3P (|M| = 1)
state. The crossing points denoted as solid magenta circle are the
tune-out wavelengths, and the crossing points marked as blank red
circle are the magic wavelengths. The vertical lines are the resonance
transition positions, and the green line is a horizontal zero line.

TABLE IX. Tune-out wavelengths (λt ) for 2 3S, 3 3S, 2 3P , and
3 3P states of helium. The second and third columns are the tune-out
wavelengths in atomic units and nanometer respectively. The numbers
in parentheses give the computational uncertainties.

State ωt (a.u.) λt (nm)

2 3S 0.110 312 66(2) 413.038 28(3)

3 3S 0.035 488 102(2) 1283.905 03(4)
0.047 681 245(3) 955.582 28(7)
0.054 260 56(3) 839.714(2)
0.058 175 6(2) 783.204(2)

2 3P (M = 0) 0.066 652 71(2) 683.5934(2)
0.094 341 03(2) 482.9644(2)
0.098 338 54(2) 463.3316(2)

2 3P (M = ±1) 0.097 382 82(2) 467.8788(2)

3 3P (M = 0) 0.023 315 997(3) 1954.1670(3)
0.033 637 088(2) 1354.5570(2)
0.036 548 517(2) 1246.6539(3)
0.042 005 02(2) 1084.712(2)
0.043 390 63(3) 1050.074(2)
0.046 593 9(2) 977.883(2)
0.047 403 1(2) 961.189(3)
0.049 442 7(2) 921.539(4)
0.049 964 4(2) 911.917(4)

3 3P (M = ±1) 0.010 911 33(2) 4175.783(4)
0.035 787 67(2) 1273.1580(2)
0.043 149 27(2) 1055.9472(3)
0.047 294 5(1) 963.397(2)
0.049 905 4(1) 912.995(3)

tune-out wavelength of 414.197 nm by using available tables
of level energies and Einstein A coefficients. Our tune-out
wavelength of ab initio calculation is 413.038 28(3) nm, which
corroborates the value 413.02(9) nm of Mitroy and Tang [4].
The difference between the theoretical calculations and the
experimental measurement may be caused by finite nuclear
mass, relativistic, and QED corrections, which calls for great
efforts of theoretical calculation to improve the precision for
the QED test.

E. Magic wavelengths

The magic wavelength is the wavelength at which the
polarizability difference for a transition goes to zero, which
means the first-order Stark shifts for the upper and lower
levels of a transition are the same [41,42]. Table X presents
all the values of magic wavelengths in the 460–3500-nm
region marked in the blank red circle in Figs. 1–6. The
corresponding dynamic dipole polarizabilities at the magic
wavelengths are also given in the last column. For the magic
wavelength of 1066.197(2) nm, there exist two terms, which
play a major contribution of the dynamic dipole polarizabilities
for the 2 3S and 3 3P (M = 0) states respectively. Table XI lists
some contributions from different intermediate states for the
2 3S → 3 3P (M = 0) transition at the magic wavelength of
1066.197(2) nm. We can see that the contribution from the
2 3P state to the polarizability of 2 3S is about 99.87%, and
the contribution from the 6 3S state to the polarizability of
3 3P (M = 0) is about 98.87%. According to the definition
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TABLE X. Magic wavelengths (λm) for 2 3S → 3 3S, 2 3S → 2 3P (M = 0, ±1), and 2 3S → 3 3P (M = 0,±1) transitions of the He atom.
The corresponding dynamic dipole polarizabilities at the magic wavelengths are given in the last column. The numbers in parentheses give the
computational uncertainties.

Transition ωm (a.u.) λm (nm) α1(ωm) (a.u.)

2 3S → 3 3S 0.036 004 592(2) 1265.487 24(4) 1151.058(2)
0.048 775 162(5) 934.1507(2) −872.007(2)
0.058 024 4(2) 785.245(3) −324.31(2)

2 3S → 2 3P (M = 0) 0.066 228 54(2) 687.9716(2) −191.9157(2)
0.093 229 5(2) 488.7225(2) −56.5068(2)
0.098 016 6(2) 464.8532(3) −44.169 53(4)

2 3S → 2 3P (M = ±1) 0.095 747 3(2) 475.870 85(6) −49.962 90(4)

2 3S → 3 3P (M = 0) 0.023 434 415(3) 1944.2923(3) 453.0297(2)
0.034 618 094(3) 1316.1716(2) 955.639(2)
0.037 202 637 7(2) 1224.734 46(2) 1410.365(2)
0.042 734 44(3) 1066.197(2) −9487(2)
0.044 532 37(2) 1023.151(2) −2511.07(3)
0.047 069 3(2) 968.007(3) −1196.32(3)
0.048 478 5(2) 939.867(4) −915.97(3)
0.049 762 5(3) 915.616(5) −750.19(3)

2 3S → 3 3P (M = ±1) 0.013 031 86(2) 3496.304(3) 348.0648(2)
0.037 297 86(2) 1221.607 75(2) 1436.592(2)
0.044 421 15(2) 1025.713(2) −2633.59(3)
0.048 309 5(2) 943.156(4) −942.89(2)

of magic wavelength α2 3S(ωm) = α3 3P (ωm), we have the
expanded form,

f2 3S→2 3P

�E2
2 3S→2 3P

− ω2
m

+ α2 3S(Remainder; ωm)

= 3f3 3P→6 3S

�E2
3 3P→6 3S

− ω2
m

+ α3 3P (Remainder; ωm), (25)

where the second term in the left of Eq. (25) is all the
contributions from other n 3P states to the dynamic dipole

TABLE XI. Contributions from some intermediate states to the
dynamic dipole polarizability of 2 3S and 3 3P (M = 0) states at the
magic wavelengths 1066.197(2) nm.

ω (a.u.) 0.042 734 44(3)
λ (nm) 1066.197(2)

Intermediate states 2 3S

2 3P −9499.066
3 3P 5.418
4 3P 1.386
Others 5.234
Total −9487.028

Intermediate states 3 3P (M = 0)
3 3S 519.840
4 3S −320.109
5 3S −118.888
6 3S −9379.600
3 3D −73.9017
4 3D −517.059
5 3D −395.758
6 3D 506.415
Others 292.0327
Total −9487.028

polarizability of 2 3S state, and the second term in the right
of Eq. (25) is all the contributions from other n 3S, n 3D,
and n 3P e states to the dynamic dipole polarizability of the
3 3P (M = 0) state. If all the remainder terms are neglected,
then the ratios of oscillator strengths and reduced matrix
elements are written as

f2 3S→2 3P

f3 3P→6 3S

= 3
(
�E2

2 3S→2 3P
− ω2

m

)
�E2

3 3P→6 3S
− ω2

m

, (26)

M2 3S→2 3P

M3 3P→6 3S

=
∣∣〈2 3S

∥∥ ∑
i=1,2 riC

(1)(r̂i)
∥∥2 3P

〉∣∣∣∣〈3 3P
∥∥ ∑

i=1,2 riC(1)(r̂i)
∥∥6 3S

〉∣∣
=

√
�E3 3P→6 3S

(
�E2

2 3S→2 3P
− ω2

m

)
�E2 3S→2 3P

(
�E2

3 3P→6 3S
− ω2

m

) . (27)

Combined present energy difference and the magic wavelength
1066.197(2) nm, the ratios of the oscillator strengths, and
the reduced matrix elements are determined and listed in
Table XII. “Present1” are the values of our ab initio calculation,

TABLE XII. Comparison of the ratios for the oscillator
strengths (f2 3S→2 3P )/(f3 3P→6 3S) and the reduced matrix elements
(M2 3S→2 3P )/(M3 3P→6 3S). Present1 are the value of our ab initio
calculation, and Present2 are derived by substituting our theoretical
energies and the magic wavelength of 1066.197(2) nm into Eqs. (26)
and (27). The numbers in parentheses give the computational
uncertainties.

(f2 3S→2 3P )/(f3 3P→6 3S) (M2 3S→2 3P )/(M3 3P→6 3S)

Present1 65.48(2) 4.7073(3)
Present2 64.6653 4.677 847
Ref. [36] 65.5308 4.789 739
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and “Present2” are derived by substituting our theoretical
energies and the magic wavelength of 1066.197(2) nm into
Eqs. (26) and (27). Compared with the explicitly correlated
results of Ref. [36], it can be believed that the values of
“Present1” are reliable, since present oscillator strengths for
2 3S → 2 3P and 3 3P → 6 3S transitions are much more
accurate than the values of Ref. [36] by at least one order of
magnitude. In order to test the accuracy of the values derived
from Eqs. (26) and (27), we can compare the results between
Present1 and Present2. It is clearly seen that the derived values
64.6653 and 4.677 847 from Eqs. (26) and (27) are in good
agreement with our ab initio values 65.48(2) and 4.7073(3)
at the level of 1.3% and 0.7% accuracy respectively. If one
increases the number of B-spline basis sets, and also considers
the contribution of the remainder term, then improvement of
the accuracy for the ratio of two transition matrix elements
(M2 3S→2 3P )/(M3 3P→6 3S) up to 0.5% is achievable.

Currently, however, present experimental technique is very
difficult to measure matrix elements accurately; only 1% accu-
racy for one or two of the lowest transitions has been reported
[43,44]. Recently, Herold et al. presented a method for accurate
determination of 5s − 6p matrix elements in rubidium by
measurements of the ac Stark shift around tune-out wavelength
[3]. In our calculation, the particular magic wavelength around
1066 nm can be used for experiment measurement to determine
the atomic transition matrix elements involved in highly
excited states for helium.

V. CONCLUSIONS

The calculations of the energies and the main oscillator
strengths for the four triplet states (2 3S, 3 3S, 2 3P , and 3 3P )

in the length, velocity, and acceleration gauges are carried
out by the configuration interaction based on the B-spline
functions. Also the accurate dynamic dipole polarizabilities
for the four lowest triplet states are obtained. Our static dipole
polarizabilities in the length and velocity gauges have five to
six significant digits, which are in excellent agreement with
the variational Hylleraas calculations. The present work lays a
solid foundation to further calculate the relativistic and QED
effects on the dynamic polarizabilities of helium.

In particular, the tune-out wavelengths for the four triplet
states and magic wavelengths for the three transitions of
2 3S → 3 3S, 2 3S → 2 3P , and 2 3S → 3 3P are determined
with high precision. Our tune-out wavelength 413.038 28(3)
nm of the metastable state validates the value of Mitroy
and Tang [4]. And the magic wavelength around 1066 nm
for the 2 3S → 3 3P transition is proposed for experimental
measurement to determine the ratio of the transition matrix
elements (2 3S → 2 3P )/(3 3P → 6 3S); this is a unique way
to obtain an accurate transition matrix element involved in
highly excited states. Also we expect that other tune-out
wavelengths and magic wavelengths can provide theoretical
references for the precision-measurement experiment design
in the future.
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