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I. INTRODUCTION

The fine splitting is a difference between energies of P3/2

and P1/2 states. For hydrogenic systems it can be obtained from
the Dirac equation, while for many electron systems one needs
quantum electrodynamic (QED) theory to consistently de-
scribe correlations with relativistic effects. The most common
many-electron Dirac-like methods [1–4] are able to achieve
two significant digits at most, while experimental precision
is about six significant digits [5,6]. A much more accurate
description of light few-electron systems relies on a nonrel-
ativistic version of QED, called NRQED theory. Relativistic,
retardation, electron self-interaction, and vacuum polarization
effects can all be accounted for perturbatively by expansion of
energy levels in powers of the fine-structure constant α:
E(α) = m α2 E (2) + m α4 E (4) + m α5 E (5) + m α6 E (6) + . . . ,

(1)
where expansion coefficients E (i) may include powers of ln α.
Since these expansion coefficients are expressed in terms of
the first- and second-order matrix elements of some operators
with the nonrelativistic wave function, the accuracy of the
numerical calculation strongly depends on the quality of this
function. For example, MCHF calculations [7–9] are accurate
only to three digits because the wave function is a combination
of Slater determinants and does not satisfy the cusp condition.
A much more accurate nonrelativistic wave function can
be obtained by using an explicitly correlated basis such
as Hylleraas functions [10–13]. However, three-electron
integrals with explicitly correlated functions are much more
complicated than two-electron ones. Moreover, the required
number of basis functions has to be much larger in order to
achieve similar accuracy as for two-electron systems. So the
extension of QED calculations to a three-electron system is
not a simple task. In our recent works [6,14] we performed
complete calculations of higher-order mα6 and m α7 ln α

corrections to Li and Be+ 2P3/2 − 2P1/2 fine splitting. Here
we aim to present in more detail the computational methods.

The fine-structure splitting at the leading order E
(4)
FS is given

by the expectation value
E

(4)
FS = 〈

H
(4)
FS

〉
(2)

of spin-dependent operators from the Breit-Pauli Hamiltonian
[15]:

H
(4)
FS =

∑
a

Z α

4 m2 r3
a

�σa [(g − 1) �ra × �pa]

+
∑
a �=b

α

4 m2 r3
ab

�σa[g �rab × �pb − (g − 1) �rab × �pa],

(3)

where g is the exact electron g factor. The mean value in Eq. (2),
〈. . .〉 ≡ 〈�| . . . |�〉 is calculated using the wave function �

from the stationary Schrödinger equation

(H − E)� = 0 (4)

with the nonrelativistic Hamiltonian H in the infinite nuclear
mass limit:

H =
∑

a

�p 2
a

2 m
+ V, (5)

V ≡
∑

a

−Z α

ra

+
∑
a>b

α

rab

. (6)

The Li and Be+ fine structure in the leading order, including
finite nuclear mass corrections, has been calculated by using
the Hylleraas functions in [10,13]. The high accuracy is
achieved by the use of a relatively large number (about
14 000) of these functions. All matrix elements are ex-
pressed in terms of standard and extended Hylleraas integrals,
which are obtained with the help of recursion relations
[16,17].

The situation is different with matrix elements of mα6 and
higher-order operators in the Hylleraas basis, where additional
classes of complicated integrals appear, for which no efficient
numerical algorithms are known. Other difficulties arise in
the evaluation of the second-order matrix element with nearly
singular operators. The Green’s function, or equivalently the
sum over pseudostates, requires large values of nonlinear
parameters. This causes severe problems with the numerical
stability of recursive algorithms with Hylleraas integrals.
We overcome this problem by the application of another
basis set, which consists of the explicitly correlated Gaussian
functions. We have found [18,19] that the second-order matrix
elements can be calculated with high precision when nonlinear
parameters are globally optimized and a large number of
Gaussian functions is employed.

II. HIGHER-ORDER FINE STRUCTURE

The mα6 correction E
(6)
FS to the fine structure can be

expressed as the sum of the first- and second-order matrix
elements with the nonrelativistic wave function:

E
(6)
FS =

〈
H (4) 1

(E − H )′
H (4)

〉
+ 〈

H
(6)
FS

〉
, (7)
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where the Breit-Pauli Hamiltonian H (4) is of the form [15]

H (4) = H
(4)
A + H

(4)
B + H

(4)
C , (8)

H
(4)
A =

∑
a

{
− �p 4

a

8
+ π Z

2
δ3(ra)

}

+
∑
a<b

{
π δ3(rab) − 1

2
pi

a

(
δij

rab

+ ri
ab r

j

ab

r3
ab

)
p

j

b

}
,

(9)

H
(4)
B =

∑
a

Z

4 r3
a

�σa · �ra × �pa

+
∑
a �=b

1

4 r3
ab

�σa (2 �rab × �pb − �rab × �pa), (10)

H
(4)
C =

∑
a<b

σ i
a σ

j

b

4 r3
ab

(
δij − 3

ri
ab r

j

ab

r2
ab

)
. (11)

The potentially singular second-order quadratic term with
H

(4)
A in Eq. (7) does not contribute to fine splitting, and thus

is excluded from further consideration. H
(6)
FS is an effective

Hamiltonian of order mα6. Following the derivation in [20]
and [13], H

(6)
FS can be represented in the following form:

H
(6)
FS =

∑
i=1,7

δHi, (12)

δH1 =
∑

a

3

16 m4
p2

a e �Ea × �pa · �σa, (13)

δH2 =
∑
a �=b

− i π

8 m4
�σa · �pa × δ3(rab) �pa, (14)

δH4 =
∑

a

e

4 m3

[
2 p2

a �pa · �Aa + p2
a �σa · ∇a × �Aa

]
, (15)

δH5 =
∑

a

e2

2 m2
�σa · �Ea × �Aa

+ i e

16 m3

[ �Aa × �pa · �σa − �σa · �pa × �Aa,p
2
a

]
, (16)

δH6 =
∑

a

e2

2 m2
�A2
a, (17)

δH7 =
∑
a �=b

α

4 m2

{
−i

[
�σa × �rab

rab

,
p2

a

2 m

]
e �Eb

+
[

p2
b

2 m
,

[
�σa × �rab

rab

,
p2

a

2 m

]]
�pb

}
, (18)

where Ea is the static electric field at the position of particle a,

e �Ea ≡ −∇aV = −Z α
�ra

r3
a

+
∑
b �=a

α
�rab

r3
ab

, (19)

and Ai
a is the vector potential at the position of particle a,

which is produced by all other particles:

eAi
a ≡

∑
b �=a

α

2 rab

(
δij + ri

ab r
j

ab

r2
ab

)
p

j

b

m
+ α

2 m

(�σb × �rab)i

r3
ab

.

(20)
In order to further improve theoretical predictions, the

higher-order mα7 contribution is not neglected but instead is
approximated by the numerically dominating logarithmic part.
It is obtained from the analogous correction to the helium fine
structure [21,22] by dropping the σ i σ j terms because they do
not contribute for states with the total electron spin S = 1/2:

E
(7)
FS,log = 〈

H
(7)
FS,log

〉 + 2

〈
H

(4)
B

1

(E0 − H0)′
H

(5)
log

〉
, (21)

H
(5)
log = α2 ln[(Z α)−2]

[
4Z

3

∑
a

δ3(ra) − 7

3

∑
b<a

δ3(rab)

]
,

(22)

H
(7)
FS,log = α2 ln[(Z α)−2]

[
Z

3

∑
a

i �pa × δ3(ra) �pa · �σa

− 3

4

∑
b �=a

i �pa × δ3(rab) �pa · �σa

]
. (23)

The neglected higher-order corrections are the nonlogarithmic
mα7 term and the finite nuclear mass corrections to the mα6

contribution. They will limit the accuracy of our theoretical
predictions for Li and Be+ fine structure.

III. TRANSFORMATION OF MATRIX ELEMENTS

The expectation value of H
(6)
FS in Eq. (12) is transformed

initially to a form convenient for numerical calculations with
2P states:

δH1 = = 3

16
(−Z Q1 + Q2), (24)

δH2 = −π

8
D2, (25)

δH4 = −1

4
(Q3 + Q4), (26)

δH5 = 1

4
[−Z(Q5 + Q6) + Q7 + Q8] + 1

8
(−ZP1 + P2)

+ 1

8
(Q9 − Q10 − Q3) − 1

16
P3, (27)

δH6 = −1

4
(Q11 + Q12) + 1

16
P4, (28)

δH7 = Z

4
(Q14 − Q15) − 1

4
(Q17 + Q18)

+ 1

4
(−Q4 + Q19 − Q20), (29)

where Qi and Pi are defined in Table I. Additionally, operators
Q1, Q2, and Q4 are transformed into the sum of the singular D
term with the Dirac-δ operator and the regular R part. Matrix
elements with D terms are calculated with Hylleraas, while
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TABLE I. Expectation values of operators for Li and Be+ 2 2PJ states, 〈Q〉 = KJ V with the additional prefactor KJ = {1,−1/2} for
J = 1/2,3/2, correspondingly. All digits are significant.

Operator VLi VBe+

Q1 = ∑
a �σa p2

a
�ra
r3
a

× �pa = −2 π D1 − R1 −0.695 207 −14.464 31

D1 = ∑
a i �σa �pa × δ3(ra) �pa 0.097 730 2.010 13

R1 = ∑
a i �σa pk

a �pa × 1
ra

�pa pk
a 0.082 895 1.834 29

Q2 = ∑
a,b �=a �σa p2

a
�rab

r3
ab

× �pa = −2 π D2 − R2 −0.502 754 −11.065 87

D2 = ∑
a,b �=a i �σa �pa × δ3(rab) �pa 0.044 668 0.980 97

R2 = ∑
a,b �=a i �σa pk

a �pa × 1
rab

�pa pk
a 0.222 098 4.902 28

Q3 = ∑
a,b �=a �σa p2

a
�rab

r3
ab

× �pb = 2 π D3 + R3 0.000 421 0.737 15

D3 = ∑
a,b �=a i �σa �pb × δ3(rab) �pb 0.017 545 0.369 31

R3 = ∑
a,b �=a i �σa pk

b �pb × 1
rab

�pb pk
b −0.109 834 −1.583 29

Q4 = ∑
a,b �=a �σa p2

b
�rab

r3
ab

× �pb = 2 π D3 + R4 0.281 276 5.677 45

R4 = ∑
a,b �=a i �σa pk

b �pb × 1
rab

�pb pk
b 0.171 036 3.357 01

Q5 = ∑
a,b �=a �σa

1
rab

�ra
r3
a

× �pb 0.161 022 2.122 84

Q6 = ∑
a,b �=a �σa

�ra×�rab

r3
a r3

ab

(�rab · �pb) 0.068 423 0.858 67

Q7 = ∑
a,b �=a,c �=a �σa

1
rac

�rab

r3
ab

× �pc 0.189 027 2.559 31

Q8 = ∑
a,b �=a,c �=a �σa

�rab×�rac

r3
ab

r3
ac

(�rac · �pc) 0.052 774 0.675 94

P1 = ∑
a,b �=a(�σa × �σb) �ra×�rab

r3
a r3

ab

−0.066 977 −0.904 13

P2 = ∑
a,b �=a,c �=a(�σa × �σb) �rac×�rab

r3
ac r3

ab

−0.059 905 −0.821 17

P3 = ∑
a,b �=a(�σa × �σb) i p2

a
�rab

r3
ab

× �pa 0.102 287 1.841 14

Q9 = ∑
a,b �=a i �σa p2

a
1

rab
�pa × �pb −0.126 256 −3.131 89

Q10 = ∑
a,b �=a i �σa p2

a
�rab

r3
ab

× (�rab · �pb) �pa −0.396 739 −8.005 14

Q11 = ∑
a,b �=a,c �=b �σa

1
rbc

�rab

r3
ab

× �pc −0.114 547 −1.441 91

Q12 = ∑
a,b �=a,c �=b �σa

�rab×�rbc

r3
ab

r3
bc

(�rbc · �pc) 0.053 650 0.682 88

P4 = ∑
a,b �=a,c �=a(�σa × �σb) �rac×�rbc

r3
ac r3

bc

0.059 905 0.821 17

Q14 = ∑
a,b �=a �σa

1
rab

�rb
r3
b

× �pa −0.041 132 0.033 59

Q15 = ∑
a,b �=a �σa

�rb×�rab

r3
b

r3
ab

(�rab · �pa) −0.144 617 −1.287 70

Q17 = ∑
a,b �=a,c �=b �σa

1
rab

�rbc

r3
bc

× �pa 0.171 163 2.362 41

Q18 = ∑
a,b �=a,c �=b �σa

�rab×�rbc

r3
ab

r3
bc

(�rab · �pa) 0.065 529 0.700 97

Q19 = ∑
a,b �=a i �σa p2

b
1

rab
�pa × �pb −0.224 280 −3.050 65

Q20 = ∑
a,b �=a i �σa p2

b
�rab

r3
ab

× (�rab · �pa) �pb −0.506 006 −8.526 97

Gaussian functions are used for R terms, which ensures high
numerical precision.

The second-order contribution is split into parts coming
from intermediate states with specified angular momentum
and spin:〈
H (4) 1

(E − H )′
H (4)

〉

=
〈
H (4) 12,4So

+ 12,4P + 12,4Do
+ 14F

(E − H )′
H (4)

〉
= X2So

+ X4So
+ X2P + X4P + X2Do

+ X4Do
+ X4F , (30)

where 12,4X is a projection into doublet or quartet state X,
respectively. These contributions are also defined in Table II.

Most of them can be calculated as they stand. Only the
nonsymmetric 〈H (4)

B /(E − H )′ H (4)
A 〉 matrix element needs

numerical regularization due to the high singularity of H
(4)
A .

This is done as follows: H (4)
A is transformed to the regular form

by the following transformations:

4π δ3(ra) = 4π [δ3(ra)]r −
{

2

ra

,E − H

}
, (31)

4π [δ3(ra)]r = 4

ra

(E − V ) − 2
∑

b

�pb

1

ra

�pb, (32)

4π δ3(rab) = 4π [δ3(rab)]r −
{

1

rab

,E − H

}
, (33)
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TABLE II. Second-order contributions to Li and Be+ fine splitting X = (K3/2 − K1/2) V ; the additional prefactor {K1/2 K3/2} is for
J = 1/2,3/2, correspondingly.

Contribution {K1/2,K3/2} VLi VBe+

X2So
= 〈�|H (4)

B

12So

E−H
H

(4)
B |�〉 {1,0} −0.293 49 −1.051 4(2)

X4So
= 〈�|H (4)

B

14So

E−H
H

(4)
B |�〉 {0,2/3} −0.443 91(3) −1.625 3

X2P = 〈�|H (4)
B

12P

(E−H )′ (2H
(4)
A + H

(4)
B )|�〉

〈�|H (4)
B

12P

(E−H )′
[
H

(4)
A

]
r
|�〉 {1,−1/2} −0.0217(6) −1.435(8)

δX2P {1,−1/2} −0.086 80 −2.169 0

〈�|H (4)
B

12P

(E−H )′ H
(4)
B |�〉 {1,1/4} −0.719 6(6) −5.803(4)

X4P = 〈�|(H (4)
B + H

(4)
C )

14P

E−H

(
H

(4)
B + H

(4)
C

)|�〉
〈�|H (4)

B

14P

E−H
H

(4)
B |�〉 {1/3,5/6} −0.901 2(4) −3.475 5(6)

〈�|H (4)
C

14P

E−H
H

(4)
C |�〉 {3,3/10} −0.002 31 −0.033 2

〈�|H (4)
B

14P

E−H
H

(4)
C |�〉 {−1,1/2} 0.006 97 0.102 5

X2Do
= 〈�|H (4)

B

12Do

E−H
H

(4)
B |�〉 {0,3/2} −0.500 75 −1.885 6(4)

X4Do
= 〈�|(H (4)

B + H
(4)
C )

14Do

E−H

(
H

(4)
B + H

(4)
C

)|�〉
〈�|H (4)

B

14Do

E−H
H

(4)
B |�〉 {2,1} −0.733 27(2) −2.625 6(2)

〈�|H (4)
C

14Do

E−H
H

(4)
C |�〉 {2,1} 0.000 08 0.000 9

〈�|H (4)
B

14Do

E−H
H

(4)
C |�〉 {2,−1} 0.000 00 0.000 1

X4F = 〈�|H (4)
C

14F

E−H
H

(4)
C |�〉 {0,3} −0.000 71 −0.009 6

Y1 = 〈�|H (4)
B

1
(E−H )′

∑
a δ3(ra)|�〉

〈�|H (4)
B

1
(E−H )′

∑
a[δ3(ra)]r |�〉 {1,−1/2} −0.028 95 −0.647 1

δY1 {1,−1/2} 0.007 99 0.186 0

Y2 = 〈�|H (4)
B

1
(E−H )′

∑
b<a δ3(rab)|�〉

〈�|H (4)
B

1
(E−H )′

∑
b<a[δ3(rab)]r |�〉 {1,−1/2} 0.001 07 −0.002 5

δY2 {1,−1/2} −0.003 66 0.053 5

4π [δ3(rab)]r = 2

rab

(E − V ) −
∑

c

�pc

1

rab

�pc, (34)

∑
a

p4
a =

∑
a

[
p4

a

]
r
+ 4 {V,E − H }, (35)

∑
a

[
p4

a

]
r

= 4 (E − V )2 − 2
∑
a<b

�p 2
a �p 2

b . (36)

The overall regularized form of H
(4)
A is

H
(4)
A = [

H
(4)
A

]
r
+ {QA,E − H }, (37)

where

QA = Z

4

∑
a

1

ra

− 1

2

∑
a<b

1

rab

. (38)

The expectation value of the regularized operator is the same
as that without regularization. What has changed is the second-
order matrix element:〈

H
(4)
B

1

(E − H )′
H

(4)
A

〉

=
〈
H

(4)
B

1

(E − H )′
[
H

(4)
A

]
r

〉
+ δX2P

2
, (39)

where

δX2P = 2
(〈
H

(4)
B QA

〉 − 〈
H

(4)
B

〉〈QA〉)
= Z

8
(Z 〈Q21〉 + 2 〈Q23〉 − 〈Q22〉)

− 1

4
(Z 〈Q24〉 + 2 〈Q26〉 − 〈Q25〉)

−
(

Z

4
〈Q29〉 + 1

2
〈Q31〉 − 1

4
〈Q30〉

)

×
(

Z

2
〈Q27〉 − 〈Q28〉

)
. (40)

These additional Qi operators together with their expectation
value are presented in Table III.

The last considered term, the mα7 ln α correction from
Eq. (21), is represented as

E
(7)
log = ln[(Z α)−2]

×
[
Z

3
〈D1〉 − 3

4
〈D2〉 + 2

(
4Z

3
Y1 − 7

3
Y2

)]
, (41)

where Di are defined in Table I and Yi are defined in Table II.
The second-order matrix element Y requires numerical regu-
larization, similarly to the one in Eq. (39), and is transformed
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TABLE III. Expectation values of additional operators arising
from reduction of the second-order matrix elements, 〈Q〉 = KJ V

with the additional prefactor KJ = {1,−1/2} for J = 1/2,3/2,
correspondingly. All digits are significant.

Operator VLi VBe+

Q21 = ∑
a,c �σa

1
rc

�ra
r3
a

× �pa −0.849 430 −9.552 24

Q22 = ∑
a,b �=a,c �σa

1
rc

�rab

r3
ab

× �pa −1.432 170 −15.223 86

Q23 = ∑
a,b �=a,c �σa

1
rc

�rab

r3
ab

× �pb 0.242 656 3.250 48

Q24 = ∑
a,c<d �σa

1
rcd

�ra
r3
a

× �pa −0.400 085 −4.721 57

Q25 = ∑
a,b �=a,c<d �σa

1
rcd

�rab

r3
ab

× �pa −0.766 998 −8.959 65

Q26 = ∑
a,b �=a,c<d �σa

1
rcd

�rab

r3
ab

× �pb 0.159 671 2.209 81

Q27 = ∑
a

1
ra

5.638 906 7.898 02

Q28 = ∑
a<b

1
rab

2.096 405 3.233 41

Q29 = ∑
a �σa

�ra
r3
a

× �pa −0.125 946 −0.969 13

Q30 = ∑
a,b �=a �σa

�rab

r3
ab

× �pa −0.224 641 −1.659 49

Q31 = ∑
a,b �=a �σa

�rab

r3
ab

× �pb 0.038 474 0.360 85

into the following form:

Y1 =
〈
H

(4)
B

1

(E − H )′
∑

a

[δ3(ra)]r

〉
+ δY1, (42)

Y2 =
〈
H

(4)
B

1

(E − H )′
∑
b<a

[δ3(rab)]r

〉
+ δY2, (43)

where

δY1 = − 1

2 π

∑
a

(〈
1

ra

H
(4)
B

〉
− 〈

H
(4)
B

〉 〈 1

ra

〉)

= 1

8 π
( − Z 〈Q21〉 + 〈Q22〉 − 2 〈Q23〉

+ 〈Q27〉 (Z 〈Q29〉 − 〈Q30〉 + 2 〈Q31〉)), (44)

δY2 = − 1

π

∑
b<a

(〈
1

rab

H
(4)
B

〉
− 〈

H
(4)
B

〉 〈 1

rab

〉)

= 1

4 π
( − Z 〈Q24〉 + 〈Q25〉 − 2 〈Q26〉

+ 〈Q28〉 (Z 〈Q29〉 − 〈Q30〉 + 2 〈Q31〉)) (45)

are expressed in terms of Qi from Table III.

IV. SPIN REDUCTION OF MATRIX ELEMENTS

The wave function �i of the 2P state in a three-electron
system is of the form

�i = 1√
6
A[φi(�r1,�r2,�r3) [α(1) β(2) − β(1) α(2)] α(3)],

(46)

where A denotes antisymmetrization and φi(�r1,�r2,�r3) is a
spatial function with Cartesian index i that comes from any of
the electron coordinates. The normalization we assume is∑

i

〈�′i |�i〉 =
∑

i

〈φ′ i(r1, r2, r3)|P[c123 φi(r1,r2,r3)]〉 = 1,

(47)

where P denotes the sum of all permutations of 1, 2, and 3. The 2P1/2 and 2P3/2 wave functions are constructed using
Clebsch-Gordon coefficients. Expectation values with these wave functions can be reduced to spatial expectation values with
algebraic prefactor KJ for J = 1/2,3/2. Namely, the first-order matrix elements with auxiliary notation {K1/2,K3/2} take the
form

〈�′|O|�〉 = {1,1} 〈φ′ i(r1, r2, r3)|QP[c123 φi(r1,r2,r3)]〉, (48)

〈�′|
∑

a

�σa · �Qa|�〉 = {1,−1/2} i εijk
∑

a

〈φ′ i(r1, r2, r3)|Qj
a P

[
cFa

123 φk(r1,r2,r3)
]〉
, (49)

〈�′|
∑
a �=b

�σa × �σb · �Qab|�〉 = {1,−1/2} (−2 εijk)
∑

ab=12,23,31

〈
φ′ i(r1, r2, r3)

∣∣ (Qj

ab − Q
j

ba

)
P

[
cP

123 φk(r1,r2,r3)
]〉
, (50)

where cklm coefficients are defined in Table IV.
The spin reduction of the second-order matrix elements is more complicated. We shall first introduce the following auxiliary

functions:


i = QP[c123 φi(r1,r2,r3)], (51)


ij =
∑

a

Qi
a P

[
cFa

123 φj (r1,r2,r3)
]
, (52)



ij

A = P
[
cA

123

(
Qi

1 − Qi
2

)
φj (r1,r2,r3)

]
, (53)



ijk

A = P
[
cA

123

(
Q

ij

13 − Q
ij

23

)
φk(r1,r2,r3)

]
. (54)
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Then, the spin-reduced second-order matrix elements are

〈�|
∑

a

�σa · �Qa

12So

E − H

∑
b

�σb · �Qb|�〉 = {1,0}
6

〈

ii 12So

E − H

jj

〉
, (55)

〈�|
∑

a

�σa · �Qa

14So

E − H

∑
b

�σb · �Qb|�〉 = {0,2/3}
6

〈

ii

A

14So

E − H



jj

A

〉
, (56)

〈�|Q 12Po

(E − H )′
Q|�〉 = {1,1}

6

〈

i 12Po

(E − H )′

i

〉
, (57)

〈�|Q 12Po

(E − H )′
∑

a

�σa · �Qa|�〉 = {1,−1/2}
6

〈

i 12Po

(E − H )′
i εijk 
jk

〉
, (58)

〈�|
∑

a

�σa · �Qa

12Po

(E − H )′
∑

b

�σb · �Qb|�〉 = {1,1/4}
6

〈
i εijk
ij 12Po

(E − H )′
i εlmk
lm

〉
, (59)

〈�|
∑

a

�σa · �Qa

14Po

E − H

∑
b

�σb · �Qb|�〉 = {1/3,5/6}
6

〈
i εijk


ij

A

14Po

E − H
i εlmk
lm

A

〉
, (60)

〈�|
∑
a<b

σ i
aσ

j

b Q
ij

ab

14Po

E − H

∑
c<d

σ i
cσ

j

d Q
ij

cd |�〉 = {3,3/10}
6

〈



ijj

A

14Po

E − H

ikk

A

〉
, (61)

〈�|
∑

a

�σa · �Qa

14Po

E − H

∑
b<c

σ i
bσ

j
c Q

ij

bc|�〉 = {−1,1/2}
6

〈
i εjml
ml

A

14Po

E − H



jkk

A

〉
, (62)

〈�|
∑

a

�σa · �Qa

12Do

E − H

∑
b

�σb · �Qb|�〉 = {0,3/2}
6

〈

ji 12Do

E − H

ij

〉
, (63)

〈�|
∑

a

�σa · �Qa

14Do

E − H

∑
b

�σb · �Qb|�〉 = {2,1}
6

〈



ji

A

14Do

E − H



ij

A

〉
, (64)

〈�|
∑
a<b

σ i
aσ

j

b Q
ij

ab

14Do

E − H

∑
c<d

σ i
cσ

j

d Q
ij

cd |�〉 = {2,1}
6

〈
i εijk


lij

A

14Do

E − H
i εmnk
lmn

A

〉
, (65)

〈�|
∑

a

�σa · �Qa

14Do

E − H

∑
b<c

σ i
bσ

j
c Q

ij

bc|�〉 = {2,−1}
6

〈

lk

A

14Do

E − H
i εkmn
lmn

A

〉
, (66)

〈�|
∑
a<b

σ i
aσ

j

b Q
ij

ab

14Fo

E − H

∑
c<d

σ i
cσ

j

d Q
ij

cd |�〉 = {0,3}
6

〈



kji

A

14Fo

E − H



ijk

A

〉
. (67)

These formulas, including KJ coefficients, have been obtained with a computer symbolic program.

V. NUMERICAL CALCULATIONS

The spatial function φ in Eq. (46) is represented as a linear
combination of the Hylleraas [23] or the explicitly correlated

TABLE IV. Symmetrization coefficients in matrix elements.

(k,l,m) cklm cA
klm cF1

klm cF2
klm cF3

klm cP
klm

(1,2,3) 2 1 0 0 2 0
(1,3,2) −1 −1 1 −1 −1 1
(2,1,3) 2 1 0 0 2 0
(2,3,1) −1 −1 −1 1 −1 −1
(3,1,2) −1 1 1 −1 −1 1
(3,2,1) −1 −1 −1 1 −1 −1

Gaussian functions [24]:

φ =
{

e−α1r
2
1 −α2r

2
2 −α3r

2
3 −α12r

2
12−α13r

2
13−α23r

2
23

e−α1r1−α2r2−α3r3 r
n1
23 r

n2
31 r

n3
23 r

n4
1 r

n5
2 r

n6
3

. (68)

In the Hylleraas basis we use six sectors with different
values of nonlinear parameters wi and a maximum value
of � ≡ n1 + n2 + n3 + n4 + n5 = 12; details are presented
in [10,13]. In Gaussian basis we use N = 256,512, 1024,
and 2048 functions with well-optimized nonlinear parameters
for each basis function separately. The accuracy achieved for
nonrelativistic energies is about 10−13 in Hylleraas and 10−11

in Gaussian bases.
These nonrelativistic wave functions are used in evaluation

of matrix elements. Most of the Q and P operators in
Tables I and III are intractable with present algorithms with
Hylleraas functions due to difficulties with integrals with
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inverse powers of electron distances, but also due to very
lengthy expressions in terms of Hylleraas integrals. Thus,
we calculate them using Gaussian functions, however with
some exceptions. There are operators Q1, Q2, and Q4, the
expectation value of which is very slowly convergent. Namely,
the accuracy achieved is as low as 10−2–10−3 with as many as
2048 well-optimized Gaussian functions. So, to avoid loss of
numerical accuracy, we represent these operators as the sum
of the singular D part and the regular R part. The singular
D part, numerically dominating, is calculated with Hylleraas
functions, while the regular R part, free of singularities, is
calculated with a Gaussian basis. This leads to significant
improvements in accuracy, so the numerical uncertainties
do not affect theoretical predictions for the fine structure.
Numerical results for all first-order matrix elements obtained
with the largest basis are presented in Tables I and III. The
achieved precision is at least 10−5, which is one digit better in
comparison to second-order matrix elements described in the
following.

The evaluation of second-order matrix elements is much
more computationally demanding. First of all, they are
obtained only in the Gaussian basis, due to its high flexibility.
The resolvent 1/(E − H ) for each angular momentum is rep-
resented in terms of functions with the appropriate Cartesian
prefactor, as follows:

φSo
= εijkr

i
ar

j

b rk
c φ, (69)

φi
Po

= ri
a φ, (70)

φ
ij

Do
=

[
εikl

2
rj
c + εjkl

2
ri
c − δij

3
εmkl r

m
c

]
rk
a rl

bφ, (71)

φ
ijk

Fo
=

[
ri
a

6

(
r

j

b rk
c + rj

c rk
b

) + ri
b

6

(
rj
a rk

c + rj
c rk

a

)

+ ri
c

6

(
rj
a rk

b + r
j

b rk
a

) − δjk

15

(
ri
ar

l
br

l
c + ri

br
l
ar

l
c + ri

cr
l
ar

l
b

)
− δki

15

(
rj
a rl

br
l
c + r

j

b rl
ar

l
c + rj

c rl
ar

l
b

)
− δij

15

(
rk
a rl

br
l
c + rk

b rl
ar

l
c + rk

c rl
ar

l
b

)]
φ, (72)

where subscripts a,b, and c refer to any of the electrons
including the same one. Nonlinear parameters for interme-
diate states are extensively optimized for each second-order
symmetric matrix element. Moreover, one takes all possible
representations of angular factors for intermediate states in
appropriate proportions to ensure the completeness of the
basis. Most importantly, the number of Gaussian functions for
intermediate states is chosen to be sufficiently high to saturate
the matrix element. Namely, for a given size N of the external
wave function, we use 3/2 N elements for all Do and quartet Fo

states, N elements for quartet Po states, and 1/2 N for So states.
Among all matrix elements, the most demanding in terms of
optimization was that with intermediate states of symmetry
2Po, as the external wave function. Here, the basis set for the
resolvent is divided into two sectors. The first sector is built
of the known basis functions with the nonlinear parameters

TABLE V. Summary of mα6 contributions to fine splitting.

Contribution Li Be+

X2So
0.293 49 1.051 4(3)

X4So
−0.295 94(2) −1.083 5(1)

X2Po
0.735 0(18) 11.912(24)

X4Po
−0.423 5(2) −1.340 5(3)

X2Do
−0.751 13(2) −2.828 4(6)

X4Do
0.733 34(2) 2.625 7(2)

X4Fo
−0.002 13 −0.028 9(1)

Total second order 0.289 16(19) 10.308(24)

δH1 −0.445 2(16) −13.160(3)
δH2 0.026 31 0.577 8
δH4 0.105 63 2.405 5(1)
δH5 0.150 52 3.186 6
δH6 −0.011 60 −0.130 7
δH7 −0.027 83 −0.757 8(3)
Total first order −0.202 1(16) −7.879(3)

Total mα6 0.087 1(24) 2.429(24)

determined in the minimization of E(22P ). For this purpose
we took one of the previously generated basis sets of 
 of size
equal to N/2. The nonlinear parameters of this basis remain
fixed during the optimization in order to ensure the accurate
representation of the states orthogonal to 
. The second sector,
of size equal to 3/2N or N for the matrix element involving HB

or [HA]r , respectively, consists of basis functions that undergo
optimization. For the asymmetric matrix elements the basis is
combined from two corresponding symmetric ones.

The most computationally demanding matrix element was
the 〈[HA]r 1/(E − H )′ HB〉 term, and it has the slowest nu-
merical convergence in the Gaussian basis. Numerical results
for matrix elements are summarized in Table II. The achieved
precision is about 10−4, one digit less than the first-order matrix
elements. In addition, we observe significant cancelations
between S = 1/2 and 3/2 intermediate states, and between the
first- and second-order terms (see Table V). The final numerical
result for the mα6 contribution in Table V is relatively quite
small. Regarding the mα7 contribution, the second-order term
Y is numerically dominant, and contributions from Di terms
are an order of magnitude smaller. Altogether this correction
is only three times smaller than the mα6 contribution, which
is certainly not negligible.

VI. SUMMARY

We have performed accurate calculations of the fine
structure in Li and Be+ using the nonrelativistic QED approach
combined with explicitly correlated basis functions. Relativis-
tic and QED corrections are represented in terms of matrix
elements of effective operators, which are calculated with
a highly accurate nonrelativistic wave function. Numerical
results are summarized in Table VI. We observe an agreement
with the experimental values. However, our result for Li lies
below, while that for Be+ lies above, experiments of [5] and
[6], respectively. As the sign of all corrections is the same for
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TABLE VI. Fine splitting of 2P states in Li and Be+ in units of MHz. δEFS is the hyperfine mixing correction. The uncertainty due to
neglected terms is estimated to be 50% of E

(7,0)
FS,log.

7Li Ref. 9Be+ Ref.

E
(4,0)
FS 10 053.707(8) [13] 197 039.15(8) [13]

E
(4,1)
FS −2.389 [13] −21.27 [13]

E
(6,0)
FS 1.63(5) [14] 45.4(4)

E
(7,0)
FS,log 0.15(7) 4.6(2.3)

δEFS 0.159 [13] 0.03 [13]
EFS(theor.) 10 053.25(9) [14] 197 068.0(2.4) [6]
EFS(theor.) 10 052.(43) Yan et al. [11] 197 024.(150) Yan et al. [11]
EFS(expt.) 10 053.310(17) Brown et al. [5] 197 063.48(52) Nörtershäuser et al. [6]
EFS(expt.) 10 053.24(22) Brog et al. [25] 197 144. Ralchenko et al. [28]
EFS(expt.) 10 053.184(58) Orth et al. [26] 197 150.(64) Bollinger et al. [29]
EFS(expt.) 10 053.119(58) Noble et al. [27]

Li and Be+, this may suggest that one of these experiments
underestimated its uncertainty.

The extension of the presented computational approach
to other systems with more electrons is problematic, due to
a lack of formulas for the four-electron Hylleraas integrals.
Therefore, achieving similar accuracy for the four electron
systems would be very challenging.
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APPENDIX: QUANTUM MECHANICS OF THREE
IDENTICAL PARTICLES

Consider a wave function of three identical particles
φ(�r1,�r2,�r3). Eigenstates of the nonrelativistic Hamiltonian can
be classified by representation of the permutation group S3.
Two of them, id and sgn, are one dimensional, and the third
is two dimensional. The wave functions corresponding to
one-dimensional representations are

ψS(�r1,�r2,�r3) = 1√
6

[φ(�r1,�r2,�r3) + φ(�r2,�r3,�r1)

+φ(�r3,�r1,�r2) + φ(�r2,�r1,�r3)

+φ(�r3,�r2,�r1) + φ(�r1,�r3,�r2)] (A1)

and

ψA(�r1,�r2,�r3) = 1√
6

[φ(�r1,�r2,�r3) + φ(�r2,�r3,�r1)

+φ(�r3,�r1,�r2) − φ(�r2,�r1,�r3)

−φ(�r3,�r2,�r1) − φ(�r1,�r3,�r2)]. (A2)

In order to construct the wave functions corresponding to
the two-dimensional representation, let us consider the spin-
dependent wave function for a three-electron system for the
total spin S = 1/2:

� = 1√
6
A[φ(�r1,�r2,�r3) [α(1) β(2) − β(1) α(2)] α(3)]

= 1√
6

[α(1) β(2) α(3) ψ1 + β(1) α(2) α(3) ψ2

+α(1) α(2) β(3) ψ3], (A3)

where A denotes antisymmetrization, and

ψ1 = φ(�r1,�r2,�r3) − φ(�r2,�r3,�r1) + φ(�r2,�r1,�r3)

−φ(�r3,�r2,�r1), (A4)

ψ2 = φ(�r3,�r1,�r2) − φ(�r2,�r1,�r3) − φ(�r1,�r2,�r3)

+φ(�r1,�r3,�r2), (A5)

ψ3 = φ(�r2,�r3,�r1) − φ(�r3,�r1,�r2) + φ(�r3,�r2,�r1)

−φ(�r1,�r3,�r2). (A6)

ψi functions form a two-dimensional representation of S3,∑
i ψi = 0.
Let us denote the standard matrix element

〈φ′|φ〉S = 〈φ′ i(r1, r2, r3)|P[c123 φi(r1,r2,r3)]〉, (A7)

where P denotes the sum of all permutations of 1, 2, and 3.
Then,

〈�′|�〉 = 〈φ′|φ〉S, (A8)

and the scalar product between ψi is

〈ψ ′
i |ψj 〉 = 〈φ′|φ〉S (−1 + 3 δij ). (A9)

The two orthogonal and normalized functions can be chosen
as ψI = ψ1/

√
2 and ψII = (ψ2 − ψ3)/

√
6.

The first-order matrix elements of the spin-independent
operator Q are

〈�|Q|�〉 = 1
6 〈ψi |Q|ψi〉 = 〈φ|Q|φ〉S, (A10)

and the second-order matrix elements with Q1 and Q2 are

〈�|Q1
1

E − H
Q2|�〉 = 1

6
〈ψi |Q1

1

E − H
Q2|ψi〉

= 〈φ|Q1
1

E − H
Q2|φ〉S. (A11)
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In the numerical evaluation of second-order matrix elements with doublet S = 1/2 intermediate states, the resolvent 1/(E − H )
is represented on the basis of functions of proper S3 symmetry, namely ψI and ψII :〈

ψk
I

∣∣E − H
∣∣ψl

I

〉 = 〈
ψk

II

∣∣E − H
∣∣ψl

II

〉 = 〈φk|E − H |φl〉S = E Nkl − Hkl . (A12)

Hence, the second-order matrix element using Eq. (A7) becomes

〈�|Q1
1

E − H
Q2|�〉 = 1

6
〈ψi |Q1

∣∣ψk
I

〉
(E N − H)−1

kl

〈
ψl

I

∣∣Q2|ψi〉 + 1

6
〈ψi |Q1

∣∣ψk
II

〉
(E N − H)−1

kl

〈
ψl

II

∣∣Q2|ψi〉

= 〈φ|Q1|φk〉S (E N − H)−1
kl 〈φl|Q2|φ〉S

= 〈P[c123 φ(r1,r2,r3)]|Q1|φk〉 (E N − H)−1
kl 〈φl|Q2|P[c123 φ(r1,r2,r3)]〉, (A13)

and the last form is used in the numerical calculations.
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