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Special features of the thermal Casimir effect across a uniaxial anisotropic film
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We investigate the thermal Casimir force between two parallel plates made of different isotropic materials
which are separated by a uniaxial anisotropic film. Numerical computations of the Casimir pressure at T = 300 K
are performed using the complete Lifshitz formula adapted for an anisotropic intervening layer and in the
nonrelativistic limit. It is shown that the standard (nonrelativistic) theory of the van der Waals force is not
applicable in this case, because the effects of retardation contribute significantly even for film thicknesses of
a few nanometers. We have also obtained simple analytic expressions for the classical Casimir free energy
and pressure for large film thicknesses (high temperatures). Unlike the case of isotropic intervening films, for
two metallic plates the classical Casimir free energy and pressure are shown to depend on the static dielectric
permittivities of an anisotropic film. One further interesting feature is that the classical limit is achieved at much
shorter separations between the plates than for a vacuum gap. Possible applications of the obtained results are
discussed.
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I. INTRODUCTION

The Casimir force is caused by the zero-point and thermal
fluctuations of the electromagnetic field. It acts between
closely spaced material bodies and becomes dominant at
separations below 1 μm. Although the Casimir force, which
is a relativistic analog of the van der Waals force, was
predicted long ago [1], it has become the subject of inten-
sive experimental and theoretical study only recently (see
Refs. [2–5] for a review). This was partially stimulated by
the promising applications to nanotechnology.

The most part of research in Casimir physics was done for
isotropic test bodies separated with either a vacuum gap or a
gap filled by an isotropic material. Some attention, however,
was also devoted to the role of materials anisotropy. Here, one
should mention the pioneer papers [6–8] where the Lifshitz
theory of the van der Waals and Casimir forces [9] was
generalized for the case of three-layer planar systems made
of uniaxial anisotropic materials with one common optical
axis, but only in the nonrelativistic limit. The formalism of
temperature Green’s functions was formulated for anisotropic
media in Ref. [10]. The fully relativistic Lifshitz formula at
nonzero temperature for two parallel plates made of uniaxial
anisotropic materials separated by a uniaxial medium with all
three optical axes perpendicular to the plates was presented in
Ref. [11]. It was applied to calculate the Hamaker constant in
the nonrelativistic limit. The Casimir torque and the Casimir
force for two parallel plates immersed in liquid or separated by
a vacuum gap were considered [12,13] for optical axes parallel
(in-plane) and perpendicular to the plates (see also Ref. [14]
for the case of in-plane axes). Note that electromagnetic theory
for the plane-parallel layered structure possessing the most
general type of anisotropy was developed in Ref. [15]. The
Casimir force between both uniaxial and biaxial anisotropic
magnetodielectric materials through a vacuum gap was con-
sidered in Ref. [16]. The Casimir-Polder force between a
polarizable microparticle and a plate made of a unidirectional
crystal of graphite was calculated in Ref. [17]. The effect of

a nonzero tilt between the optical axis and the surface normal
on the van der Waals force in the configuration of two parallel
plates separated by a vacuum gap was investigated in Ref. [18].
All calculations were performed at nonzero temperature, but in
the nonrelativistic limit. Finally, it was shown that the Casimir
force between atomically thin Au films across a vacuum gap
can also be described in the same way as that between uniaxial
anisotropic materials [19].

In this paper, we consider special features of the thermal
Casimir force acting between two parallel plates made of
isotropic materials, but separated by a gap filled by a uniaxial
anisotropic dielectric (BeO, as an example). The optical axis
of the latter is assumed to be perpendicular to the plates.
Additional importance of this configuration is caused by the
role it plays in the investigation of stability of strongly confined
liquid crystals [20]. The three-layer systems are also often
discussed in connection with the Casimir repulsion [4,5,12].
We perform all calculations at nonzero (room) temperature in
the fully relativistic case. We also obtain the analytic results
and perform computations in the nonrelativistic limit. One
of our main results is that for a gap filled by an anisotropic
material the relativistic effects become essential at much
shorter separations than was believed before. In fact, we show
that there is no separation region where the force follows the
nonrelativistic van der Waals regime. This is in contradiction
with the statement [18] that the force between surfaces in
uniaxial anisotropic media can be calculated in the nonretarded
limit up to separation distances of approximately 1 μm. We
also show that the classical limit of the Casimir interaction is
achieved at much shorter separations than for a vacuum gap.
Finally, we obtain simple analytic expressions for the classical
Casimir free energy and pressure and demonstrate that for a
gap filled by an anisotropic material these quantities depend
on the dielectric permittivities of the gap material. This is not
the case for a gap between metallic plates filled by an isotropic
substance.

The paper is organized as follows. In Sec. II we briefly
present the Lifshitz formulas and the reflection coefficients
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adapted for the configuration of two isotropic plates interacting
across a uniaxial anisotropic film. We also derive the analytic
expressions for the Casimir free energy and pressure in the
nonrelativistic limit. Section III is devoted to numerical com-
putations of the Casimir pressure in the fully relativistic case
and to comparison with corresponding computational results
in the nonrelativistic limit. Here, we consider three different
pairs of plates (dielectric-dielectric, metallic-metallic, and
dielectric-metallic pairs). We derive the classical limit for
both the Casimir free energy and the pressure in Sec. IV and
compare the analytical results with the results of numerical
computations. In Sec. V the reader will find our conclusions
and discussion.

II. THE LIFSHITZ FORMULAS FOR THE CASIMIR FREE
ENERGY AND PRESSURE ACROSS A UNIAXIAL

ANISOTROPIC FILM

We consider two thick plates (semispaces) described by
the frequency-dependent dielectric permittivities ε(−1)(ω) and
ε(+1)(ω), which are separated by a dielectric film of thickness a

at temperature T in thermal equilibrium with an environment.
The material of the film is a uniaxial anisotropic crystal with
the optical axis perpendicular to the plates. We choose the
coordinate plane (x,y) parallel to the plates. Then the film
material is described by the frequency-dependent dielectric
permittivities ε(0)

xx (ω) = ε(0)
yy (ω) and ε(0)

zz (ω).
The Lifshitz formula for the Casimir free energy per

unit area in the configuration of a uniaxial anisotropic film
sandwiched between two isotropic semispaces can be derived,
e.g., using the method of surface modes [5] or the scattering
approach [16]. In the fully relativistic case at T �= 0 this
formula is contained in Ref. [11]. Using more modern
notations typical for scattering theory, it can be written in
a more transparent way as

F(a,T )

= kBT

2π

∞∑
l=0

′ ∫ ∞

0
k⊥ dk⊥

× {
ln

[
1 − r

(0,+1)
TM (iξl,k⊥)r (0,−1)

TM (iξl,k⊥)e−2ak
(0)
TM(iξl ,k⊥)

]
+ ln

[
1 − r

(0,+1)
TE (iξl,k⊥)r (0,−1)

TE (iξl,k⊥)e−2ak
(0)
TE(iξl ,k⊥)]}.

(1)

Here, kB is the Boltzmann constant, k⊥ = |k⊥| is the
magnitude of the projection of the wave vector on the plane
of plates, the prime on the summation sign multiplies the
term with l = 0 by 1/2, ξl = 2πkBT l/� with l = 0, 1, 2, . . .

are the Matsubara frequencies, and the quantities k(0) for
two independent polarizations of the electromagnetic field,
transverse magnetic (TM) and transverse electric (TE), are
given by

k
(0)
TM(iξl,k⊥) =

√√√√ε
(0)
xx,l

ε
(0)
zz,l

k2
⊥ + ε

(0)
xx,l

ξ 2
l

c2
,

k
(0)
TE(iξl,k⊥) =

√
k2
⊥ + ε

(0)
xx,l

ξ 2
l

c2
, (2)

where ε
(0)
xx,l ≡ ε(0)

xx (iξl) and ε
(0)
zz,l ≡ ε(0)

zz (iξl). Note that in the
case of a uniaxial crystal with the optical axis perpendicular
to the plates the two polarizations of the electromagnetic field
separate. This is, however, not so for media with the most
general type of anisotropy [15].

The quantities r
(0,±1)
TM,TE in Eq. (1) are the reflection co-

efficients for the TM and TE polarizations. The reflection
coefficients on the interface of uniaxial and isotropic media
were derived long ago [21] (see also Refs. [5,16,17,22]). They
are given by

r
(0,±1)
TM (iξl,k⊥) = ε

(±1)
l k

(0)
TM(iξl,k⊥) − ε

(0)
xx,lk

(±1)(iξl,k⊥)

ε
(±1)
l k

(0)
TM(iξl,k⊥) + ε

(0)
xx,lk

(±1)(iξl,k⊥)
,

r
(0,±1)
TE (iξl,k⊥) = k

(0)
TE(iξl,k⊥) − k(±1)(iξl,k⊥)

k
(0)
TE(iξl,k⊥) + k(±1)(iξl,k⊥)

, (3)

where ε
(±1)
l ≡ ε(±1)(iξl) and

k(±1)(iξl,k⊥) =
√

k2
⊥ + ε

(±1)
l

ξ 2
l

c2
. (4)

An important characteristic feature of the Lifshitz formula
(1) is that the quantities k

(0)
TM and k

(0)
TE defined in Eq. (2) are

determined by dissimilar dielectric permittivities and coincide
only in the isotropic limit,

k
(0)
TM(iξl,k⊥) = k

(0)
TE(iξl,k⊥) =

√
k2
⊥ + ε

(0)
l

ξ 2
l

c2
. (5)

This makes the case of an anisotropic intervening material
richer in physical consequences, as compared to the case of an
isotropic one.

The Casimir pressure between two thick isotropic plates
separated by the uniaxial anisotropic film is obtained from
Eq. (1) by negative differentiation with respect to separation,

P (a,T )

= −∂F(a,T )

∂a
= −kBT

π

∞∑
l=0

′ ∫ ∞

0
k⊥ dk⊥

×
⎧⎨
⎩k

(0)
TM(iξl,k⊥)

[
e2ak

(0)
TM(iξl ,k⊥)

r
(0,+1)
TM (iξl,k⊥)r (0,−1)

TM (iξl,k⊥)
− 1

]−1

+ k
(0)
TE(iξl,k⊥)

[
e2ak

(0)
TE(iξl ,k⊥)

r
(0,+1)
TE (iξl,k⊥)r (0,−1)

TE (iξl,k⊥)
− 1

]−1
⎫⎬
⎭.

(6)

This equation up to different notations coincides with the
corresponding result of Ref. [11].

For the purpose of numerical computations, it is convenient
to rewrite Eq. (6) in terms of dimensionless variables. We
introduce the dimensionless Matsubara frequencies

ζl ≡ ξl

ωc

= 2aξl

c
≡ τ l, τ ≡ 4πakBT

c�
. (7)
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We also introduce different dimensionless wave vector vari-
ables in the TM and TE contributions to Eq. (6). In the TM
contribution we put

y = 2a

√√√√ ε
(0)
zz,l

ε
(0)
xx,l

k
(0)
TM(iξl,k⊥) = 2a

√
k2
⊥ + ε

(0)
zz,l

ξ 2
l

c2
. (8)

This leads to

y �
√

ε
(0)
zz,lζl =

√
ε

(0)
zz,lτ l. (9)

In the TE contribution to Eq. (6) we put

y = 2ak
(0)
TE(iξl,k⊥) = 2a

√
k2
⊥ + ε

(0)
xx,l

ξ 2
l

c2
, (10)

which results in

y �
√

ε
(0)
xx,lζl =

√
ε

(0)
xx,lτ l. (11)

As a result, in terms of dimensionless variables Eq. (6) takes
the form

P (a,T ) = − kBT

8πa3

∞∑
l=0

′
⎧⎨
⎩

√√√√ε
(0)
xx,l

ε
(0)
zz,l

∫ ∞
√

ε
(0)
zz,l ζl

y2dy

⎡
⎣ e

√
ε

(0)
xx,ly/

√
ε

(0)
zz,l

r
(0,+1)
TM (iζl,y)r (0,−1)

TM (iζl,y)
− 1

⎤
⎦

−1

+
∫ ∞

√
ε

(0)
xx,l ζl

y2dy

[
ey

r
(0,+1)
TE (iζl,y)r (0,−1)

TE (iζl,y)
− 1

]−1
⎫⎬
⎭. (12)

Here, the reflection coefficients depending on the dimensionless variables are obtained by using Eqs. (3), (4), (7), (8), and (10):

r
(0,±1)
TM (iζl,y) =

ε
(±1)
l y −

√
ε

(0)
xx,lε

(0)
zz,l

√
y2 + [

ε
(±1)
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(0)
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]
ζ 2
l
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l y +

√
ε

(0)
xx,lε

(0)
zz,l

√
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ε
(±1)
l − ε

(0)
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]
ζ 2
l

, r
(0,±1)
TE (iζl,y) =

y −
√

y2 + [
ε

(±1)
l − ε

(0)
xx,l

]
ζ 2
l

y +
√

y2 + [
ε

(±1)
l − ε

(0)
xx,l

]
ζ 2
l

. (13)

For comparison purposes, it is useful also to consider the Casimir free energy and pressure in the nonrelativistic limit. In this
case only the TM contributions to Eqs. (1) and (6) survive and we find

Fnr(a,T ) = kBT

2π

∞∑
l=0

′ ∫ ∞

0
k⊥ dk⊥ ln

[
1 − r

(0,+1)
nr,l r

(0,−1)
nr,l e

−2ak⊥
√

ε
(0)
xx,l/

√
ε

(0)
zz,l

]
,

(14)

Pnr(a,T ) = −kBT

π

∞∑
l=0

′
√√√√ε

(0)
xx,l

ε
(0)
zz,l

∫ ∞

0
k2
⊥ dk⊥

⎡
⎣e

2ak⊥
√

ε
(0)
xx,l/

√
ε

(0)
zz,l

r
(0,+1)
nr,l r
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nr,l

− 1

⎤
⎦
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,

where the reflection coefficients (3) are reduced to

r
(0,±1)
nr,l ≡ r (0,±1)

nr (iξl) =
ε

(±1)
l −

√
ε

(0)
xx,lε

(0)
zz,l

ε
(±1)
l +

√
ε

(0)
xx,lε

(0)
zz,l

. (15)

It is convenient to introduce the new variable

y = 2a

√√√√ε
(0)
xx,l

ε
(0)
zz,l

k⊥ (16)

in Eq. (14). Then the latter can be rewritten in the form

Fnr(a,T ) = kBT

8πa2

∞∑
l=0

′ ε(0)
zz,l

ε
(0)
xx,l

∫ ∞

0
ydy ln

[
1 − r

(0,+1)
nr,l r

(0,−1)
nr,l e−y

]
,

(17)

Pnr(a,T ) = − kBT

8πa3

∞∑
l=0

′ ε(0)
zz,l

ε
(0)
xx,l

∫ ∞

0
y2dy

[
ey

r
(0,+1)
nr,l r

(0,−1)
nr,l

− 1

]−1

.

The integral entering the free energy can be represented as

−
∫ ∞

0
ydy

∞∑
k=1

1

k

[
r

(0,+1)
nr,l r

(0,−1)
nr,l

]k
e−ky = −

∞∑
k=1

[
r

(0,+1)
nr,l r

(0,−1)
nr,l

]k

k3
= −Li3

[
r

(0,+1)
nr,l r

(0,−1)
nr,l

]
, (18)
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where Liν(z) is the polylogarithm function. In a similar way, the integral entering Eq. (17) for the Casimir pressure is calculated
as ∫ ∞

0
y2dy

∞∑
k=1

1

k

[
r

(0,+1)
nr,l r

(0,−1)
nr,l

]k
e−ky = 2

∞∑
k=1

[
r

(0,+1)
nr,l r

(0,−1)
nr,l

]k

k3
= 2Li3

[
r

(0,+1)
nr,l r

(0,−1)
nr,l

]
. (19)

Substituting Eqs. (18) and (19) in Eq. (17), we arrive at the
analytic expressions for the Casimir free energy and pressure
in the nonrelativistic limit:

Fnr(a,T ) = − kBT

8πa2

∞∑
l=0

′ ε(0)
zz,l

ε
(0)
xx,l

Li3
[
r

(0,+1)
nr,l r

(0,−1)
nr,l

]
,

(20)

Pnr(a,T ) = − kBT

4πa3

∞∑
l=0

′ ε(0)
zz,l

ε
(0)
xx,l

Li3
[
r

(0,+1)
nr,l r

(0,−1)
nr,l

]
,

where the reflection coefficients are defined in Eq. (15).

III. COMPUTATION OF THE CASIMIR PRESSURE AND
ROLE OF THE RELATIVISTIC EFFECTS

Now we compute the Casimir pressure between differ-
ent pairs of isotropic plates (dielectric-dielectric, metallic-
metallic, and dielectric-metallic) across a uniaxial dielectric
film at room temperature T = 300 K. Computations are
performed in a wide region of film thicknesses from 1 nm
(smaller thicknesses are outside the application region of
the Lifshitz theory) to 5 μm, where, as we show below, the
classical regime has already long been achieved. Preference
is given to the Casimir pressure as an immediately measured
quantity. If the uniaxial crystal film fills the gap, application of
the proximity force approximation [5], which is often used to
transform the free energy per unit area of parallel plates into the
Casimir force between a sphere and a plate, seems unjustified
because the optical axis of a film material is generally not
perpendicular to the sphere surface.

To perform computations of the Casimir pressure, one needs
the dielectric permittivities of both plates and a film calculated
at the imaginary Matsubara frequencies. As the material of the
uniaxial anisotropic film, we choose BeO, whose dielectric
response is well described analytically in the following form
[23]:

ε
(0)
xx(zz),l = 1 + CIR

xx(zz)

(
ωIR

xx(zz)

)2

ξ 2
l + (

ωIR
xx(zz)

)2 + CUV
xx(zz)

(
ωUV

xx(zz)

)2

ξ 2
l + (

ωUV
xx(zz)

)2 . (21)

Here, CIR
xx(zz) and CUV

xx(zz) are the absorption strengths in the
infrared (IR) and ultraviolet (UV) range for the components
xx and zz, respectively. The respective characteristic ab-
sorption frequencies are ωIR

xx(zz) and ωUV
xx(zz). The values of

all the above parameters are [23] CIR
xx = 4.04, CUV

xx = 1.90,
ωIR

xx = 1.3 × 1014 rad/s, ωUV
xx = 1.98 × 1016 rad/s; CIR

zz =
4.70, CUV

zz = 1.951, ωIR
zz = 1.4 × 1014 rad/s, ωUV

zz = 2.37 ×
1016 rad/s. From Eq. (21) for the static dielectric permittivities
we find ε(0)

xx (0) = 6.94 and ε(0)
zz (0) = 7.95.

First we consider parallel plates made of amorphous
SiO2 (silica). The dielectric permittivity of silica along
the imaginary frequency axis is also well described

analytically [23]:

ε
(±1)
l = 1 +

3∑
j=1

CIR
j

(
ωIR

j

)2

ξ 2
l + (

ωIR
j

)2 + CUV(ωUV)2

ξ 2
l + (ωUV)2

, (22)

with the following values of all parameters: CIR
1 = 0.829,

CIR
2 = 0.095, CIR

3 = 0.798, ωIR
1 = 0.867 × 1014 rad/s, ωIR

2 =
1.508 × 1014 rad/s, ωIR

3 = 2.026 × 1014 rad/s, CUV = 1.098,
ωUV = 2.034 × 1016 rad/s. Then Eq. (22) leads to the static
dielectric permittivity of SiO2 ε(±1)(0) = 3.82.

We substitute Eqs. (22) and (23) in Eq. (13) for the
reflection coefficients and calculate the Casimir pressure
across a uniaxial anisotropic film at T = 300 K by Eq. (12) as
a function of the film thickness. The computational results for
the magnitude of the Casimir pressure multiplied by the third
power of film thickness are presented in Fig. 1 by the solid
line 1 for the range of film thicknesses from 1 to 10 nm. In the
same figure the dashed line 1 shows the computational results
obtained using Eq. (20) for Pnr(a,T ), i.e., in the nonrelativistic
limit. As can be seen in Fig. 1, for a gap filled by anisotropic
material, the nonrelativistic results differ from the exact ones
significantly even for very thin films. The relative error of the
nonrelativistic Casimir pressure (20),

δPnr = |Pnr| − |P |
|P | , (23)

is equal to 2.6%, 8.0%, 30.9%, and 79.8% for film thicknesses
of 1, 2, 5, and 10 nm, respectively. For comparison, the same
relative error for two SiO2 plates interacting across a vacuum
gap is equal to 0.98%, 3.0%, 12.0%, and 30.5% at the same
separations. Note that, even for a vacuum gap, the application
region of the nonrelativistic Lifshitz formula (the van der

0 2 4 6 8 10
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10

a (nm)

a
3
|P

|(
p
N

n
m

)

1

2

FIG. 1. (Color online) The magnitudes of the Casimir pressure
between two parallel isotropic plates interacting through a uniaxial
anisotropic film (BeO) multiplied by a3 calculated at T = 300 K as
functions of film thickness using the exact Lifshitz formula (the solid
lines) and in the nonrelativistic limit (the dashed lines). The lines 1
and 2 are plotted for the cases of SiO2 and Au plates, respectively.
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FIG. 2. (Color online) The Casimir pressure between two paral-
lel isotropic plates interacting through a uniaxial anisotropic film
(BeO) multiplied by a4 calculated at T = 300 K as a function of film
thickness (the solid lines). The dashed lines show the classical limit.
(a) The plates are made of SiO2. (b) The plates are made of Au.

Waals regime) is restricted to very short separations up to
several nanometers. As to the gap filled by an anisotropic
material, the error of the nonrelativistic Casimir pressure
becomes too large even for the smallest film thicknesses,
and for a = 10 nm the nonrelativistic result is already very
incorrect. Thus, our calculations do not support the statement
[18] that the nonretarded limit can be used to calculate the
Casimir force between surfaces in uniaxial anisotropic media
up to a separation distance of 1 μm.

In Fig. 2(a) we present our computational results over a
wide range of film thicknesses from 10 nm to 3 μm (the solid
line). Taking into account that the attractive (negative) Casimir
force for large a depends on separation differently than at short
separations, here we plot the Casimir pressure multiplied by
the fourth power of separation. As can be seen in Fig. 2(a), for
film thicknesses larger than approximately 2 μm the solid line
becomes straight, i.e., coincides with the dashed line which
describes the large-separation (high-temperature) classical
limit. In this limiting case the Casimir pressure is inversely
proportional to a3 (see Sec. IV for analytic expressions of the
Casimir free energy and pressure across a uniaxial anisotropic
film in the classical limit and related discussion). Now we note
only that for a vacuum gap between two plates the classical
limit is achieved at larger separations of about 6 μm [5].

Next, we consider two parallel plates made of Au inter-
acting through the same uniaxial anisotropic film made of
BeO. The dielectric permittivity of Au along the imaginary
frequency axis is widely discussed in the literature in connec-
tion with experiments on measuring the Casimir force (see

Refs. [2,5] for a review). The imaginary part of the dielectric
permittivity along the real frequency axis is usually obtained
by using the tabulated optical data for the complex index of
refraction of Au [24] extrapolated down to zero frequency
either by the Drude model or by the plasma model. Then the
values of ε(+1) = ε(−1) at the imaginary Matsubara frequencies
are found by means of the Kramers-Kronig relation. Note that
extrapolations using the plasma frequency of Au, ωp = 9.0 eV
were found to be in excellent agreement with the dielectric
permittivities of Au at the imaginary Matsubara frequencies
found by means of the weighted Kramers-Kronig relations
based solely on the measured optical data [25]. From the
standard theoretical point of view, the use of the Drude
model extrapolation to low frequencies is considered as
preferable. However, the experimental data of many precise
experiments on measuring the Casimir interaction between
metallic surfaces performed by different experimental groups
are consistent with the plasma model extrapolation and exclude
the Drude model extrapolation [2,5,26–32]. The measure of
consistency achieves 90% [33] and the measure of exclusion
is as high as up to 99.9% [28]. Some doubts remained until
very recently because in all these experiments, performed at
separations below 1 μm, the difference in theoretical pre-
dictions using different extrapolations does not exceed a few
percent of the measured quantity. An important breakthrough
was achieved after the publication of Ref. [34] (see also
Ref. [35]), which proposed the differential experiment where
theoretical predictions using the Drude and the plasma model
extrapolations differ by a factor of 1000. The recently reported
first data sets from this experiment are in agreement with the
plasma model extrapolation and exclude that of the Drude
model [36].

Taking into account the above discussion, we use in our
computations the dielectric permittivity of Au obtained by
using the tabulated optical data [24] extrapolated to low
frequencies by means of the plasma model [5]. The magnitudes
of the Casimir pressure multiplied by a3 are computed using
Eqs. (12) and (13) and are shown by the solid line 2 in
Fig. 1. The dashed line 2 presents the nonrelativistic results
for the Casimir pressure between two Au plates across a gap
filled by the uniaxial anisotropic material. These results are
obtained by using Eqs. (14) and (15). As is seen in Fig. 1,
the nonrelativistic results, i.e., the nonretarded van der Waals
force, deviate significantly from the exact results even at the
shortest separations between the plates. Thus, at a = 1, 2, 5,
and 10 nm the relative error (23) in the nonrelativistic pressure
is equal to 2%, 4.9%, 13.9%, and 27.6%. Although these errors
are smaller than those in the case of dielectric plates, they
demonstrate that even for very thin films the relativistic effects
contribute essentially.

In Fig. 2(b) we plot the Casimir pressure between two
Au plates across a uniaxial BeO film multiplied by the
fourth power of separation over a wide separation region
from 10 nm to 3 μm (the solid line). As is seen from Fig.
2(b), in the region from 500 to 1000 nm the solid line
demonstrates nearly constant behavior, i.e., the characteristic
for metallic plate dependence of the Casimir pressure ∼a−4. At
separations above approximately 2.5 μm the solid line merges
with the straight dashed line, demonstrating the characteristic
behavior of the Casimir pressure at large separations (high
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FIG. 3. The Casimir pressure between two dissimilar isotropic
plates made of SiO2 and Au interacting through a uniaxial anisotropic
film (BeO) calculated at T = 300 K as a function of film thickness
(the solid line). The dashed line shows the classical limit.

temperatures), i.e., the classical limit (see the analytic results
for the Casimir free energy and pressure in this case in Sec. IV).
As in the case of dielectric plates, here the classical limit is
achieved at much shorter separations between the plates than
for a vacuum gap.

Finally, we briefly discuss the case of dissimilar plates, i.e.,
one plate made of dielectric (SiO2) and another one made of
metal (Au). It is common knowledge that three-layer systems
with some relationships between the dielectric permittivities
of the layers demonstrate the effect of the Casimir repulsion
[4,5,12,13], which was observed experimentally [37] in the
case of an isotropic liquid film sandwiched between two
isotropic plates. In our case of two dissimilar plates and
a gap filled by an anisotropic material, the static dielectric
permittivities satisfy the inequalities

ε(−1)(0) < ε(0)
xx (0) < ε(0)

zz (0) < ε(+1)(0) = ∞ (24)

and one should expect the effect of repulsion. This expectation
is confirmed by the computational results.

In Fig. 3 we present on a logarithmic scale the values
of the Casimir pressure computed by Eqs. (12) and (13)
for film thicknesses from 1 nm to 5 μm. As is seen from
Fig. 3, the Casimir pressure is positive over the entire range of
film thicknesses which corresponds to Casimir repulsion. At
separations above approximately 2 μm the Casimir pressure
between two dissimilar plates across a uniaxial anisotropic
gap becomes classical, i.e., it behaves as ∼a−3. This region
is shown by the dashed line in Fig. 3. It is discussed in more
details in the next section.

IV. THE CLASSICAL CASIMIR EFFECT ACROSS
A UNIAXIAL ANISOTROPIC FILM

Here, we derive simple analytic expressions for the Casimir
free energy and pressure between two isotropic plates sepa-
rated by a uniaxial dielectric film in the case of large film
thicknesses (high temperatures). In this case all terms with
l � 1 in Eqs. (1) and (6) are exponentially small and only
the terms with l = 0 determine the total result [5]. From

Eqs. (2)–(4) in the case of two dielectric plates, we obtain

r
(0,±1)
TM (0) =

ε
(±1)
0 −

√
ε

(0)
xx,0ε

(0)
zz,0

ε
(±1)
0 +

√
ε

(0)
xx,0ε

(0)
zz,0

,

r
(0,±1)
TE (0) = 0. (25)

Substituting Eq. (25) in Eqs. (1) and (6) restricted to the
term l = 0, one obtains

Fcl(a,T ) = kBT

4π

∫ ∞

0
k⊥dk⊥

× ln
[
1 − r

(0,+1)
TM (0)r (0,−1)

TM (0)e−2ak⊥
√

ε
(0)
xx,0/

√
ε

(0)
zz,0

]
,

Pcl(a,T ) = −kBT

2π

√√√√ε
(0)
xx,0

ε
(0)
zz,0

∫ ∞

0
k2
⊥dk⊥

×
⎡
⎣ e

2ak⊥
√

ε
(0)
xx,0/

√
ε

(0)
zz,0

r
(0,+1)
TM (0)r (0,−1)

TM (0)
− 1

⎤
⎦

−1

. (26)

Now it is convenient to introduce the new variable (16) with
l = 0 and repeat the same calculation as in Eqs. (17)–(19),
with the result

Fcl(a,T ) = − kBT

16πa2

ε
(0)
zz,0

ε
(0)
xx,0

Li3
[
r

(0,+1)
TM (0)r (0,−1)

TM (0)
]
,

(27)

Pcl(a,T ) = − kBT

8πa3

ε
(0)
zz,0

ε
(0)
xx,0

Li3
[
r

(0,+1)
TM (0)r (0,−1)

TM (0)
]
.

As compared to the case of an isotropic material in the gap
between plates, here we have the additional factor ε

(0)
zz,0/ε

(0)
xx,0.

A similar situation holds when one plate is dielectric and
the other plate is metallic. In this case the TE mode again
does not contribute because r

(0,−1)
TE (0) = 0. The TM reflection

coefficient for the dielectric film, r
(0,−1)
TM (0), is again given

by Eq. (25). For the metallic plate, one has from Eq. (25)
r

(0,+1)
TM (0) = 1 because ε

(+1)
0 = ∞. As a result, the classical

limit for two dissimilar plates, one dielectric and the other one
metallic, with a uniaxial anisotropic film between them takes
the form

Fcl(a,T ) = − kBT

16πa2

ε
(0)
zz,0

ε
(0)
xx,0

Li3
[
r

(0,−1)
TM (0)

]
,

(28)

Pcl(a,T ) = − kBT

8πa3

ε
(0)
zz,0

ε
(0)
xx,0

Li3
[
r

(0,−1)
TM (0)

]
.

Finally we consider the classical limit for two metallic
plates with an anisotropic film between them. In this case
from Eq. (3) one has r

(0,±1)
TM (0) = 1. As to the contribution of

the TE mode, it is the same as for two metals separated by the
vacuum gap [5] because the quantity k

(0)
TE(0,k⊥) in the second

line of Eq. (2) does not depend on ε
(0)
xx,0. Then, from Eq. (1)
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with account of Eq. (2), one obtains

Fcl(a,T ) = −kBT ζ (3)

16πa2

[
ε

(0)
zz,0

ε
(0)
xx,0

+ 1 − 4
δ0

a
+ 12

(
δ0

a

)2
]
,

(29)

where ζ (z) is the Riemann zeta function and δ0 = λp/(2π ) =
c/ωp is the effective penetration depth of the electromagnetic
oscillations into a metal. In a similar way, for the classical
Casimir pressure we have

Pcl(a,T ) = −kBT ζ (3)

8πa3

[
ε

(0)
zz,0

ε
(0)
xx,0

+ 1 − 6
δ0

a
+ 24

(
δ0

a

)2
]
.

(30)

As can be seen from Eqs. (29) and (30), there is an
important qualitative difference between the classical Casimir
free energy and pressure in the configurations of two metallic
plates separated by isotropic and anisotropic films. In the
case of an isotropic film, the classical Casimir effect does
not depend on the material properties of the film. It is a
common property for all dielectric films independently of the
values of their static dielectric permittivity. By contrast, for
uniaxial anisotropic films the classical limit depends on the
film material properties in accordance with Eqs. (29) and (30),
i.e., through the value of the ratio ε

(0)
zz,0/ε

(0)
xx,0.

At the end of this section we consider the measure
of agreement between the classical Casimir pressures in
Eqs. (27), (28), and (30) and the exact values of the Casimir
pressure computed numerically in Sec. III. The classical
Casimir pressures calculated by the second lines of Eqs. (27)
and (28) and by Eq. (30) are shown by the dashed lines in
Figs. 2(a), 3, and 2(b), respectively. The comparison with the
respective solid lines shows that for two SiO2 plates the relative
deviation between the magnitudes of the classical and exact
Casimir pressures,

δPcl = |Pcl| − |P |
|P | , (31)

is equal to −6%, −1.97%, −0.56%, and −0.15% for film
thicknesses equal to 1.5, 2, 2.5, and 3 μm, respectively. One
can conclude that in this case the classical limit is achieved for
a ≈ 2 μm. In a like manner, for two dissimilar Au-SiO2 plates
(Fig. 3) δPcl = 5.4%, 1.4%, 0.33%, and 0.08% at a = 1.5, 2,
2.5, and 3 μm, respectively. From Fig. 2(b) (Au-Au plates)
one obtains δPcl = −18%, −6.4%, −1.9%, and −0.55%
at the same respective film thicknesses (plate separations).
Thus, for Au-SiO2 and for Au-Au plates interacting across
a uniaxial anisotropic film, the classical limit is achieved
for film thicknesses equal to approximately 2 and 2.5 μm,
respectively.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have investigated the thermal Casimir
force between two dielectric, two metallic, and dissimilar
(one dielectric and one metallic) plates made of isotropic
materials across a dielectric film made of a uniaxial anisotropic
crystal. Although the Lifshitz formula for the Casimir free
energy and pressure has been generalized for this case in the
previous literature, most of the calculations were performed
in the nonrelativistic limit, and specific features of the thermal
Casimir force with account of retardation effects and in the
classical limit were not considered.

According to our results, in this case the role of relativistic
effects is much larger than for a vacuum gap, so that the stan-
dard theory of the van der Waals force is not applicable even at
the shortest separations between the plates. We have obtained
simple analytic expressions for the Casimir free energy and
pressure in the classical limit, i.e., at large separations (high
temperatures). In the case of two metallic plates separated by
an isotropic film the classical Casimir free energy and pressure
are known to be independent of the film material properties. We
demonstrated that this result is not preserved for anisotropic
films, where both the Casimir free energy and pressure depend
on the ratio of static dielectric permittivities of the film along
different coordinate axes. We have also compared the results
of numerical computations using the exact Lifshitz formula
with the analytical results in the classical limit. It was shown
that for two isotropic plates separated by an anisotropic film
the classical limit is achieved at much shorter separations than
for plates separated by a vacuum gap.

As was noted in Sec. I, the configuration of a uniaxial
film sandwiched between two isotropic plates is of much
importance in the investigation of stability of strongly confined
(anisotropic) liquid crystals. In this case one can replace
the plates with a vacuum and arrive at the free energy
of an anisotropic film alone. Very recently, the Lifshitz
formula adapted to the case of two-dimensional structures
found topical applications in the investigation of the Casimir
effect for graphene [38–42]. The most fundamental formalism
describing interaction of graphene with the electromagnetic
fluctuations is based on the use of the polarization tensor in
(2 + 1)-dimensional space-time [43–45]. In its turn, this tensor
is equivalent [46] to two (nonlocal) dielectric permittivities, the
longitudinal one and the transverse one, in some analogy to
the uniaxial crystals considered in this paper.

One can conclude that the Casimir effect for layered
structures, where some of the layers are made of anisotropic
materials, possesses some unusual properties which can be
potentially interesting for both fundamental physics and
nanotechnological applications.
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[27] R. S. Decca, D. López, E. Fischbach, G. L. Klimchitskaya,
D. E. Krause, and V. M. Mostepanenko, Phys. Rev. D 75, 077101
(2007).
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