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Simulating the Haldane phase in trapped-ion spins using optical fields
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We propose to experimentally explore the Haldane phase in spin-one XXZ antiferromagnetic chains using
trapped ions. We show how to adiabatically prepare the ground states of the Haldane phase, demonstrate their
robustness against sources of experimental noise, and propose ways to detect the Haldane ground states based
on their excitation gap and exponentially decaying correlations, nonvanishing nonlocal string order, and doubly
degenerate entanglement spectrum.
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I. INTRODUCTION

In a quantum simulation experiment, the behavior of a
complex quantum model is examined using a controllable
system, which acts as the simulator [1–3]. Collections of
trapped atomic ions have emerged as excellent standards
for quantum simulations of interacting spin models. These
electrically charged particles are confined in an electro-
magnetic trap, micrometers apart from one another [4,5].
Thanks to precise spin manipulation capabilities, near-perfect
spin readout, and a variety of cooling [6,7] and dynamical
decoupling techniques [8–16], trapped ions can be made to
follow target Hamiltonians with high fidelity [17,18], making
them one of the most promising candidates for quantum
simulation.

To date, trapped ions have mostly been used to simulate
spin one-half Hamiltonians, showing the phase transition from
the (anti)ferromagnetic to paramagnetic phases in the Ising
model [19–29] and long-range correlation functions in the XX
model [30,31]. By enlarging the spin’s degree and moving into
integer spin chains, new and subtle physics can appear [32–40];
for example, the local orders vanish and we are left with hidden
orders only [41].

In the last few decades considerable efforts have been made
to investigate the nonlocal physics which appears in integer
spin chains, e.g., a spin-one XXZ antiferromagnetic (AFM)
Hamiltonian,

H =
∑
i,j

Ji,j

(
Si

xS
j
x + Si

yS
j
y + λSi

zS
j
z

) + D
∑

i

(
Si

z

)2
. (1)

In 1983, Haldane conjectured [34] that Heisenberg chains
of integer spins with nearest neighbors antiferromagnetic
interactions are gapped, unlike the gapless half-integer spin
chains. This energy gap corresponds to short-range expo-
nentially decaying correlation functions, compared to the
long-range power law decaying correlations of half-integer
spin systems. Later, Den Nijs and Rommelse [35] suggested
that the Haldane phase of the spin-one chain is governed by a
hidden order, which can be characterized by a nonlocal string
order parameter. It is consistent with a full breaking of a hidden
Z2 × Z2 symmetry, which was revealed using a nonlocal
unitary transformation by Kennedy and Tasaki [36,37]. In
2010 Pollmann et al. [38] showed that the Haldane phase

can also be described by the doubly degenerate entanglement
spectrum. These characteristics hint that the Haldane phase is a
topologically protected phase in one dimension. Hence, quan-
tum simulation of the Haldane phase enables the exploration
of topological behavior in relatively simple systems.

Recently an experiment by Senko et al. [39] has used
trapped ions to simulate spins in higher degrees. In this
experiment a spin-one Hamiltonian was engineered using
state-dependent laser forces, paving the way toward highly
controllable quantum simulation experiments that exhibit
hidden orders. Previously, we proposed how to engineer
the Hamiltonian of Eq. (1) using microwave-based forces
on the trapped-ion spins [40]. In this previous derivation
of the Hamiltonian, we could cover only 0 � λ � 2 of the
phase diagram (Fig. 1). A natural way to extrapolate the
microwave approach to a laser-based implementation is to use
non-co-propagating Raman beams instead of a magnetic field
gradient [42] to induce the spin-phonon coupling.

In this paper, we first propose an approach to achieving the
same result as in [40], but with a laser-based implementation.
Then, we propose a new approach for quantum engineering,
Eq. (1), while covering the whole positive λ � 0 plane of
the phase diagram (Fig. 1). Instead of having the XX (flip-
flop) Hamiltonian Si

yS
j
y + Si

xS
j
x as our starting point, in the

new approach we engineer a Mølmer-Sørensen (MS)-like
gate [43] for spin-one systems that takes the form of an Ising
Hamiltonian Si

xS
j
x .

We have found three ways to implement the MS gate for
spin-one systems [43–45]. These schemes were originally pro-
posed for two-level systems (qubits), but can be extrapolated
to three-level systems (qutrits). For simplicity, we consider the
first and second approaches for laser-based designs, although
a similar derivation exists for the third one, and also for
microwave-based implementations.

We explain how to move experimentally to the interaction
picture: namely, how to measure in the appropriate basis.
Furthermore, we give a detailed explanation of the adiabatic
path for reaching the Haldane phase. We stress that our model
is robust to the main noise sources in experiments, exploiting
dressing fields as a dynamical decoupling technique, and
operating in a decoherence free subspace, enabling longer
adiabatic evolution times.
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FIG. 1. (Color online) Phase diagram of the spin-one XXZ anti-
ferromagnetic (AFM) Hamiltonian [Eq. (1)]. The first derivation in
this text (as well as the previous derivation [40]) cover 0 � λ � 2
(in blue), whereas the second derivation in this text covers the whole
positive λ � 0 plane (in blue and red).

II. MODEL

The phonons. In our model we have N trapped ions
each of mass m and electric charge e, forming a linear
chain along the z axis, r0

i,z. The ion formation is determined
according to the equilibrium of the Coulomb repulsion
between the ions, and the trapping forces. The vibrations
of the ions around their settled points, �riα , are solved in
the harmonic approximation obtaining the normal modes Mα

i,n

and να
n , which are the eigenstates and the eigenvalues of the

nth mode and the i th ion in the α direction, respectively.
Thus, the ion displacements are represented as �riα =∑

n Mα
i,n

√
�/2mνα

n (b†nα + bnα), and the vibration Hamiltonian

is represented as Hvib = ∑
n,α να

n b
†
nαbnα , where b

†
nα,bnα are the

creation and annihilation of a phonon, respectively [46–48].
The spin. The second quantum degree of freedom in

this model is the spin. For our derivation, we consider the
hyperfine structure of the 171Yb+ ion (Fig. 2), with microwave
energy separation between the singlet and the three triplet
states [49,50]. Removing the mF = 0 state (|0′〉) from the
triplet, we are left with three energy levels for modeling the
simulated spin-one system. Quantum manipulation can occur
using Raman transitions via virtual excited states, or using
microwave driving fields. Note that any other ion having three
different energy states in the microwave regime would suffice
for modeling the spin-one particle, as long as there is a virtual
excited state, through which the Raman transitions between
the three levels can occur [51].

The interaction. In trapped-ion systems, the spin-spin
interaction takes place by exchanging a virtual phonon
between the different ions; therefore, a spin-phonon coupling
term is needed. Using laser Raman beams, the spin-phonon
coupling term is achieved by a sufficiently large Lamb-
Dicke parameter of the non-co-propagating beams [51]. For
antiferromagnetic interactions, we typically choose a radial
vibration mode as the mediator between the spins [52,53].
Therefore, three counterpropagating Raman beams having a
momentum difference along the radial direction perform the

FIG. 2. (Color online) 171Yb+ ground states used for modeling
the spin-one particle (in green). The beat frequencies between non-
co-propagating Raman beams (in red) drive the δ detuned transitions
between |−1〉 → |0〉 and |1〉 → |0〉 (in blue), generating the spin-
laser interaction in Eq. (2).

two beat frequencies corresponding to the δ detuned transitions
between | − 1〉 → |0〉 and |1〉 → |0〉, with a π phase difference
(Fig. 2). In the interaction picture with respect to the radial
vibration Hamiltonian and the bare state energy structure, we
obtain the red sideband transition for a three-level system:

Hred =
∑
n,j

i�ηj,n

2
√

2
(F j

+eiδt − H.c.)(b†ne
iνnt + H.c.). (2)

After applying the Lamb-Dicke approximation
ηj,n

√
Nn + 1 � 1, where Nn is the average number of

phonons of the nth mode, ηj,n = kLMj,n

√
�/2mνn is the

Lamb-Dicke parameter, kL is the laser’s wave number,
and F

j
+ = √

2(|1〉j 〈0| + |0〉j 〈−1|). In the second-order
perturbation approach [54], this results in an XX Hamiltonian
in addition to a residual term [39]:

HXX =
∑
i�j

J eff
ij

((
F i

xF
j
x + F i

yF
j
y

)
(1 − δi,j ) −

(
F

j
z

)2

2
δi,j

)
,

Hres =
∑
j,n,m

J res
jnmF j

z

(
b†nbm + 1

2
δn,m

)
e−i(νn−νm)t , (3)

where

J eff
ij =

∑
n

ηi,nηj,n

2

νn�
2

δ2 − ν2
n

∝ ∣∣ 	r0
i − 	r0

j

∣∣−ξ

i 
=j
,

J res
jnm = �2δ

ηj,nηj,m

4

(
1

δ2 − ν2
n

+ 1

δ2 − ν2
m

)
. (4)

Our model can be decoupled from the residual term if
J res

jnm is approximately uniform across the chain, such that
Hres ∝ ∑

i F
i
z . This is due to the fact that the model’s relevant

ground states, as we will see later in this paper, have a
vanishing projection over the z axis, thus the experiment
is performed in the decoherence-free subspace. As was
suggested in Ref. [39], this residual term can be eliminated,
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FIG. 3. (Color online) Generating the D term. Generating the
D term in Eq. (1) is done in two ways: (1) (a) Applying two
additional co-propagating Raman beams, corresponding to a �D

detuned transition between |0′〉 ←→ |0〉 results in an ac Stark shift
�2

D

4�D
|0〉〈0|. This could alternatively be generated using a �D detuned

microwave driving field. (2) (b) Within the non-co-propagating
Raman beams (red) (Fig. 2), we regard the |0〉 state as D′ shifted,
and move to the interaction picture with respect to the D′-shifted
bare energy structure. Thus, we are left with −D′|0〉〈0|, which is
D′F 2

z . In our later derivation (which covers the entire λ � 0 plane),
we will impose a 2D′ detuning rather than a D′ detuning.

by adding additional beat frequencies that generate the blue
sideband transitions together with the red sideband ones, such
that the MS transitions for spin-one systems are realized.
By applying the MS transitions in the spin one-half (qubit)
case [43], the A.C Stark shift term which is coupled to
phonons disappears. Therefore, Hres in our spin-one case,
which is the equivalent term, is eliminated as well.

Moreover, using trapped ions, the spin-spin interaction is
not the nearest-neighbor only as the classic Haldane work has
considered, but rather a power-law decay [52,53]. However,
as Refs. [55,56] show, the Haldane phase can still be found in
power-law interacting systems.

Up to this stage of the derivation of the AFM XXZ
Hamiltonian, we have shown how to generate the first two
terms of Eq. (1). We now pursue the two other tunable terms,
the D and λ terms.

Generation of the control anisotropy D term. Generating
the tunable D term can be done in two ways: (1) using an
additional transition to generate the ac Stark shift, from which
the D term will arise [Fig. 3(a)]; (2) imposing detunings
on all the previous driving fields, such that the D term is
set aside from the bare state energy structure [Fig. 3(b)].
To generate the ac Stark shift we can apply an additional
�D detuned microwave driving field, corresponding to the
transition between the two zero states of the triplet and the
singlet, |0′〉 ←→ |0〉 [Fig. 3(a)]. Similarly we can obtain
the same result by applying co-propagating Raman beams
corresponding to the same transition. Thus we obtain

�D

2
|0〉〈0′|ei�Dt + H.c., (5)

which yields an ac Stark shift term D′(Fz)2 with D′ =− �2
D

4�D
, in

the second-order perturbation approach, assuming �D

2 � �D .

We also assume that

��D

8
√

2

(
1

�D

+ 1

δ

)
� �D − δ,

�ηj,n�D

8
√

2

(
1

�D

+ 1

δ − νn

)
� �D − (δ − νn), (6)

such that every undesired Raman-like coupling between
the �D detuned transition and the carrier or sideband
transitions of the counterpropagating Raman beams are
suppressed.

Generating a tunable D term can alternatively be achieved
by regarding the |0〉 bare state energy level as D′ shifted,
corresponding to its real value in the hyperfine structure
[Fig. 3(b)]. In other words, we impose D′ detuning on all
the driving fields generating the XX Hamiltonian [Eq. (3)].
Therefore, we are left with the term −D′|0〉〈0| = D′(Fz)2. In
order to tune this term we have to shift all the driving field
transitions continuously, as was recently demonstrated in [39].
Note that the anisotropy D term is slightly different from these
D′ terms, since the model is θ rotated while generating the λ

term, as is explained below.
Generation of the Ising-like λ term. The Ising-like

anisotropy term λJi,jF
i
zF

j
z is produced using a technique,

which is revealed by considering the interaction picture. It is
done by adding a spin operator term, θ rotated from the z axis,
namely, �′Fz,θ = �′(Fz cos θ + Fα sin θ ), where α can be
either x or y or their superposition (XY plane), and generating
each component separately. �′Fz cos θ can be produced
similarly to the two ways that the D term was generated.
The first way is to drive the transitions between | ± 1〉 ↔ |0〉
with ±�z detunings, respectively. These transitions can be
generated using co-propagating Raman beams, or alternatively
using microwave driving fields, with a Rabi frequency �z,
such that the effective ac Stark shifts result in the �′Fz cos θ

term, with �′ cos θ = �2
z/�z [Fig. 4(a)], under the assumption

�z � �z. Similarly to the D generating case [Eq. (6)], we
have to keep �z far detuned from all the other detunings,
such that every undesired Raman-like transition, coming from
coupling between this term to the D generating transitions or
the counterpropagating Raman beams, will be suppressed. The
second way to induce �′Fz cos θ is by imposing detunings
on the non-co-propagating Raman beams, i.e., by imposing
±�′ cos θ detunings on the transitions between |±1〉 ↔ |0〉,
respectively, such that the Fz cos θ term is set aside from the
bare state energy structure [Fig. 4(b)].

The second term �′Fα sin θ is obtained using the carrier
transitions, where their relative phase difference determines
the resulting operator direction α. The carrier transitions can
be applied either using co-propagating laser Raman beams, or
simply using microwave driving fields, with a Rabi frequency
�car = �′ sin θ

√
2 [Fig. 5(a)].

By applying a θ rotation around the perpendicular axis, such
that Fz,θ is transformed into Fz, the new spin operators and the
new basis are θ rotated as well. If we move to the interaction
picture with respect to the new term we have built �′Fz, and

use the RWA where we require (�ηj,n)2

8(δ−νn) � �′ � δ − νn, we
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FIG. 4. (Color online) Generating �′Fz cos θ for the
λ-generating trick. There are two ways of generating this
term: (1) (a) Additional copropagating Raman beams (red) perform
the ±�z detuned transitions between |±1〉 ↔ |0〉, respectively,
with a Rabi frequency of �z. These effective transitions can
alternatively be realized using detuned microwave driving fields
(blue). Therefore, we obtain the desired term from the ac Stark
shifts where �′ cos θ = �2

z/�z. (2) (b) Adding detunings to
the non-co-propagating Raman beams (red) (Fig. 2), such that
δ′ = δ + �′ cos θ . In this way we are left with the desired term, after
moving to the interaction picture with respect to the detuned bare
energy structure.

end up with the following effective Hamiltonian:

Heff =
∑
i<j

J eff
ij

{(
F i

xF
j
x + F i

yF
j
y

)1 + cos2 θ

2
+ F i

zF
j
z sin2 θ

}

+
∑

i

(
D′ − J eff

ii

2

)(
cos2 θ

2
− sin2 θ

)(
F i

z

)2
. (7)

We have obtained the required spin-one XXZ AFM Hamilto-
nian, where we can only cover 0 � λ � 2. Experimentally,
the following parameters are realistic: νn = 2π × 5 MHz,

FIG. 5. (Color online) Generating �′Fα sin θ for the
λ-generating trick. (a) We apply carrier transitions using additional
co-propagating Raman beams (red), or alternatively microwave
driving fields (blue), while keeping the imposed detunings for
generating the D term [Fig. 3(a)] and the �′Fz cos θ term [Fig. 4(a)].
Here, �car = �′ sin θ

√
2, and α = α1 − α−1 is determined by the

initial phase difference of the two effective transitions. The same
carrier transitions, only without detunings, are used in our later
approach as dressing fields that transform the system into the dressed
state basis (b), thus protecting it from the magnetic noise.

δ = 2π × 5.1 MHz, � = 2π × 500 kHz,ηn,j ≈ 0.14, �′ =
2π × 10 kHz, which give J eff

i,i+1 ≈ 2π × 1 kHz, such that
0 < D < 2π × 10 kHz.

An important advantage over the previous derivation
in [40], is that in order to obtain the antiferromagnetic
interactions, δ should be larger than the secular frequencies
of the radial vibrational modes, rather than the Rabi frequency
�/

√
2. Since one of the main experimental challenges is to

reach a high Rabi frequency, in the present derivation we
overcome this technical obstacle. As for the residual terms we
dropped on the way, such as the carrier transition that yields a
four-photon ac Stark shift and was neglected from Eq. (2), and
the neglected fast rotating terms and the residual from Eq. (3),

these terms operate with
∑

j F
j
z . Since the model’s relevant

ground states have a vanishing projection over the z axis, we
are decoupled from these undesired terms.

In this scheme, we move more than once to different
interaction pictures. In the following section, we explain how
this can be done experimentally.

III. MOVING TO THE INTERACTION PICTURE
EXPERIMENTALLY

Since the measurement is taken in the laboratory frame and
the effective Hamiltonian is derived after moving to several
interaction pictures, we now show how the dynamics of the
state in the laboratory frame relates to the dynamics determined
by the last interaction picture. For this purpose, we take the
general case where in the laboratory frame the evolution of the
Schrodinger state is described as follows:

Hs(t) = H0 + Hint(t),

Us(t) = T exp

(
−i

∫ t

0
Hs(t

′)dt ′
)

,

|�s(t)〉 = Us(t)|�s(0)〉, (8)

where T is the time ordering operator. Moving to the
interaction picture, the dynamics is described as

U
†
0 (t) = exp(iH0t),

HI0 (t) = U
†
0 (t)Hint(t)U0(t),

UI0 (t) = T exp

(
−i

∫ t

0
HI0 (t ′)dt ′

)
,

|�I0 (t)〉 = UI0 (t)|�I0 (0)〉. (9)

Usually, the first interaction picture H0 is time independent
since it is the bare state energy structure. However, in
general, H0 can also be time dependent, where U

†
0 (t) =

exp (i
∫ t

0 H0(t ′)dt ′). Here, we only assume that H0 is a single-
particle operator or a global rotation, i.e., it does not create
entanglement. In fact, if the realization of the D control
parameter is achieved using detunings, varying it during the
Haldane phase simulation experiment effectively results in
having the first interaction picture H0(t) time dependent.

Using the definition of the interaction picture,

|�I0 (t)〉 = U
†
0 (t)|�s(t)〉, (10)
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we obtain the relation between the interaction and the
Schrodinger pictures,

UI0 (t) = U
†
0 (t)Us(t), (11)

since |�I0 (0)〉 = |�s(0)〉.
Suppose that the first interaction frame is by itself a

“Schrödinger” frame for the next interaction picture, such that

HI0 (t) = H1(t) + H int
I0

(t), (12)

where H1(t) is a single-particle operator in the first interaction
frame. As before,

U
†
1 (t) = exp

(
i

∫ t

0
H1(t ′)dt ′

)
,

HI1 (t) = U
†
1 (t)H int

I0
(t)U1(t),

UI1 (t) = T exp

(
−i

∫ t

0
HI1 (t ′)

)
dt ′,

|�I1 (t)〉 = UI1 (t)|�I1 (0)〉, (13)

thus,

UI1 (t) = U1
†(t)UI0 (t). (14)

Substituting Eq. (11) in Eq. (14) we obtain

Us(t) = U0(t)U1(t)UI1 (t); |�s(t)〉 = U0(t)U1(t)|�I1 (t)〉.
(15)

For N + 1 interaction pictures in our derivation, we obtain

Us(t) = U0(t)U1(t) · · ·UN (t)UIN
(t),

|�s(t)〉 = U0(t)U1(t) · · ·UN (t)|�IN
(t)〉. (16)

In order to move experimentally to the interaction picture,
such that the Schrödinger state will evolve according to the
last interaction Hamiltonian, we have to rotate the system
back to counter U0(t)U1(t) · · ·UN (t). There are two main ways
to move experimentally to the interaction picture, as will be
discussed next.

The first and straightforward way is by applying N

concatenated global rotations for each interaction picture,
except for the first one . Suppose we want to measure the
system after time τ , in which all the driving fields were
on. In order to counter the last interaction unitary UN (τ ),
we only block the driving fields that generate the simulated
Hamiltonian UIN

(τ ), while operating with all the driving fields
that are responsible for the interaction pictures. This will be
done for time tN , such that we obtain

Us(τ + tN ) = U0(τ + tN )U1(τ + tN ) · · · UN (τ + tN )UIN
(τ ),
(17)

and tN is determined by UN (τ + tN ) = I. The same approach
can be used to counter all the other interaction unitary,
obtaining the following pulse sequence. $1.) All the driving
fields for the experiment time τ . $2.) All the driving fields that
are responsible for the H1(t) to HN (t) interaction pictures for
tN time. $3.) All the driving fields that are responsible for the
H1(t) to HN−1(t) interaction pictures for tN−1 time.

...$N.) Only the driving fields that are responsible for the
H1(t) interaction pictures for t1 time.

In that way, we obtain the following relation between the
last interaction picture and the Schrödinger one:

Us(τ + tN + · · · + t1)

= U0(τ + tN + · · · + t1)U1(τ + tN + · · · + t1) · · ·
×UN (τ + tN )UIN

(τ ). (18)

Setting Uk(τ + tN + · · · + tk) = I for all 1 � k � N , the
Schrödinger state therefore evolves according to the last
interaction picture,

Us(τ + tN + · · · + t1) = U0(τ + tN + · · · + t1)UIN
(τ ), (19)

with an additional phase U0(τ + tN + · · · + t1), which
we do not measure. If we want to measure in any
different basis, we can rotate the system using any one of
Uk(τ + tN + · · · + tk) = eiσαk

θk .
The second way to move experimentally to the interaction

picture is simpler. Since the prefactor of UIN
(τ ) is a global

rotation U0(τ )U1(τ ) · · · UN (τ ) = eiσαtot θtot , we can apply just
one global rotation to counter the total interaction unitary
rotations all together. Since any rotation in the Bloch sphere
can be generated by two independent rotations (e.g., two
orthogonal rotations), it is sufficient to use the first and
second interaction pictures, namely H0(t) and H1(t), which
are orthogonal rotations for that task. Measuring in any other
basis can be achieved by an additional rotation, which can be
added to all the interaction unitary, and thus be represented
effectively with H0(t) and H1(t). Next, we explicitly show
how to apply the first approach in the two derivations of the
XXZ-D Hamiltonian.

Experimental realization. While generating the XXZ-D
Hamiltonian we move twice to different interaction pictures:
The first one is with respect to the bare energy gap of the qutrit,
yielding the following interaction unitary:

U0(τ )= exp(−i[(ω0 − D′)|0〉〈0|+λ1|1〉〈1|−λ1|−1〉〈−1|]τ ),

(20)

where we used the detuning approach to generate the D

term. The second interaction picture is with respect to the λ-
generating term, resulting in the following interaction unitary:

U1(τ ) = exp(−i�′[cos θFz + sin θFα]τ ), (21)

with α = x,y. Moving to these interaction pictures results in
the effective Hamiltonian [Eq. (7)] which yields the simulated
evolution UI1 (τ ).

As was discussed above, in order to move to the interaction
frame, we first have to shut down the effective Hamiltonian.
This is done by blocking the two non-co-propagating Raman
beams (setting � = 0), and eliminating the D′ term. Shutting
down the effective Hamiltonian should take t1 such that
U1(τ + t1) = I.

There is no need to counter U0 since it only yields an
unmeasured phase. Leaving the experiment at this point results
in measuring the state in the Fz basis. Now, if we want
to measure in the simulated basis, namely Fz = cos θFz +
sin θFα for α = x,y, we need to rotate the system around a
perpendicular axis. Since by using the carrier transitions we
generate �′ sin θFα , we have to rotate the system with an Fβ
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FIG. 6. (Color online) Adiabatic path using the symmetry break-
ing perturbation. When crossing a second-order phase transition the
energy gap is closed, and the adiabatic approximation is invalid.
We break the symmetries of the Hamiltonian [Eq. (1)] and thus, go
around the phase transition, keeping a finite energy gap during the
whole path.

operation, with β ⊥ α. This can be achieved after countering
U1, by a π/2 phase change of the laser or microwave driving
field, such that instead of operating with Fx the driving field
will operate with Fy . In a similar way we can measure in any
basis we choose.

IV. ADIABATIC QUANTUM SIMULATION

Once we know how to quantum engineer the Hamiltonian
of the system under investigation with tunable parameters, the
adiabatic quantum simulation proceeds as explained below.
We initialize the system in a trivial phase by appropriately
setting the parameters of the Hamiltonian, and we initialize the
system’s state in its trivial ground state. Then, we change the
Hamiltonian parameters adiabatically, slower than the energy
gap, such that the system stays in the ground state of the
instantaneous Hamiltonian, until it reaches the ground state of
the nontrivial phase that we want to investigate.

In our case the system under investigation is the antiferro-
magnetic XXZ-D spin-1 Hamiltonian, and its trivial phase is
the large-D phase, with a tensor product of |0〉 in each site, as
its trivial ground state. Since we are operating with a rotated
basis Fz = cos θFz + sin θFα , we can initialize the system in a
tensor product of |0〉 in the Fz basis using polarization [49,50].
Then we can rotate the state with orthogonal operations: Fβ

(with α ⊥ β), similarly to what was described above. Now,
we set a large-D parameter of the Hamiltonian, and start
the adiabatic variation of the D parameter until we reach the
Haldane phase regime.

When getting closer to the thermodynamic limit, the energy
gap in the second-order phase transition closes [57]; thus
the adiabatic approximation cannot hold for increasingly long
chains. Overcoming this problem takes advantage of the fact
that the Haldane phase is a symmetry-protected topological
phase. Thus, we can use a symmetry-breaking perturbation in
order to go around the D → H phase transition, while still
operating adiabatically (Fig. 6).

The Haldane phase is protected by the following symme-
tries: a bond centered spatial inversion 	Sj → 	S−j+1, a time
reversal symmetry 	Sj → −	Sj and the dihedral D2 symmetry,

which is a π rotation around the x, y, and z axes. In order
to break all these symmetries we add a perturbation term
Hpert = −h

∑
i (−1)iSi

z. Since we know how to engineer the
Sz term, which is Fz in our derivation, the symmetry breaking
term can be produced by individual addressing, which is
achieved by focusing the laser beams.

Note that since the quantum simulation experiment is
adiabatic, its duration has a lower bound determined by the
energy gap. However, like any other quantum experiment, it
also has an upper bound that is determined by the coherence
time. If the experiment lasts longer than the coherence time,
decoherence processes might destroy the quantum information
carried by the system, and the results cannot be trusted. Hence,
immunity to the main noise sources is crucial.

V. ROBUSTNESS OF THE GROUND STATES TO NOISE

To benefit from a long coherence time we need to be
decoupled from the main noise sources. The most fidelity
damaging noise source is the ambient magnetic field. Usually,
to simulate spin-1/2 systems, the 171Yb+ clock states are used.
However, when simulating spin-1, the use of the Zeeman levels
leaves the system vulnerable to magnetic field fluctuations.
The second most important noise source is the fluctuations
of the Rabi frequencies of the non-co-propagating Raman
beams that generate the spin-spin interaction �, the carrier
transition �car, and the driving fields that generate �′ sin θFα .
In order to counter these noise sources, we combine the
continuous version of the dynamical decoupling technique
and the unique quality of this model that makes it possible
to conduct the experiment in a decoherence-free subspace.
In our scheme, we use driving fields that refocus the noise
in directions perpendicular to the final basis we operate with
(Fz). Specifically, these driving fields operate as dressing fields
performing dynamical decoupling, thus, we are left with noise
sources in the z direction. However, since the relevant ground
states of the large D and the Haldane phases belong to the
decoherence free subspace, we are protected against these
noise terms.

The ground state of the large D phase is the topologically
trivial state of a tensor product of |0〉, and the ground state of the
Haldane phase [36,37] has the same number of sites occupied
by |1〉 and |−1〉, where |1〉 |0〉 and |−1〉 are the eigenstates
of Fz with eigenvalues 1,0, − 1, respectively. Therefore, these

ground states are eigenstates of
∑

j F
j
z , with a zero eigenvalue,

such that our model is decoupled from this operation and
thus from these noise sources. Thus, the quantum simulation
operates in the decoherence free subspace. For the same

reason, all the neglected ac Stark shifts resulting in
∑

j F
j
z

could have been dropped in the derivation.

VI. VERIFICATION OF THE HALDANE
PHASE’S GROUND STATE

The ground states of the Haldane phase are characterized by
(1) an excitation gap and exponentially decaying correlations
of the local order Cα

f (i − j ) = 〈Si
αS

j
α〉, where 〈〉 denotes the

expectation value in the ground state, (2) a nonvanishing non-
local string order Oα

string(H ) = lim|i−j |→∞ Cα
st (i − j ), where
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Cα
st (i − j ) = 〈−Si

α exp [iπ
∑j−1

l=i+1 Sl
α]Sj

α〉 is the string corre-
lation function, (3) a symmetry-protected double degenerate
entanglement spectrum, obtained by dividing the systems into
two parts, tracing out one of them and diagonalizing the
reduced density matrix [58].

Experimentally verifying the ground states of the Haldane
phase can be accomplished by directly measuring the correla-
tion functions of the local orders and the string order [signa-
tures (1) and (2)]. For simplicity, suppose we want to measure
Cz

f (i − j ) or equivalently Cz
st (i − j ). Experimentally we can

only measure the dark singlet state |0〉 without the ability to
distinguish between the bright triplet states |±1〉, yet by single
addressing we can rotate a chosen spin and measure the other
states as well. Since 〈Si

zS
j
z 〉 = P

i,j

1,1 + P
i,j

−1,−1 − P
i,j

1,−1 − P
i,j

−1,1,

where P
i,j

a,b is the probability to measure 〈|a〉i〈a||b〉j 〈b|〉, four
measurements would suffice [59]. The same holds for the
string correlations, except here we have to count the bright
triplet states of the intermediate spins, exp [iπ

∑j−1
l=i+1 Sl

z]. To
measure the correlations in another basis, we first globally
rotate the system to the desired basis, and then implement the
same procedure.

Full tomography is simply infeasible experimentally for
increasingly long chains. However, in order to measure
the entanglement spectrum [signature (3)], we can make
tomography of a part of the system only. Namely, we can
measure the reduced density matrix of this part containing a
few spins, and diagonalizing it numerically.

VII. A NEW APPROACH FOR COVERING THE
WHOLE POSITIVE λ > 0 PLANE

In the above scheme, the Ising-like λ parameter is limited
0 � λ � 2, and we cannot cover the whole phase diagram, just
like in the derivation of the previous paper [40]. This has to
do with the F i

βF
j

β term, where α ⊥ β, in the XX Hamiltonian
[Eq. (3)]. In order to solve it, we have to suppress this limiting
term; namely, we have to perform a MS-like gate of spin-
one, rather than the red sideband transition which results in
the limiting XX Hamiltonian. Once we generate the F i

xF
j
x

interaction term instead of the XX Hamiltonian, we can span
the whole positive λ plane of the phase diagram by using the
same λ-generating trick as above.

As was suggested by Senko et al. [39], the straightforward
way to generate the MS transitions is by applying additional
beat frequencies to drive the blue sideband transitions in
addition to the red sideband ones, based on Ref. [43]. Yet,
in this section, we would like to show another way to realize
the MS Hamiltonian, based on the Bermudez et al. gate
proposal [44]. Here, we use the carrier transitions that were
used to generate �′ sin θFα in the above derivation, in order to
suppress the limiting term, and generate the F i

xF
j
x interaction

(Ising Hamiltonian). Thus, in the rotating frame of the bare
state energy levels, the carrier transitions yield

Hcar = �car√
2

∑
j

F j
α , (22)

where α is in the XY plane, and is determined by the relative
phase of the two carrier transitions [Fig. 5(b)]. For simplicity,

we assume that α = x corresponding to a vanishing initial
phase between the carrier transitions. These transitions dress
our qutrits, and have significant implications in terms of
suppressing the magnetic field noise. Moving to the dressed
state basis can be thought of as a −π/2 rotation about the y

axis; thus, Fx,Fy,Fz in the bare state basis are transformed
to Sz,Sy,−Sx in the dressed state basis, respectively. In the
rotating frame of the dressed state energy structure [Eq. (22)],
the red sideband transition [Eq. (2)] becomes

Hred =
∑
n,j

i�ηj,n

2
√

2

([
Sj

z +S
j
+
2

e
i �car√

2
t−S

j
−
2

e
i �car√

2
t

]
eiδt−H.c.

)
,

× (b†ne
iνnt + H.c.). (23)

If δ − νn � �car/
√

2 we can neglect the fast rotating terms;
thus we are left with the MS Hamiltonian for qutrits:

Hred =
∑
n,j

i�ηj,n

2
√

2

(
Sj

z eiδt − H.c.
)
(b†ne

iνnt + H.c.), (24)

resulting in the Ising Hamiltonian for spin-one systems, in the
second-order perturbation theory, if �ηj,n/2

√
2 � δ − νn:

HIsing =
∑
i�j

J eff
ij

(
Si

zS
j
z (1 − δi,j ) +

(
S

j
z

)2

2
δi,j

)
. (25)

This looks like we are not proceeding with the derivation
of Eq. (1), but rather are going backwards. We have already
had the XX Hamiltonian [Eq. (3)], and with additional effort
[Eq. (22)], we only obtain the Ising Hamiltonian. However,
using the trick for generating the λ-like term, we also generate
the XXZ Hamiltonian, this time covering the whole positive λ

phase diagram, unlike the previous derivation. In the following,
we pursue a tunable D term, and a tunable λ term.

Generation of the control anisotropy D term. As before,
generating the tunable D term can be done in two ways:
generating an ac Stark shift, or imposing detunings. To gener-
ate the detuned transitions to implement the first method we
can apply an additional �D detuned microwave driving field,
corresponding to the transition between the two zero states of
the triplet and the singlet, |0′〉 ←→ |0〉. In a similar way, we
can obtain the same result by applying co-propagating Raman
beams corresponding to the same transition [Fig. 3(a)]. We then
follow the previous steps of derivation: By first transforming
to the dressed state basis, where |0〉 → (|u〉 − |d〉)/√2, and
then moving to the rotating frame of �car√

2
Sz, we obtain

�D

2
√

2
(|u〉〈0′|ei(�D+ �car√

2
)t − |d〉〈0′|ei(�D− �car√

2
)t ) + H.c. (26)

In the second perturbation theory, assuming �D

2
√

2
,�car√

2
� �D ,

and �2
D

8�D
� √

2�car, only the ac Stark shifts survive, whereas
the other off-diagonal terms coming from the Raman transi-
tions between |u〉 ←→ |d〉 are suppressed in the RWA. Thus,

we are left with the desired D′(Sz)2 term, setting D′ = �2
D

8�D
.

Generating a tunable D term can alternatively be achieved
by regarding the |0〉 bare state energy level as 2D′ shifted
corresponding to its real value in the hyperfine structure
[Fig. 3(b)]. That is to say, we impose 2D′ detuning on all
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FIG. 7. (Color online) Generating �′Sα sin θ for the λ-generating
trick. There are two ways to realize this term of the λ-generating trick:
(1) (a) to engineer �′Sy sin θ , we apply additional co-propagating
laser Raman beams, which perform the two Raman transitions be-
tween |∓1〉 ↔ |0〉 with ±δλ = ±( �car√

2
− �′ cos θ ) detunings, ± π

2 ini-

tial phases, and the same effective Rabi frequency �y = √
2�′ sin θ ,

respectively; (2) (b) to engineer −�′ sin θSx we apply a z-polarized
radio-wave driving field, on resonance with the dressed-state energy
structure [Fig. 5 (b)], and with a Rabi frequency of �z = 2�′ sin θ .
Regardless of method, we obtain the desired term by moving to the
rotating frame of the dressed energy structure, and using RWA while
assuming �′ � √

2�.

the driving fields generating the Ising Hamiltonian [Eq. (25)].
Therefore, we are left with the term 2D′|0〉〈0|. Transforming
to the dressed-state basis and moving to the interaction picture
with respect to �car√

2
Sz as was mentioned above, all the off-

diagonal terms are suppressed using the RWA, if we assume
that D′ � √

2�car. Once again, we are left with D′(Sz)2.
Generation of the Ising-like λ term. To implement the λ-

generating trick, i.e., adding a spin operator term θ rotated from
the dressed z axis, which is �′Sz,θ = �′(Sz cos θ + Sα sin θ ),
we generate each component separately. The first �′Sz cos θ

term is easily produced since it can be set aside from the
carrier transition [Eq. (22)], such that instead of Eq. (22),
(�car√

2
− �′ cos θ )Sz is used as the dressing term. Regarding the

second term �′Sα sin θ there are two alternatives. Choosing
α = y, the term �′Sy sin θ is produced by using additional
microwave driving fields, corresponding to the two transitions
between |∓1〉 ↔ |0〉 with ±(�car√

2
− �′ cos θ ) detunings, ±π

2

initial phases and the same Rabi frequency �y = √
2�′ sin θ ,

respectively [Fig. 7(a)]. Similarly, we can obtain the same
result with co-propagating laser Raman beams corresponding
to these transitions.

Choosing α = x, the −Sx sin θ term, is simply obtained by
applying an additional z-polarized radio-frequency (RF) driv-
ing field, �zFz cos ((�car√

2
− �′ cos θ )t), with �z = 2�′ sin θ

[Fig. 7(b)]. Thus, by moving to the rotating frame of the
bare-state energy structure, the RF driving field is not affected.
Finally, for both α = x,y, the desired terms are obtained in the
rotating frame corresponding to ( �car√

2
− �′ cos θ )Sz, using the

RWA where we assume that �′ � √
2�car.

By applying a θ rotation around the perpendicular axis,
such that Sz,θ is transformed into Sz, the new spin operators
and the double dressed state basis are θ rotated as well. If

we move to the interaction picture with respect to the new
term we have built �′Sz and use the RWA where we require
(�ηj,n)2

8(δ−νn) � �′ � δ − νn, we end up with the following effective
Hamiltonian:

Heff =
∑
i<j

J eff
ij

{(
Si

xS
j
x + Si

yS
j
y

)cos2 θ

2
+ Si

zS
j
z sin2 θ

}

+
∑

i

(
D′ − J eff

ii

2

)(
cos2 θ

2
− sin2 θ

)(
Si

z

)2
. (27)

Therefore, we have obtained the required spin-one XXZ AFM
Hamiltonian, while covering the whole positive λ � 0 plane in
the phase diagram. Experimentally, the following parameters
are realistic: νn = 2π × 5 MHz, δ = 2π × 5.1 MHz,
�car = 2π × 1 MHz, �′ = 2π × 10 kHz, � = 2π × 500
kHz, ηn,j ≈ 0.14, which give J eff

ii = 2π × 1 kHz, such that
0 < D < 2π10 kHz.

VIII. EXPERIMENTAL REALIZATION OF MOVING
TO THE INTERACTION PICTURE

In this scheme of generating the XXZ-D Hamiltonian,
we move to three interaction pictures: The first one is with
respect to the bare energy gap of the qutrit, which yields
the same first interaction unitary U0(τ ) [Eq. (20)] of the first
approach. The second interaction picture is with respect to
the microwave dressed state energy gap, giving rise to the
following interaction unitary:

U1(τ ) = exp

(
−i

[
�car√

2
− �′ cos θ

]
F j

x τ

)
, (28)

and the last interaction picture is with respect to a superposition
of the θ -rotated term used for generating the λ-generating trick.
It results in the following interaction unitary:

U2(τ ) = exp(−i�′[cos θFx + sin θFα]τ ), (29)

with α = z,y. Moving to these interaction pictures results
in the effective Hamiltonian [Eq. (27)], which yields the
simulated evolution UI2 (τ ).

As was discussed above, in order to move to the interaction
frame, we first have to shut down the effective Hamiltonian.
This is done by blocking the two non-co-propagating Raman
beams (setting � = 0), and eliminating the D′ term for t2 time
duration, such that U2(τ + t2) = I.

The next stage is countering U1. For that purpose, we have
to shut down the driving fields responsible for U2. Specifically
we have to block the driving fields that generate �′ sin θFα ,
and to change the Rabi frequency of the carrier transitions
to �car/

√
2 − �′ cos θ . This stage should take t1, such that

U1(τ + t2 + t1) = I. As before, there is no need to counter U0,
and we can measure in any basis we desire.

Similarly to the above scheme, during the adiabatic
quantum simulation experiment, we counter the main noise
sources—the ambient magnetic field fluctuations, and the Rabi
frequency fluctuations—using a combination of the continu-
ous dynamical decoupling technique with decoherence-free
subspace.
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IX. SUMMARY

We have discussed how to quantum engineer the spin-one
XXZ-D AFM Hamiltonian with two schemes. The first covers
0 � λ � 2, whereas the second covers the whole positive
λ � 0 plane in the phase diagram. It enables us to explore
the regime of the Heisenberg Hamiltonian of integer spin
systems where the Haldane phase resides. We have explained
how to adiabatically generate this nontrivial topological phase,
starting from the large D phase with its trivial ground state.
During the adiabatic path, the ground states are robust to the
fluctuations in the magnetic field and Rabi frequencies, and
belong to a decoherence free subspace. This permits a longer
adiabatic path with higher fidelities. We have also shown how
the Haldane phase can be verified with simple experimental

measurements. This proposal may thus constitute an impor-
tant step towards exploring topological phases with trapped
ions.
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