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Measurement-device-independent quantum key distribution (MDI-QKD) can provide enhanced security
compared to traditional QKD, and it constitutes an important framework for a quantum network with an untrusted
network server. Still, a key assumption in MDI-QKD is that the sources are trusted. We propose here a MDI
quantum network with a single untrusted source. We have derived a complete proof of the unconditional security
of MDI-QKD with an untrusted source. Using simulations, we have considered various real-life imperfections
in its implementation, and the simulation results show that MDI-QKD with an untrusted source provides a key
generation rate that is close to the rate of initial MDI-QKD in the asymptotic setting. Our work proves the
feasibility of the realization of a quantum network. The network users need only low-cost modulation devices,
and they can share both an expensive detector and a complicated laser provided by an untrusted network server.
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I. INTRODUCTION

The global quantum network is believed to be the next-
generation information-processing platform for speedup com-
putation and a secure means of communication. Among the
applications of the quantum network, quantum key distribution
(QKD) is one of the first technologies in quantum information
science to produce practical applications [1–3]. Commercial
QKD systems have appeared on the market [4,5], and
QKD networks have been developed [6–8]. Unfortunately,
due to real-life imperfections, a crucial problem in current
QKD implementations is the discrepancy between its the-
ory and practice [3]. An eavesdropper (Eve) could exploit
such imperfections and hack a QKD system. Indeed, recent
demonstrations of various attacks [9–16] on practical QKD
systems highlight that the theory-practice discrepancy is a
major problem for practical QKD.

Measurement-device-independent quantum key distribu-
tion (MDI-QKD) [17] removes all detector side-channel
attacks. This kind of attack is arguably the most important
security loophole in conventional QKD implementations
[12–16]. The assumption in MDI-QKD is that the state
preparation can be trusted. Unlike security patches [18–20]
and device-independent QKD [21], MDI-QKD can remove all
detector loopholes and is also practical for current technology.
Hence, MDI-QKD has attracted a lot of scientific attention
in both theoretical [22–29] and experimental [30–35] studies.
See [36] for a review of its recent development.

An important feature of MDI-QKD is that it can be used
to build a fiber-based MDI quantum network with a fully
untrusted network server [see Fig. 1(a)]. This framework
can realize various quantum information-processing proto-
cols, such as a quantum repeater [37], quantum fingerprint-
ing [38,39], blind quantum computing [40], and multiparty
quantum communication [29]. This scheme is advantageous
in comparison to recent demonstrations of quantum ac-
cess networks [6–8] since it completely removes the need
for the trust of the central relay node. Nevertheless, the
scheme faces several crucial challenges in practice: (i) A key
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assumption is that the users’ frequency-locked lasers are
trusted. However, since frequency-locked lasers1 used in MDI-
QKD experiments [30,33,35] are complicated apparatuses,
there is a great risk involved in each user’s trust that a commer-
cial compact laser does not have any security loopholes. (ii)
It is well known that the major challenge in implementation
of Fig. 1(a) is the performance of high-fidelity interference
between photons from spatially separated lasers [17,30]. (iii) In
fiber communication, it is necessary to introduce an additional
time-synchronization system and to include complex feedback
controls to compensate for the polarization rotations (e.g., an
implementation in [34]). All these challenges render Fig. 1(a)
difficult for practical implementations and applications.

Recently, to mitigate the experimental complexity of the
interference from two remote lasers, several groups have
proposed a new protocol against untrusted detectors [41–44].
A slight drawback is that a rigorous security analysis for this
protocol is challenging, which makes the protocol vulnerable
to attacks if certain assumptions cannot be satisfied [45].
Another elegant proposal to resolve the limitations in the
implementation of MDI-QKD is the so-called plug-and-play
MDI-QKD [46]. Despite the importance of this proposal, a
crucial part to guarantee the security (source monitoring) is
ignored, which makes plug-and-play MDI-QKD vulnerable to
various source attacks [9–11]. Also, a complete security proof
for plug-and-play MDI-QKD and the analysis of practical
imperfections are missing.

In this paper, we overcome the challenges of Fig. 1(a) by
proposing a MDI quantum network with a single untrusted
source in Fig. 1(b). The untrusted server transmits strong
laser pulses to users, all of whom monitor the pulses, encode
their bit information, and send the attenuated pulses back
to the server for measurement. We focus on the application
of such a network to QKD. Crucially, we show that, even
with an untrusted source, the communication security can
be analyzed quantitatively and rigorously. Motivated by the
security analysis for conventional plug-and-play QKD [47,48],
we show what measures by the users are necessary to

1See, for instance, http://dev.wavelengthreferences.com/clarity-
precision-frequency-standard.
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FIG. 1. (Color online) (a) A fiber-based quantum network with
N trusted lasers. (b) A quantum network with a single untrusted laser
source.

ensure the security and to rigorously derive a lower bound
of the secure key generation rate. Moreover, we propose a
decoy-state method for MDI-QKD with an untrusted source.
Furthermore, using simulations, we study how different real-
life imperfections affect the security, and our simulation results
show that MDI-QKD with an untrusted source provides a key
generation rate that is close to the rate with trusted sources in
the asymptotic limit. These results provide a complete security
analysis for plug-and-play MDI-QKD and, more importantly,
make plug-and-play MDI-QKD unconditionally secure, even
with practical imperfections.

Our proposed MDI quantum network has the following
advantages: (i) It completely removes the trust of the laser
source. (ii) It can realize the MDI quantum network with a
single laser, which enables high-fidelity interference among
photons from different users. (iii) Due to the bidirectional
structure, the system can automatically compensate for any
birefringence effects and polarization-dependent losses in
optical fibers, a feature that makes the system highly stable. (iv)
The users can utilize the strong pulses from the server to easily
synchronize and share time references. (v) There is a prospect
of leveraging costly infrastructure for the quantum network
since the single laser source can be broadband, dynamically
reconfigured, and shared by several users via wavelength
division multiplexing (WDM) [49].

The additional assumption, compared to those of the initial
MDI quantum network, is the trust of the monitoring devices.
Note that the users need to monitor only classical laser pulses
instead of single-photon signals. Such monitoring can be
easily realized by a standard optical filter and a classical
intensity detector, and it is a necessary part of both the
Bennett-Brassard 1984 (BB84) protocol and the initial MDI-
QKD in order to prevent the so-called Trojan-horse attack [9].
It is important that proof-of-concept experiments have been
reported for implementation of this monitoring [50–52] and
that ID Quantique’s commercial system (i.e., Clavis2) has
already included a preliminary version of the monitor [4].
Recently, the security of the intensity detector has been studied
comprehensively in [52]. Our work may lead to future research

on an efficient implementation of the single-mode filtering
and monitoring. This monitoring is also a key ingredient in
other quantum communication protocols such as quantum
illumination [53].

The rest of this paper is organized as follows. We introduce
the protocol of MDI-QKD with an untrusted source in Sec. II.
In Sec. III, we present the security analysis of our protocol by
introducing an equivalent virtual model. In Sec. IV, we show
the simulation results for the key rate comparison between
MDI-QKD with an untrusted source and MDI-QKD with
trusted sources and study how device imperfections affect the
protocol. Finally, we conclude this paper in Sec. V.

II. MDI-QKD WITH AN UNTRUSTED SOURCE

To illustrate our proposal, in Fig. 2, we present a specific
design for QKD with two users. With simple modifications,
our scheme can be applied to multiple users [29]. We consider
a time-bin encoding [30], and the protocol runs as follows.

(a) Preliminaries. Alice and Bob use a preshared key
for authentication, and they negotiate parameters needed
during the protocol run. Alice and Bob perform a calibration
measurement of their devices.

(b) Preparation and distribution. Charlie generates a strong
laser pulse, which creates two time-bin pulses (early pulse and
late pulse) after an interferometer. Charlie uses a beam splitter
(BS) to split the two time-bin pulses into two parts and send
them to Alice and Bob via two quantum channels (e.g., optical
fibers).

(c) Monitoring and encoding phase. Once the pulses arrive
at Alice (Bob), they pass through an optical filter, a monitoring
unit, which consists of a BS and an intensity detector (ID).
The pulses are phase randomized by a phase modulator, PM1
(PM3), and then encoded by an encoder that consists of an
intensity modulator (IM) and a PM. Alice and Bob also use
the IM to generate signal and decoy states. Finally, the pulses
are reflected by a Faraday mirror (FM) and are attenuated by
a variable optical attenuator (VOA) to the single-photon level.

(d) Measurement phase. The time-bin-encoded weak co-
herent pulses from Alice and Bob travel back through the
two channels, interfere at Charlie’s BS, and, finally, are
detected by two single-photon detectors. A coincident event
projects the photons into the so-called singlet state |ψ−〉 =
(|01〉 − |10〉)/√2 [30].

(e) Basis and signal and decoy reconciliation. Alice and
Bob announce their encoding bases and signal and decoy
intensity levels over the authenticated public channel and keep
the samples measured in the same bases for signal and decoy
states.

(f) Parameter estimation. Alice and Bob perform the
security analysis and the decoy-state analysis based on their
monitoring results and Charlie’s public announcements.

(g) Error reconciliation and privacy amplification. Alice
and Bob perform the error correction. To ensure that they share
a pair of identical keys, they perform an error-verification step
using two-universal hash functions. Finally, Alice and Bob
apply the privacy amplification to produce the final secret key.

Since the source is entirely unknown and untrusted, we use
three measures to enhance the security of our protocol [9,47].
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FIG. 2. (Color online) Schematic diagram of a time-bin-encoding MDI-QKD with an untrusted laser source. The strong time-bin laser
pulses are generated by a pulsed laser and an interferometer in the server (Charlie), and they are split into two groups by a beam splitter (BS).
Once these pulses arrive at Alice (Bob), they pass through an optical filter (F), a monitoring unit with a BS and a classical intensity detector
(ID), a phase modulator (PM1 and PM3) for phase randomization, and a variable optical attenuator (VOA). Then, the pulses are encoded by an
encoder that consists of an intensity modulator (IM) and a PM, and they are reflected by a Faraday mirror (FM). Finally, the pulses from Alice
and Bob interfere at Charlie’s BS and are detected by two single-photon detectors (D0 and D1). The coincident counts are recorded by a time
interval analyzer (TIA).

(1) We place a narrow bandpass filter (together with a
single-mode fiber), i.e., F in Fig. 2, to allow only a single
mode in spectral and spatial domains to enter into the encoder.
Note that a wavelength-bandpass filter has already been
implemented in commercial QKD systems (i.e., Clavis2) [4].
Moreover, the analysis in [54] shows that with standard optical
devices, the single-mode assumption can be guaranteed with
a high rate of accuracy.

(2) We monitor the pulse energy and the arrival time to ac-
quire certain information about the photon-number distribution
(PND) and the timing mode. Such monitoring can also defend
against the Trojan-horse attack [9], and it has been included
in commercial QKD systems [4]. By randomly sampling the
pulses to test the photon numbers, we can estimate some
bounds on the output PND. In Fig. 2, this estimation is
accomplished by Alice’s and Bob’s BS and ID. In practice,
besides the ID, a spectrum analyzer can also be introduced to
monitor the spectral information.

(3) Alice and Bob use PM1 and PM3 to apply active phase
randomization [50]. The phase randomization is a general
assumption made in most security proofs for laser-based
QKD [55–57], and the randomization can disentangle the input
pulse into a classical mixture of Fock states.

All three measures lead us to analyze the security of MDI-
QKD with an untrusted source quantitatively and rigorously.

III. SECURITY ANALYSIS

A. System model

To analyze the security of Fig. 2, we model Alice’s (Bob’s)
system in Fig. 3(a). We model all the losses as a λ/(1 − λ)
beam splitter; that is, the internal transmittance of Alice’s
(Bob’s) local laboratory is λa (λb), which can be set accurately
via VOA in Fig. 2. Each input pulse after the filter (F) is split
into two via a BS: One (defined as the encoding pulse) is
sent to the encoder for encoding, and the other (defined as
the sampling pulse) is sent to the ID for sampling. One might
suppose that the PND of the encoding pulse could be easily
estimated from the measurement result of the corresponding
sampling pulse by using the random sampling theorem [58,59].
However, this supposition is not true. Any input pulse, after the
phase randomization, is in a Fock state. Therefore, in the case
of a pair of encoding and sampling pulses originating from the
same input pulse, the PNDs of the two pulses are correlated.
This restriction suggests that the random sampling theorem
cannot be directly applied.

FIG. 3. (a) The actual model for Fig. 2. All the internal loss of Alice or Bob is modeled as a λ/(1 − λ) beam splitter. (b) An equivalent
virtual model. The loss is modeled as a λ′/(1 − λ′) beam splitter. q ′ = ηID(1 − q), where ηID � 1 is the efficiency of the imperfect intensity
detector. λ′ = qλ/q ′. The virtual model, which has features from (a), is used to analyze the security of (a).

012333-3



FEIHU XU PHYSICAL REVIEW A 92, 012333 (2015)

We resolve the above restriction and analyze the security by
introducing a virtual model in Fig. 3(b) [48]. For the imperfect
ID in Fig. 3(a), assuming that its efficiency is ηID � 1, we
model the q/(1 − q) BS and the imperfect ID as a q ′/(1 − q ′)
BS and a perfect ID with q ′ = (1 − q)ηID. To ensure that an
identical attenuation is applied to the encoding pulses in both
models, we redefine the internal transmittance in the virtual
model as λ′ = qλ/q ′ � 1. Moreover, in the virtual model, we
introduce a 50:50 optical switch to realize the active sampling.
The optical switch, which is different from a BS, is solely
a sampling device, without any restriction on the correlation
of the PNDs of the encoding pulses and the sampling pulses.
The random sampling theorem can be applied. A crucial fact
is that the internal losses in the actual model and the virtual
model are identical. The upper and lower bounds of output
PND estimated from the virtual model are therefore also valid
for those of the actual model; that is, these two models are
equivalent in the security analysis, an equivalence that has
been proved in [48].

In Fig. 3(b), we define ma (na) as the photon number of the
pulses that input (output) Alice. We also define the pulses that
input (output) Alice as

Untagged pulses: ma ∈ [(1 − δa)Ma,(1 + δa)Ma],

Tagged pulses: ma < (1 − δa)Ma or ma > (1 + δa)Ma.

Here δa is a small positive real number, and Ma is a large
positive integer (which can be the average of the input photon
numbers of the pulses received by Alice). The same definitions
apply to Bob’s pulses with parameters {mb,nb,δb,Mb}. Note
that {δa,δb,Ma,Mb} are chosen by Alice and Bob.

From the random sampling theorem, we draw the following
proposition [47].

Proposition 1. Consider that 2k pulses are sent to Alice from
an untrusted source and, of these pulse, Va pulses are untagged.
Alice randomly assigns each pulse a status as either a sampling
pulse or an encoding pulse with equal probabilities. In total,
V s

a sampling pulses and V e
a encoding pulses are untagged. The

probability that V e
a � V s

a − 2εak satisfies

P
(
V e

a � V s
a − 2εak

)
� exp

(− kε2
a

)
, (1)

where εa is a small positive real number chosen by Alice (i.e.,
the error probability due to statistical fluctuations). That is,
Alice can conclude that V e

a > V s
a − εak with confidence level

τa > 1 − exp(−kε2
a ).

The proof is shown in Appendix A. This proposition shows
that Alice can estimate V e

a from V s
a . Bob’s untagged pulses

have the same property. Furthermore, if we define �a (�b)
as the average probability that a sampling pulse belongs to a
tagged sampling pulse in the asymptotic case, then Alice (Bob)
can conclude that there are no fewer than (1 − �a − εa)k[(1 −
�b − εb)k] untagged encoding pulses with high fidelity.

B. Untagged pulses

In our analysis, Alice and Bob focus only on the untagged
pulses for key generation and discard the other pulses.
In practice, since Alice and Bob cannot perform quantum
nondemolishing (QND) measurement on the photon number
of the input pulses with current technology, they do not

know which pulses are tagged and which are untagged.
Consequently, the gain and the quantum bit error rate (QBER)
of the untagged pulses cannot be measured directly. Alice
and Bob can measure only the overall gain and the QBER.
However, from Proposition 1, they know the probability that a
certain pulse is tagged or untagged. Hence, they can estimate
the upper and lower bounds of the gain and the QBER of the
untagged pulses. Furthermore, in the case that an untagged
pulse inputs Alice or Bob in Fig. 3(a), then the conditional
probability that na (nb) photons are emitted by Alice obeys
a binomial distribution, which can be controlled by Alice’s
(Bob’s) internal transmittance. Alice (Bob) can also estimate
the bounds of such a binomial distribution. The specific bounds
for the gain, QBER, and the PND of the untagged pulses are
shown in Appendix B. Using these bounds, we can prove the
security of MDI-QKD with an untrusted source quantitatively.

C. Key rate

The secure key rate of MDI-QKD with an untrusted source
in the asymptotic limit of infinite long keys is given by

R � (1 − �a − εa)(1 − �b − εb)QZ
11

[
1 − H2

(
eX

11

)]
−QZ

e,μμfe

(
EZ

e,μμ

)
H2

(
EZ

e,μμ

)
, (2)

where QZ
11 and eX

11 are, respectively, the lower bound of the
gain in the rectilinear (Z) basis and the upper bound of the
error rate in the diagonal (X) basis, given that both Alice
and Bob send single-photon states in untagged pulses; H2 is
the binary entropy function given by H2(x) = −x log2(x) −
(1 − x) log2(1 − x); QZ

e,μμ and EZ
e,μμ denote, respectively, the

overall gain and QBER in the Z basis when Alice and Bob use
signal states; and fe � 1 is the error-correction inefficiency
function (in simulations, we consider fe = 1.16). Here we
use the Z basis for key generation and the X basis only for
testing. In practice, QZ

e,μμ and EZ
e,μμ are directly measured

in the experiment, while QZ
11 and eX

11 are estimated from the
decoy states.

D. Decoy states

In the previous decoy-state protocols for MDI-
QKD [22,24–26,28], the key assumption is that the yield Ynanb

remains the same for signal or decoy states.2 However, this
assumption is no longer valid in the case that the source is
controlled by Eve because Eve knows both the input photon
number ma (mb) and the output photon number na (nb). In this
case, the parameter that is the same for any signal and decoy
state is Ymambnanb

.3 Similarly, the conditional QBERs are also
different if Eve controls the source.

2Ynanb
is defined as the conditional probability that Charlie has a

coincident event given that Alice (Bob) sends out an na (nb) photon
signal.

3Ymambnanb
is defined as the conditional probability that Charlie has

a coincident event given that the two pulses enter Alice’s and Bob’s
laboratory with photon numbers ma and mb and are emitted from
Alice’s and Bob’s laboratory with photon numbers na and nb.
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Therefore, in MDI-QKD with an untrusted source, Eve is
given significantly greater power since she can control both
the input and the output of Alice’s and Bob’s laboratory.
The decoy-state analysis is more challenging. However, rather
surprisingly, it is still possible to achieve the unconditional
security quantitatively, even if the source is given to Eve [47].
This is so mainly because we are focusing only on the untagged
pulses, whose PND, gain, and QBER can be bounded.
Therefore, we are still able to estimate QZ

11 and eX
11. Such

an estimation can be completed by using either the numerical
method based on linear programming or the analytical method.
The details of this estimation are shown in Appendix C.

IV. NUMERICAL SIMULATION

The details of the simulation techniques, including the
model for the imperfect intensity detector, the tagged ratio �,
and the finite-data statistics, are shown in the Appendix D.
We use the experimental parameters listed in Table I for
simulation. For δ = δa = δb, a choice for it that is too large
or too small will make the security analysis less optimal [48].
We find numerically that δ = 0.01 is a near-optimal value. In
addition, we assume that the source in Charlie is Poissonian
centered at Mc photons per optical pulse. In this bidirectional
structure, Alice’s and Bob’s average input photon numbers
(Ma and Mb) depend on the channel loss and Mc. The gain
and the QBER are derived using the channel model presented
in [25].

The simulation results with an infinite number of signals
are shown by the red (light gray) curves in Fig. 4. We consider
two decoy states: we fix the vacuum state at ω = 0 and the
weak decoy state at ν = 0.01 and optimize the signal state
μ for different distances. With Mc = 107 (Charlie’s mean
photon number per pulse), the case with an untrusted source
[red (light gray) dotted curve] is similar to that with trusted
sources [red (light gray) dashed curve] at short distances. The
condition changes at long distances. This occurs because at
long distances, due to the channel loss, the photon numbers
arrived at by Alice and Bob will be much smaller than Mc.
The lower input photon number increases �, and the estimate
of the gain of the untagged pulses is sensitive to the value
of � [see Eq. (B1)]. This is so especially when the measured
overall gain is small over long distances. In contrast, over short

TABLE I. List of practical parameters for simulation. The detec-
tion efficiency ηd and the dark-count rate Y0 are from commercial
ID-220 single photon detectors [4]. The channel misalignment error
ed , the system repetition rate f , the total number of pulses k,
and the fiber loss coefficient α are from the 200-km MDI-QKD
experiment [34]. The efficiency of the intensity detector (ID) ηID ,
the noise of the ID σID , and the beam-splitter ratio q are from [48]. ε

is the security bound considered in our finite-key analysis.

ηd Y0 ed f α

20% 3 × 10−6 0.1% 75 MHz 0.21 dB/km

ηID σID q ε k

0.7 6.55 × 104 0.01 10−10 3.5 × 1013
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FIG. 4. (Color online) Simulation results. Red (light gray) curves
are for an infinite number of signals. Mc denotes the mean of the
photon number (per pulse) of Charlie’s laser pulses. With Mc = 109

and practical imperfections, MDI-QKD with an untrusted source can
tolerate about a 195-km distance. At distances below 180 km, the key
rates for the two cases (with trusted and untrusted sources) almost
overlap. Blue (dark gray) curves are for a finite number of signals.
A finite data size reduces the efficiencies for both cases. MDI-QKD
with an untrusted source can still tolerate over 70 km of fiber with
detectors with 20% efficiency.

distances, the gain is significantly greater than �; therefore,
the key rates for the two cases almost overlap.

A natural scheme for the improvement of the performance
of MDI-QKD with an untrusted source is using a brighter laser.
Indeed, the performance is improved substantially by setting
Mc = 109 [red (light gray) solid curve]. The two cases (with
trusted sources and with an untrusted source) have similar
results. Note that subnanosecond pulses with ∼109 photons
per pulse can be easily generated with directly modulated laser
diodes. For instance, if the wavelength is 1550 nm and the pulse
repetition rate is 75 MHz, the average laser power of Charlie’s
source is ∼ 9.6 mW. This laser power can be provided by many
commercial pulsed laser diodes.

The simulation results with a finite number of signals are
shown by the blue (dark gray) curves in Fig. 4. We choose
the confidence level τ for the statistical fluctuations of the
estimation of the number of untagged pulses [see Eq. (1)]
as τa = τb = τ � 1 − 10−7, which suggests that εa = εb =
3.03 × 10−7. We set Mc = 109. We can see that the finite
data size clearly reduces the efficiencies: first, the statistical
fluctuation for decoy-state MDI-QKD becomes important, and
this factor reduces the performance of both the trusted source
and the untrusted source. Second, εa and εb are nonzero in
this finite-data case, and thus, the estimate of the gain of the
untagged pulses becomes loose (see Appendix D).4 In the
finite-data setting, our protocol can tolerate about 70 km of
fiber with standard commercial detectors with 20% efficiency.

4That is, due to statistical fluctuations, the proportion of tagged
pulses is increased. Our analysis is conservative in that Eve can fully
control the tagged pulses, which makes the security bound worse than
MDI-QKD with trusted sources.
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With state-of-the-art detectors [60], however, the protocol can
easily generate keys over 200 km of fiber.

V. DISCUSSION

In summary, we propose a MDI quantum network with
an untrusted source. In this network, the complicated and
expensive detectors, together with the laser source, can be
provided by an untrusted network server that can be shared
by all users; that is, a star-type MDI quantum access network
can be readily realized on the basis of our proposal for several
quantum information-processing protocols [36–40]. Our work
proves the feasibility of such a realization. Moreover, we
present a complete security analysis for MDI-QKD with an
untrusted source. Our analysis and simulation consider various
practical imperfections, including additional loss introduced
by the bidirectional structure, the inefficiency and noise of the
intensity monitor, and the finite-data-size effect. Furthermore,
our protocol is practically secure and ready for implementa-
tion. An experimental demonstration is in progress.

It is worth mentioning that one practical issue associated
with Fig. 2 is the temporal matching. For instance, the two
channels, Alice-Charlie and Bob-Charlie, may be different in
practice; then the arrival times are mismatched when the pulses
return back to Charlie. One solution, as demonstrated already
in [30], is to introduce addition fibers inside either Alice or Bob
to match the channel length. Note that, like in the conventional
plug-and-play system [4], in our proposal, both Alice and Bob
should hold a certain length of fiber spool as the optical buffer.
Consequently, Alice or Bob can control the length of this
fiber buffer to match the channel difference. Furthermore, the
feedback-control techniques demonstrated in [34] could also
be used to ameliorate temporal-matching issues.

There are still several imperfections that are not analyzed in
our paper, such as the source flaws in the state preparation [54],
the nonideality in the optical filter, and the imperfections in
the electronics of the classical intensity detector [52]. These
questions lead to an interesting future project, that is, deriving
a refined analysis that includes all of the users’ possible
(small) imperfections and side channels. For instance, Ref. [61]
has reported comprehensive analysis against the Trojan-horse
attack. We expect that this research direction will move an
important step towards unconditionally secure communication
networks that are also practical.
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APPENDIX A: PROOF OF PROPOSITION 1

We follow Ref. [48] to prove Proposition 1. Among all
the V untagged pulses, each pulse has a probability of 1/2
to be assigned as an untagged encoding pulse. Therefore,
the probability that V e

a = v obeys a binomial distribution.

Cumulative probability is given by [59]

P

(
V e

a � V − 2εk

2

∣∣∣∣V = v

)
� exp

(
− 4ε2k2

v

)
.

For any v ∈ [0,2k], 2k/v � 1. Therefore, we have

P

(
V e

a � V − 2εk

2

∣∣∣∣V ∈ [0,2k]

)
� exp(−kε2).

Since V ∈ [0,2k] is always true, the above inequality
reduces to

P

(
V e

a � V − 2εk

2

)
� exp(−kε2). (A1)

By definition, we have

V = V e
a + V s

a . (A2)

Substituting Eq. (A2) into Eq. (A1), we have

P
(
V e

a � V s
a − εk

)
� exp(−kε2). (A3)

�
The above proof can be easily generalized to the case where

for each pulse sent from the untrusted source to Alice or
Bob, Alice or Bob randomly assigns it as either an encoding
pulse with probability β or a sampling pulse with probability
1 − β. Here β ∈ (0,1) is chosen by Alice or Bob. It is then
straightforward to show that

P

[
V e

a � β

1 − β

(
V s

a − 2εk
)]

� exp(−4kε2β2). (A4)

APPENDIX B: PROPERTIES OF UNTAGGED PULSES

The main concept to analyze the properties of the untagged
pulses follows the analysis for plug-and-play QKD presented
in [47]. Both Alice and Bob will focus on the (1 − �a − εa)k
and (1 − �b − εb)k untagged pulses for key generation and
discard the other pulses. This provides a conservative way
to analyze the security, and also, owing to the input photon
numbers of the untagged pulses concentrated within a narrow
range, this makes it much easier to analyze the security.

In practice, since Alice and Bob cannot perform quantum
nondemolishing measurement on the photon number of the
input pulses with current technology, they do not know which
pulses are tagged and which are untagged. As a result, the gain
Q and the quantum bit error rate (QBER) E of the untagged
pules cannot be measured experimentally. Here Q is defined as
the conditional probability that Charlie has a coincident event
given that both Alice and Bob send out an untagged pulse and
Alice and Bob use the same basis; E is defined as error rates
inside Q.

In experiment, Alice and Bob can measure the overall
gain Qe and the overall QBER Ee. The subscript e denotes
the experimentally measurable overall properties. Moreover,
they know the probability that a certain pulse will be tagged
or untagged from the above analysis. Although they cannot
measure the gain Q and the QBER E of the untagged pulses
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directly, they can estimate the upper bounds and lower bounds of these parameters. The upper bound and lower bound of Q are

Q � Q = Qe

(1 − �a − εa)(1 − �b − εb)
, Q � Q = max

(
0,

Qe − 1 + (1 − �a − εa)(1 − �b − εb)

(1 − �a − εa)(1 − �b − εb)

)
. (B1)

The upper bound and lower bound of EQ can be estimated as

EQ = QeEe

(1 − �a − εa)(1 − �b − εb)
, EQ = max

(
0,

QeEe − 1 + (1 − �a − εa)(1 − �b − εb)

(1 − �a − εa)(1 − �b − εb)

)
. (B2)

Moreover, suppose that an untagged pulse with input photon number ma ∈ [(1 − δa)Ma,(1 + δa)Ma] inputs Fig. 3(a) of the
main text; the conditional probability that na photons are emitted by Alice given that ma photons enter Alice’s device obeys a
binomial distribution as

P (na|ma) =
(

ma

na

)
(λaq)na (1 − λaq)ma−na (0 � λa � 1). (B3)

For Alice’s untagged bits, we can show that the upper bound and lower bound of P (na|ma) are

P (na|ma) =

⎧⎪⎨
⎪⎩

(1 − λaq)(1−δa )Ma , if na = 0,((1+δa )Ma

na

)
(λaq)na (1 − λaq)(1+δa )Ma−na , if 1 � n � (1 + δa)Ma ,

0, if na > (1 + δa)Ma ,
(B4)

P (na|ma) =

⎧⎪⎨
⎪⎩

(1 − λaq)(1+δa )Ma , if na = 0,((1−δa )Ma

na

)
(λaq)na (1 − λaq)(1−δa )Ma−na , if 1 � n � (1 − δa)Ma ,

0, if na > (1 − δa)Ma ,

under the condition (1 + δa)Maλaq < 1. This condition sug-
gests that the expected output photon number of any untagged
pulse should be lower than 1. This is normally a basic condition
in decoy-state BB84 and MDI-QKD based on weak coherent
pulses. For example, for Ma = 107 and q = 0.01, Alice can
simply set λa = 10−6 so that the expected output photon
number is 0.1.

APPENDIX C: DECOY-STATE ANALYSIS

Various decoy-state methods have been proposed for MDI-
QKD [22,24,28]. Among all these decoy-state protocols, the
two-decoy-state protocol has been shown to be the optimal
one [28]; it has already been used in all experimental
MDI-QKD implementations reported so far [30–35]. In this
protocol, there are three states: Alice’s signal state μa (for
which the internal transmittance is λ

μ
a ) and Alice’s two weak

decoy states, νa and ωa (for which the internal transmittance is
λω

a < λν
a < λ

μ
a ). In this work, we focus on the symmetric case

where the two channel transmissions from Alice to Charlie
and from Bob to Charlie are equal. In the symmetric case, the
optimal intensities for Alice and Bob are equal [28]. Hence,
to simplify our discussion, we assume that equal intensities
are used by Alice and Bob, i.e., γa=γb=γ with γ ∈ {μ,ν,ω}.
Also, we consider that only the signal state is used to generate
the final key, while the decoy states are used solely to test the
channel properties.

In previous decoy-state protocols for MDI-
QKD [22,24,28], the key assumption was that the yield
of na and nb photon state Ynanb

remains the same regardless
of whether signal states or decoy states are chosen by Alice
and Bob, e.g., Y

μμ
nanb

= Y νν
nanb

. Here Y
μμ
nanb

is defined as the
conditional probability that Charlie has a coincident event
given that Alice (Bob) sends out an na (nb) photon signal and

they both chose a signal state by setting internal transmittances
λ

μ
a and λ

μ

b . This is true because in previous analysis, Eve
knows only the output photon numbers na and nb of each
pulse. However, this assumption is no longer valid in the
case that the source is controlled by Eve because Eve knows
both the input photon number ma (mb) and the output photon
number na (nb) when she controls the source. Therefore,
she can perform an attack that depends on the values of
both m and n. In this case, the parameter that is the same
for any signal and decoy states is Ymambnanb

, the conditional
probability that Charlie has a coincident event given that the
two pulses enter Alice’s and Bob’s laboratory with photon
numbers ma and mb and they are emitted from Alice’s and
Bob’s laboratory with photon numbers na and nb. Similarly,
the conditional QBERs are also different: e

μμ
nanb

�= eνν
nanb

if Eve
controls the source. The parameter that is the same for the
signal state and the decoy states is emambnanb

.
In summary, in MDI-QKD, if the source is assumed to be

trusted, we have

Yμμ
nanb

= Y νν
nanb

, eμμ
nanb

= eνν
nanb

.

If the source is accessible to Eve (i.e., the source is untrusted),
we have

Yμμ
mambnanb

= Y νν
mambnanb

. eμμ
mambnanb

= eνν
mambnanb

.

The dependence of Ynanb
and enanb

on different states is
a fundamental difference between MDI-QKD with an un-
trusted source and MDI-QKD with a trusted source. There-
fore, in MDI-QKD with an untrusted source, Eve is given
significantly greater power, and the decoy-state analysis
is much more challenging. However, rather surprisingly,
it is still possible to achieve the unconditional security
quantitatively even if the source is given to Eve. This
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is mainly because we are focusing on only the untagged pulses, whose photon-number distribution, gain, and QBER can be
bounded via Eqs. (B4), (B1), and (B2), respectively. Therefore, we are still able to estimate QZ

11 and eX
11. Such an estimation can

be completed by using either a numerical method based on linear programming or an analytical method.
In a MDI-QKD implementation with an untrusted source, by performing the measurements for different intensity settings, we

can obtain

Qχ
γaγb

=
ma=(1+δa )Ma∑
ma=(1−δa )Ma

mb=(1+δb)Mb∑
mb=(1−δb)Mb

∞∑
na=0

∞∑
nb=0

Pin(ma)Pin(mb)P γa (na|ma)P γb (nb|mb)Ymambnanb
,

(C1)

Eχ
γaγb

Qχ
γaγb

=
ma=(1+δa )Ma∑
ma=(1−δa )Ma

mb=(1+δb)Mb∑
mb=(1−δb)Mb

∞∑
na=0

∞∑
nb=0

Pin(ma)Pin(mb)P γa (na|ma)P γb (nb|mb)Ymambnanb
emambnanb

,

where χ ∈ {X,Z} denotes the basis choice, γa (γb) denotes Alice’s (Bob’s) intensity setting, Qχ
γaγb

(Eχ
γaγb

) denotes the gain
(QBER), Pin(ma) is the probability that the input signal contains ma photons (i.e., the ratio of the number of signals with m input
photons over k), and P γa (na|ma) is the conditional probability that the output signal contains na photons given the input signal
contains ma photons for state γa and is given by Eq. (B3).

QZ
11 for γa = μ and γb = μ can be written as

QZ
11 =

ma=(1+δa )Ma∑
ma=(1−δa )Ma

mb=(1+δb)Mb∑
mb=(1−δb)Mb

Pin(ma)Pin(mb)P μ(1|ma)P μ(1|mb)Ymamb11

(C2)

� P
μ

1|ma
P

μ

1|mb

ma=(1+δa )Ma∑
ma=(1−δa )Ma

mb=(1+δb)Mb∑
mb=(1−δb)Mb

Pin(ma)Pin(mb)Ymamb11 ≡ P
μ

1|ma
P

μ

1|mb
SZ

11,

where the bounds of the probabilities are from Eqs. (B4). Thus, the estimation on QZ
11 is equivalent to the estimation of SZ

11, and
Eq. (C1) can be written as

Qχ
γaγb

=
∞∑

na,nb=0

P γa (na|ma)P γb (nb|mb)Sχ
nanb

, Eχ
γaγb

Qχ
γaγb

=
∞∑

na,nb=0

P γa (na|ma)P γb (nb|mb)Sχ
nanb

eχ
nanb

. (C3)

1. Numerical approaches

Ignoring statistical fluctuations temporarily, the estimations on SZ
11 and eX

11, from Eq. (C3) are constrained optimization
problems, which are linear and can be efficiently solved by linear programming (LP). The numerical routine to solve these
problems can be written as

min : SZ
11, such that : 0 � SZ

nanb
� 1, na,nb ∈ Scut;

P (na|ma) =
⎧⎨
⎩

(1 − λa)(1−δa )Ma , if na = 0,((1+δa )Ma

na

)
λna (1 − λa)(1+δa )Ma−na , if 1 � n � (1 + δa)Ma,

0, ifna > (1 + δa)Ma,

P (na|ma) =
⎧⎨
⎩

(1 − λa)(1+δa )Ma , if na = 0,((1−δa )Ma

na

)
λna (1 − λa)(1−δa )Ma−na , if 1 � n � (1 − δa)Ma,

0, if na > (1 − δa)Ma,

QZ
γaγb

− 1 +
∑

na,nb∈Scut

P γa (na|ma)P γb (nb|mb) �
∑

n,m∈Scut

P γa (na|ma)P γb (nb|mb)SZ
nanb

� QZ
γaγb

,

max : eX
11, such that : 0 � SX

nanb
� 1,0 � SX

nanb
eX
nanb

� 1, na,nb ∈ Scut

P (na|ma) =

⎧⎪⎨
⎪⎩

(1 − λaq)(1−δa )Ma , if na = 0,((1+δa )Ma

na

)
(λaq)na (1 − λaq)(1+δa )Ma−na , if 1 � n � (1 + δa)Ma,

0, ifna > (1 + δa)Ma,

P (na|ma) =

⎧⎪⎨
⎪⎩

(1 − λaq)(1+δa )Ma , if na = 0,((1−δa )Ma

na

)
(λaq)na (1 − λaq)(1−δa )Ma−na , if 1 � n � (1 − δa)Ma,

0, if na > (1 − δa)Ma,
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QX
γaγb

− 1 +
∑

na,nb∈Scut

P γa (na|ma)P γb (nb|mb) �
∑

n,m∈Scut

P γa (na|ma)P γb (nb|mb)SX
nanb

� QX
γaγb

,

QX
γaγb

EX
γaγb

− 1 +
∑

na,nb∈Scut

P γa (na|ma)P γb (nb|mb) �
∑

n,m∈Scut

P γa (na|ma)P γb (nb|mb)SX
nanb

eX
nanb

� QX
γaγb

EX
γaγb

,

where Scut denotes a finite set of indexes na and nb, with Scut = {na,nb ∈ N with na � Acut and nb � Bcut}, for prefixed values
of Acut � 2 and NBcut � 2. In our simulations, we choose Acut = 7 and Bcut = 7, as larger Acut and Bcut have a negligible effect
on decoy-state estimation. Further discussions can be found in [22]. Here γ ∈ {μ,ν,ω} for two-decoy-state estimation. Notice
that statistical fluctuations can be easily conducted by adding constraints on the experimental measurements of Qχ

γaγb
and Eχ

γaγb
.

These additional constraints can be analyzed by using statistical estimation methods, such as standard error analysis [22] or the
Chernoff bound [26]. A rigorous finite-key analysis can also be implemented by following the technique presented in [26].

2. Analytical approaches

A rigorous estimation is to solve the equation set of Eq. (C3) by using the constraints on the binomial probability distributions
given by Eq. (B4). The analytical expression for such an estimation is highly complicated. So we only use the numerical method
presented in the last section to study this precise estimation. Here, for the analytical expression, we present a relatively simple
analytical method by using the Poisson limit theorem [58].

Claim. Under the condition that m → ∞ and λq → 0, such that μ = mλq, then(
m

n

)
(λq)n(1 − λq)m−n → exp(−μ)

μn

n!
. (C4)

The condition in this claim is easy to meet in an actual experiment as m can be larger than 106 and λq is normally less than 10−7

in a practical setup. The intuition behind this approximation is that we applied heavy attenuation on Alice’s and Bob’s input pulses.
The input pulse has more than ∼106 photons, while the output pulse has less than 1 photon on average. The internal attenuation
of Alice’s local laboratory is greater than −60 dB. We know that heavy attenuation will transform an arbitrary photon-number
distribution into a Poisson-like distribution. A qualitative argument on this argument for the plug-and-play structure has been
provided in [9]. From the approximation, Eq. (C3) can be estimated using methods similar to those presented in [28].

The lower bound of SZ
11 is given by

SZ
11 = 1

(μ − ω)2(ν − ω)2(μ − ν)

[
(μ2 − ω2)(μ − ω)

(
QZ

ννe
2ν + QZ

ωωe2ω − QZ
νωeν+ω − QZ

ωνe
ω+ν

)

− (ν2 − ω2)(ν − ω)
(
QZ

μμe2μ + QZ
ωωe2ω − QZ

μωeμ+ω − QZ
ωμeω+μ

)]
.

The upper bound of SX
11e

X
11 is given by

SX
11e

X
11 = 1

(ν − ω)2

[
e2νQX

ννE
X
νν + e2ωQX

ωωEX
ωω − eν+ωQX

νωEX
νω − eω+νQX

ωνE
X
ων

]
.

APPENDIX D: SIMULATION TECHNIQUES

In simulation, the gain and the QBER are derived using
the channel model presented in [25]. We consider two decoy
states, ν = 0.01 and ω = 0, and we optimize the signal state
μ for different distances. We choose fe = 1.16

1. Imperfect intensity detector

There are two major imperfections of the intensity detector
(ID): inefficiency and noise. The inefficiency ηID can be easily
modeled as additional loss by using a beam splitter. The
noise of the ID is another important imperfection. In a real
experiment, the ID may indicate a certain pulse contains m′
photons. Here we refer to m′ as the measured photon number,
in contrast to the actual photon number m. However, due to
the noise and the inaccuracy of the intensity monitor, this
pulse may not contain exactly m′ photons. To quantify this

imperfection, following [48], we introduce a term called the
conservative interval ς . We then define V s as the number of
sampling pulses with measured photon number m′ ∈ [(1 −
δ)M ′ + ς,(1 + δ)M ′ − ς ], where M ′ = MηID(1 − q). One
can conclude that, with confidence level τc = 1 − c(ς ), the
number of untagged sampling pulses V s � V s. One can make
c(ς ) arbitrarily close to zero by choosing a large enough
ς . That is, for one individual pulse, the probability that
|m − m′| > ς can be negligible.

In practice, various noise sources, including thermal noise,
shot noise, etc., may exist. Here, in simulation, we consider
a simple noise model where a constant Gaussian noise with
variance σ 2

ID is assumed. That is, if m photons enter an efficient
but noisy ID, the probability that the measured photon number
is m′ obeys a Gaussian distribution,

P (m′|m) = 1

σIM

√
2π

exp

[
− (m − m′)2

2σ 2
ID

]
. (D1)
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Hence, the measured photon-number distribution P (m′) has
a larger variation than the actual photon-number distribution
P (m) due to the noise. More concretely, if the input photon
numbers obey a Gaussian distribution centered at M with
variance σ 2, the measured photon numbers also obey a
Gaussian distribution centered at M ′, but with a variance
σ 2 + σ 2

ID.

2. The tagged ratio �

For any δ ∈ [0,1] and the imperfect ID discussed above, we
can calculate � from the measured photon number m′ by

� = 1 − {�(M ′ + δM ′ + ς ) − �[(M ′ − δM ′ − ς )]},
(D2)

where � is the cumulative distribution function of the photon
number for the measured pulses [58]. Assuming that the system
is based on a coherent source by Charlie, which means that
the input photon number m obeys Poisson distribution, it is
natural to set M to be the average input photon number. In
numerical simulation, for ease of calculation, we approximate
the Poisson distribution of the input photon number M as
a Gaussian distribution centered at M with variance σ 2 =
M . This is an excellent approximation because M is very
large (107 or larger) in all the simulations presented below.
Then, the measured photon number m′ follows a Gaussian
distribution centered at M ′ = MηID(1 − q) with a variance
M + σ 2

ID. The Gaussian cumulative distribution function is
given by [58]

�g(x) = 1

2

⎡
⎣1 + erf

⎛
⎝ x − M ′√

2
(
M + σ 2

ID

)
⎞
⎠

⎤
⎦, (D3)

where erf(x) = 2√
π

∫ x

0 e−t2
dt is the error function. Notice that

erf(x) is an odd function; from Eqs. (D2) and (D3), we have

� = 1 − erf

⎛
⎝ δM ′ + ς√

2M + 2σ 2
ID

⎞
⎠. (D4)

In simulation, for δ = δa = δb, a choice for δ that is too
large or too small will make the security analysis less opti-
mal [48]. We find numerically that δ = 0.01 is a near-optimal
value.

3. Finite-data statistics

A real-life QKD experiment is always completed in finite
time, which means that the length of the output secret key is
obviously finite. Thus, the parameter estimation procedure in
QKD needs to take the statistical fluctuations of the different
parameters into account. We assume that Charlie’s source
generates 2k pulses in an experiment. The finite-data effect has
two main consequences: First, the finite data size will introduce
statistical fluctuations for the estimation of the number of
untagged pulses. If the confidence level τa for Proposition 1 is
expected to be close to 1, εa has to be positive. More concretely,
for a fixed 2k, if the estimate on the untrusted source is expected
to have a confidence level no less than τa , one has to choose εa

as εa =
√

− ln(1−τa )
k

. In simulation, we choose the confidence

level τ (see Proposition 1) as τa = τb = τ � 1 − 10−7, which
suggests that εa = εb = 3.03 × 10−7. Since εa and εb are
nonzero in this finite-data case, the estimate of the gain of
the untagged pulses becomes loose at long distances. That is,
due to statistical fluctuations, the proportion of tagged pulses
is increased at long distances. Our analysis is conservative in
that Eve can fully control the tagged pulses, which makes the
security bounds worse than MDI-QKD with trusted sources.
This is the reason why MDI-QKD with an untrusted source
is not as good as MDI-QKD with trusted sources in the
finite-data case, which has been shown in Fig. 4 of the main
text.

Second, in decoy-state MDI-QKD, the statistical fluctu-
ations of experimental outputs have to be considered. The
technique to analyze the statistical fluctuations can be analyzed
by using statistical estimation methods, such as standard error
analysis [22] or the Chernoff bound [26]. In this paper, we
analyze the statistical fluctuations by using the standard error
analysis method presented in [22]. In simulation, we choose
ε = 10−10 as the overall security bound.
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