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Quantum theory imposes fundamental limitations on the amount of information that can be carried by any
quantum system. On the one hand, the Holevo bound rules out the possibility of encoding more information in
a quantum system than in its classical counterpart, comprised of perfectly distinguishable states. On the other
hand, when states are uniformly distributed in the state space, the so-called subentropy lower bound is saturated.
How uniform quantum systems are can be naturally quantified by characterizing them as t-designs, with t = ∞
corresponding to the uniform distribution. Here we show the existence of a trade-off between the uniformity of a
quantum system and the amount of information it can carry. To this aim, we derive a hierarchy of informational
bounds as a function of t and prove their tightness for qubits and qutrits. By deriving asymptotic formulas for
large dimensions, we also show that the statistics generated by any t-design with t > 1 contains no more than
a single bit of information, and this amount decreases with t . Holevo and subentropy bounds are recovered as
particular cases for t = 1 and t = ∞, respectively.
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I. INTRODUCTION

Quantum theory imposes fundamental limitations on the
amount of information that can be encoded into or extracted
from any quantum system. Formally, the former case is
referred to as the problem of the accessible information
[1–6] of a quantum ensemble; the latter, as the problem of
the informational power [7–15] of a quantum measurement.
Recently, a duality relation between these two quantities was
established [7], which allows us to generally refer to the
problem of quantifying the information carried by a quantum
system.

On the one hand, the well-known Holevo upper bound [2]
rules out the possibility of encoding more information in a
quantum system than in its purely classical counterpart, com-
prised of perfectly distinguishable states. On the other hand,
for a genuinely quantum system whose states are uniformly
distributed in the state space, the so-called subentropy lower
bound [6] is saturated. Therefore, one might conjecture the
existence of a general trade-off between the uniformity of a
quantum system and the amount of information it can carry.

A natural means to quantify how uniform quantum systems
are is provided by their characterization in terms of spherical
quantum t-designs [16–21], with t = 1 corresponding to an ar-
bitrary quantum measurement and t = ∞ corresponding to the
completely uniform distribution. Other remarkable examples
of t-designs for the case t = 2 are symmetric, informationally
complete (SIC) quantum measurements [16,20] and complete
sets of mutually unbiased bases (MUBs) [18,19,21]. They
play a fundamental role in a plethora of applications such
as quantum tomography [22], cryptography [23], information
locking [24], quantumness of Hilbert space [25,26], entropic
uncertainty relations [27–32], and foundations of quantum
theory [33–36].

In this work, for any t we derive an upper bound on the
information that can be carried by any quantum t-design as
a function of the dimension of the system. In this sense,
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the resulting hierarchy of bounds proves the correctness
of the above-mentioned conjecture and formally quantifies
it. Furthermore, we show the tightness of our bounds for
qubits and qutrits. By deriving asymptotic formulas for large
dimensions, we also show that the statistics generated by
any t-design with t > 1 contains no more than a single bit
of information and that this amount decreases with t . The
Holevo upper bound [2] and the subentropy lower bound
[6] are recovered as particular cases for t = 1 and t = ∞,
respectively.

The paper is structured as follows. First, we introduce quan-
tum t-designs in Sec. II A, discuss the relevant figures of merit
in Sec. II B, and provide a way to estimate them in Sec. II C.
Then we introduce our main result, namely, a hierarchy of
upper bounds on the accessible information and the informa-
tional power of t-designs in Sec. III A, we derive close analytic
expressions for low values of t and asymptotic formulas for
large dimensions in Sec. III B, and we prove tightness for
qubits and qutrits in Sec. III C. We conclude by summarizing
our results and presenting some outlooks in Sec. IV.

II. FORMALIZATION

A. Spherical quantum t-designs

In this subsection we recall some basic facts [37] from
quantum information theory and specialize them to the case of
spherical quantum t-design.

Any quantum system is associated with a Hilbert space H,
and we denote by L(H) the space of linear operators on H.
We only consider finite-dimensional Hilbert spaces.

A quantum state ρ is represented by a positive-semidefinite
operator in L(H) such that Tr[ρ] � 1. A pure state ψ is such
that rank ψ = 1 and is denoted in Dirac notation by a vector
|ψ〉 with ψ = |ψ〉〈ψ |. Any quantum preparation is represented
by an ensemble ρx , namely, a measurable function ρx from
reals to states such that

∫
x

Tr[ρx]dx = 1. An ensemble of pure
states is such that ρx �= 0 if and only if ρx is a pure state. The
uniform ensemble is the ensemble of pure states distributed
with the uniform (Haar) measure on the unit sphere of H.
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A quantum effect π is represented by a positive-semidefinite
operator in L(H) such that π � 1d , where 1d is the d-
dimensional identity operator. Any quantum measurement is
represented by a positive operator-valued measure (POVM)
πy , namely, a measurable function πy from reals to effects
such that

∫
y
πydy = 1d .

For any ensemble ρx and POVM πy , the joint probability
density px,y of input x and outcome y is given by the Born
rule, i.e., px,y = Tr[ρxπy].

Definition I. Spherical quantum t-design. A spherical
quantum t-design is an ensemble ρx such that∫

ρ⊗k
x

Tr[ρx]k−1
dx :=

∫
ψ⊗k

x

||ψx ||2(k−1)
dx

holds for any k � t , where ψx is the uniform ensemble.
Lemma I. Let ψx be the uniform ensemble. Then one has∫

ψ⊗k
x

||ψx ||2(k−1)
dx =

(
d − 1 + k

k

)−1

Psym,

where Psym is the projector over the symmetric subspace of
H⊗k and d is the dimension of H.

Proof. See Ref. [18].
Remark I. From Definition I and Lemma I it immediately

follows that any POVM is a 1-design up to a normalization
factor of d.

Remarkable examples of 2-designs are SIC POVMs [16]
and d + 1 mutually unbiased bases [20].

A concept that is relevant in the following is the so-called
index of coincidence [32].

Definition II. Index of coincidence. For any POVM πy and
any unit-trace state ρ, the index of coincidence Ck(πy,ρ) is
given by

Ck(πy,ρ) :=
∫

Tr[πyρ]k

Tr[πy]k−1
dy.

The following result characterizes the index of coincidence of
t-designs.

Lemma II. Let H be a d-dimensional Hilbert space. Let
πy ∈ L(H) be a t-design POVM. Let |ψ〉 ∈ H be a unit-trace
pure state. For any k � t , the index of coincidence Ck(πy,ψ)
is independent of πy and ψ and is given by

Ck = d

(
d − 1 + k

k

)−1

.

Proof. By Definition II one has

Ck(πy,ψ) =
∫

Tr

[
ψ⊗k

π⊗k
y

Tr[πy]k−1

]
dy.

By Lemma I one has

Ck(πy,ψ) = d

(
d − 1 + k

k

)−1

Tr[ψ⊗kPsym].

Since ψ⊗k belongs to the symmetric subspace, the statement
immediately follows.

B. Informational measures

In this subsection we recall some basic definitions [38] from
classical information theory. Given two probability densities

px and qy , the relative entropy D(px ||qy), given by

D(px ||qy) :=
∫

px ln
px

qx

dx,

is a nonsymmetric measure of the distance between the two
densities. Given two random variables X and Y distributed
according to probability density px,y , the mutual information
I (X; Y ), given by

I (X; Y ) := D(px,y ||pxpy),

is a measure of their correlation. For any ensemble ρx and
POVM πy , we denote by I (ρx,πy) the mutual information
I (X; Y ) between random variables X and Y distributed
according to px,y = Tr[ρxπy].

The accessible information [1–4] of an ensemble measures
how much information can be extracted from the ensemble.

Definition III. Accessible information. The accessible in-
formation A(ρx) of an ensemble ρx is the supremum over any
POVM πy of the mutual information I (ρx,πy), namely,

A(ρx) := sup
πy

I (ρx,πy).

The informational power [7] of a POVM measures how
much information can be extracted by the POVM.

Definition IV. Informational power. The informational
power W (πy) of a POVM πy is the supremum over any
ensemble ρx of the mutual information I (ρx,πy), namely,

W (πy) := sup
ρx

I (ρx,πy).

The following lemma allows us to recast the upper bounds
on the informational power into bounds for the accessible
information. Therefore in the following, without loss of
generality, we focus on the former problem.

Theorem I. For any POVM πy , the informational power
W (πy) is given by

W (πy) = sup
ρ

A(ρ1/2πyρ
1/2).

Proof. See Refs. [7] and [12].
In the following it is convenient to introduce the shorthand

notation η(x) := −x ln x.
Theorem II. For any d-dimensional POVM πy , one has

W (πy) � ln d − inf
ψx

∫∫
||ψx ||2 Tr[πy]

× η

( 〈ψx |πy |ψx〉
||ψx ||2 Tr[πy]

)
dxdy,

where the infimum is over any ensemble ψx of pure states.
Proof. A Davies-like theorem applies [7], so it is sufficient

to maximize over ensembles ψx of pure states. For any
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such ensemble one has

I (ψx,πy) =D(〈ψx |πy |ψx〉|| Tr[ρπy]||ψx ||2)

=
∫∫

〈ψx |πy |ψx〉 ln
〈ψx |πy |ψx〉

||ψx ||2 Tr[ρπy]
dxdy =

∫∫
〈ψx |πy |ψx〉

[
ln

d〈ψx |πy |ψx〉
||ψx ||2 Tr[πy]

− ln
d Tr[ρπy]

Tr[πy]

]
dxdy

=D

(
〈ψx |πy |ψx〉

∣∣∣∣
∣∣∣∣ ||ψx ||2 Tr[πy]

d

)
− D

(
Tr[ρπy]

∣∣∣∣
∣∣∣∣Tr[πy]

d

)
� D

(
〈ψx |πy |ψx〉

∣∣∣∣
∣∣∣∣ ||ψx ||2 Tr[πy]

d

)
,

where the final inequality holds due to the positivity of
the relative entropy. Then the statement follows by direct
inspection.

C. Polynomial interpolation

In this subsection we introduce an optimization technique
based on Hermite polynomial interpolation. The following
lemma bounds the error made in interpolating a function with
a polynomial.

Lemma III. Let a and b be reals and t be a positive integer.
Let f (x) be a real function with continuous derivatives up to
order t + 1 on [a,b]. Let {xi}mi=1 be reals such that a � xi � b

and xi < xi ′ for any i < i ′. Let {ji}mi=1 be positive integers
such that

∑
i ji = t − 1. Let p(x) be the polynomial of degree

t that agrees with f (x) at xi up to derivative of order ji − 1
for 1 � i � m, namely,

p(ji )(xi) = f (ji )(xi), 0 � i � m.

For any x ∈ [a,b] there exists x ′ such that min(x,x1) < x ′ <

max(x,xm) and

f (x) − p(x) = f (t+1)(x ′)
(t + 1)!

m∏
i=1

(x − xi)
ki .

Proof. See Ref. [39].
The following lemma, derived in Ref. [11], provides a

polynomial lower bound to a function. We reproduce its proof
here for completeness.

Lemma IV. Let a and b be reals and t be a positive integer.
Let f (x) be a real function with continuous derivatives up
to order t + 1 on [a,b] such that f (j )(x) < 0 for even j and
f (j )(x) > 0 for odd j , for any j > 1 and x ∈ [a,b]. Let {xi}	t/2


i=1
be reals such that a < xi < b and xi < xi ′ for any i < i ′. The
polynomial p(x) of degree t such that p(a) = f (a) and p(b) =
f (b) if t is odd, and

p(j )(xi) = f (j )(xi), ∀1 � i � 	t/2
, j = 0,1,

is such that p(x) � f (x) for x ∈ [a,b].
Proof. See Ref. [11]. Let us distinguish two cases. If t is

odd, then

(x − a)(x − b)
	t/2
∏
i=1

(x − xi)
2 � 0

for x ∈ [a,b]. If t is even, then

(x − a)
	t/2
∏
i=1

(x − xi)
2 � 0

for x ∈ [a,b]. Then the statement immediately follows from
Lemma III.

III. INFORMATIONAL BOUNDS

A. Main result

The informational power problem is formally the opti-
mization of an entropic function over complex vectors under
a normalization constraint, therefore it is unfeasible in the
majority of cases. However, in this subsection we recast the
informational power problem for t-design POVMs into an
unconstrained optimization over 	t/2
 real variables {xi}.

Theorem III. The informational power W (πy) of any d-
dimensional t-design POVM πy satisfies

W (πy) � ln d − d

t∑
k=1

ak

(
d + k − 1

k

)−1

,

where ak are the coefficients of the polynomial p(x) :=∑t
k=1 akx

k such that p(1) = 0 if t is odd, and

p(j )(xi) = η(j )(xi), ∀1 � i � 	t/2
, j = 0,1,

for some choice of {xi}	t/2

i=1 such that 0 < xi < 1 and xi < xi ′

for any i < i ′.
Proof. By direct inspection one has

η(j )(x) = (−)j−1(j − 2)!x−j+1, ∀j � 2,

then η(j )(x) < 0 for even j and η(j )(x) > 0 for odd j , for
any j > 1 and x ∈ [0,1]. Then by Lemma IV one has that
p(x) � η(x) for x ∈ [0,1], and by Theorem II one has that

W (πy) � ln d − inf
ψx

t∑
k=1

ak

∫∫ |〈ψx |πy |ψx〉|k
(||ψx ||2 Tr[πy])k−1

dxdy.

By Definition II and Lemma II one has

W (πy) � ln d − d

t∑
k=1

ak

(
d + k − 1

k

)−1

inf
ψx

∫
||ψx ||2dx,

so the statement immediately follows.
Remark II. Since the ak depend on the choice of {xi}, the

tightest bound provided by Theorem III is

W (πy) � ln d − d sup
{xi }

t∑
k=1

ak

(
d + k − 1

n

)−1

. (1)

B. Applications

In this subsection we solve the optimization problem in
Eq. (1) to derive upper bounds on the informational power of
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t-designs as a function of the dimension d, for t ∈ [1,5] and
t = ∞, and asymptotic formulas for d → ∞. The case t = 1
coincides with the well-known Holevo [2] bound; the case
t = 2 was derived in Ref. [14]; the case t = ∞ coincides with
the well-known subentropy bound [6].

Corollary I. Informational power of 1-designs. For any 1-
design POVM πy , the informational power W (πy) is upper
bounded by W (πy) � W1(d), with W1(d) := ln d.

Proof. There is actually no optimization in this case since
	t/2
 = 0 so the set {xi}	t/2


i=1 is empty. The statement follows
by direct inspection.

Corollary II. Informational power of 2-designs. For any
2-design POVM πy , the informational power W (πy) is upper
bounded by W (πy) � W2(d), with

W2(d) := ln
2d

d + 1
.

Proof. The supremum in Eq. (1) is achieved by x1 = 2/(d +
1). Then the statement follows by direct inspection.

Remark III. The limit for d → ∞ of the upper bound in
Corollary II is given by

W2(d) → ln 2 = 1 bit 
 0.693 nat.

Corollary III. Informational power of 3-designs. For any
3-design POVM πy , the informational power W (πy) is upper
bounded by W (πy) � W3(d), with

W3(d) := ln
2d

d + 2
+ 2

ln d+2
2

d(d + 1)
.

Proof. The supremum in Eq. (1) is achieved by x1 = 2/(d +
2). Then the statement follows by direct inspection.

Remark IV. The limit for d → ∞ of the upper bound in
Corollary III is given by

W3(d) → ln 2 = 1 bit 
 0.693 nat.

Corollary IV. Informational power of 4-designs. For any
4-design POVM πy , the informational power W (πy) is upper
bounded by W (πy) � W4(d), with

W4(d) := 1

2
ln

6d2

(d + 2)(d + 3)
+ (d − 3)

√
3d(d + 2)

6d(d + 1)

× ln
2d + 3 − √

3d(d + 2)

d + 3
.

Proof. The supremum in Eq. (1) is achieved by

x1,2 = 3d + 6 ± √
3d(d + 2)

d2 + 5d + 6
.

Then the statement follows by direct inspection.
Remark V. The limit for d → ∞ of the upper bound in

Corollary IV is given by

W4(d) → ln 6

2
+ ln(2 − √

3)

2
√

3

 0.744 bit 
 0.516 nat.

Corollary V. Informational power of 5-designs. For any
5-design POVM πy , the informational power W (πy) is upper

bounded by W (πy) � W5(d), with

W5(d) := ln d + (d − 1)(d + 3)(d2 + 2d + 4)

2d(d + 1)2(d + 2)

× ln
6

(d + 3)(d + 4)

+
√

d + 3(d − 1)(d2 − 2d − 12)

2
√

3d(d + 1)
3
2 (d + 2)

× ln
2d + 5 − √

3(d + 1)(d + 3)

d + 4
.

Proof. The supremum in Eq. (1) is achieved by

x1,2 = 3d + 9 ±
√

3(d2 + 4d + 3)

d2 + 7d + 12
.

Then the statement follows by direct inspection.
Remark VI. The limit for d → ∞ of the upper bound in

Corollary V is given by

W5(d) → ln 6

2
+ ln(2 − √

3)

2
√

3

 0.744 bit 
 0.516 nat

Corollary VI. For the continuous d-dimensional ∞-design
POVM πy the informational power W (πy) is given by

W (πy) = W∞(d) := ln d −
d∑

n=2

n−1.

Proof. By expanding η(x) in Taylor series around 1 and
applying the binomial theorem one has

η(x) = 1 − x −
∞∑

n=2

n∑
k=0

(n − 2)!

k!(n − k)!
(−x)k.

Then by Theorem II and Lemma II one has

W (πy) � ln d − d + 1

+ d

∞∑
n=2

n∑
k=0

(n − 2)!(−)k

k!(n − k)!

(
d − 1 + k

k

)−1

.

Then by direct inspection (see, e.g., Ref. [40]) one has

W (πy) � ln d −
d∑

n=2

n−1.

Since this bound is saturated by any orthonormal ensemble
[6], the statement follows.

Remark VII. The limit for d → ∞ of W∞(d) in Corollary
VI is given by

W∞(d) → 1 − γ 
 0.610 bit 
 0.423 nat,

where γ represents the Euler-Mascheroni constant.
We conclude this subsection by summarizing the derived

bounds in Table I and illustrating them in Fig. 1.

C. Tightness

The bound in Theorem III is of course tight for t = 1 for
any dimension d, where optimal ensembles are given by any
orthonormal basis [2]. In this subsection we prove tightness for
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TABLE I. Upper bounds Wt (d) on the informational power W (πy) of any d-dimensional t-design POVM πy for t ∈ [1,5] and t = ∞, along
with their asymptotic formulas.

t Wt (d) limd→∞

1 ln d ∞
2 ln 2d

d+1 ln 2

3 ln 2d

d+2 + 2
ln d+2

2
d(d+1) ln 2

4 1
2 ln 6d2

(d+2)(d+3) + (d−3)
√

3d(d+2)
6d(d+1) ln 2d+3−√

3d(d+2)
d+3

ln 6
2 + ln(2−√

3)
2
√

3

5 ln(d) + (d−1)(d+3)(d2+2d+4)
2d(d+1)2(d+2)

ln 6
(d+3)(d+4) +

√
d+3(d−1)(d2−2d−12)

2
√

3d(d+1)
3
2 (d+2)

ln 2d+5−√
3(d+1)(d+3)
d+4

ln 6
2 + ln(2−√

3)
2
√

3

∞ ln d − ∑d

n=2 n−1 1 − γ

2,3,5-designs in dimension 2 and for 2-designs in dimension
3. For d = 2 the Bloch-sphere representation provides a
natural isomorphism between two-dimensional POVMs and
solids in R3, so we denote POVMs by the name of the
corresponding solid (tetrahedron, octahedron, icosahedron).
Formal definitions of each POVM are given in [11] and [12].

The informational powers of the two-dimensional tetra-
hedral, octahedral, and icosahedral POVMs were derived in
Refs. [7,11–14]. By noting that these POVMs are 2-, 3-
and 5-designs, respectively, their informational power directly
follows from Theorem III.

Corollary VII. The 2-dimensional tetrahedral (SIC) POVM
πy is a 2-design, its informational power is given by

W2(2) = ln 4
3 ,

and the optimal (antitetrahedral) ensemble ψx is such that
ψxπx = 0 for any x.

Proof. Any SIC POVM is a 2-design [17], and the
antitetrahedral ensemble saturates the bound in Corollary II.

Corollary VIII. The two-dimensional octahedral (complete
mutually unbiased bases) POVM is a 3-design, its informa-

W
t(d

)

d

1-design
2-design
3-design
4-design
5-design

infinite-design

 0

 0.5

 1

 1.5

 2

 10  100

FIG. 1. (Color online) Upper bounds Wt (d) on the informational
power W (πy) (in bits) of any quantum t-design POVM πy as a
function of the dimension d (on a log scale). From top to bottom:
t = 1 (blue line; see key), t = 2 and 3 (red lines), t = 4 and 5 (green
lines), and t = ∞ (blue line), as provided by Corollaries I, II, III, IV,
V, and VI, respectively. The asymptotes W2,3(d) → 1bit, W4,5(d) →
0.744bit, and W∞(d) → 0.609bit are depicted too (horizontal black
lines).

tional power is given by

W3(2) = 1
6 ln 4,

and the optimal (antioctahedral) ensemble ψx is such that
ψxπx = 0 for any x.

Proof. It follows by direct inspection that the two-
dimensional octahedral POVM is a 3-design, and the anti-
octahedral ensemble saturates the bound in Corollary III.

Corollary IX. The two-dimensional icosahedral POVM is a
5-design, its informational power is given by

W5(2) = ln 2 − 5

12
ln 5 −

√
5

12
ln

9 − 3
√

5

6
and the optimal (anti-icosahedral) ensemble ψx is such that
ψxπx = 0 for any x.

Proof. It follows by direct inspection that the two-
dimensional icosahedral POVM is a 5-design, and the anti-
icosahedral ensemble saturates the bound in Corollary V.

In Ref. [13] it was shown that the informational power of
group covariant three-dimensional SIC POVMs is given by
W2(3) = ln 3

2 . Noting that these POVMs are 2-designs, the
optimality of this value immediately follows from Corollary
II.

IV. CONCLUSION AND OUTLOOK

In this work we have provided in Theorem III an upper
bound on the information that can be carried by any quantum
t-design for any t , as a function of the dimension of the system,
and we have derived in Corollaries I, II, III, IV, V and VI
closed analytic expressions for this bound for t ∈ [1,5] and
t = ∞. The Holevo upper bound [2] and the subentropy lower
bound [6] have been recovered as particular cases for t = 1
and t = ∞, respectively. In this sense, the resulting hierarchy
of bounds represents a trade-off between the uniformity of a
quantum system and the amount of information it can carry.
By deriving asymptotic formulas for large dimensions, we
have also shown that the statistics generated by any t-design
contains no more than a single bit of information, and that
this amount decreases with t . Furthermore, in Corollaries VII,
VIII, and IX we have shown the tightness of our bounds for
qubits and qutrits. Finally, as a direct consequence of Theorem
I it immediately follows that all the presented upper bounds
on the informational power of t-design POVMs holds as upper
bounds on the accessible information of t-design ensembles.

Various open problems related to the accessible information
and informational power of quantum t-designs were discussed
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in Refs. [12] and [14]. In view of the results presented here,
we may add the following questions to the list. The asymptotic
formulas for the bounds on the informational power of 2- and
3-designs (Remarks III and IV), as well as those for 4- and
5-designs (Remarks V and VI), are pairwise identical. Can
this be generalized to higher t? Can this phenomenon be given
a physical interpretation? Moreover, for all the t-design qubit
POVMs πy we explicitly optimized (Corollaries VII, VIII,
and IX), the optimal ensemble ψx turned out to be such that
ψxπx = 0 for any x. Is this always the case for qubit t-designs?
Finally, closed analytic expressions for the bounds provided by
Theorem III for t � 6 require lengthy calculations, therefore
their derivation can be made easier by the use of a symbolic
calculation package. This will be done in a forthcoming work
[15], where their tightness and asymptotic formulas will also
be discussed.

Note added in proof. Recently, the author was informed
by Wojciech Słomczyński and Anna Szymusiak [41] of a
recent result of theirs showing that the bound in Corol-
lary II is saturated by the 64 Hoggar lines’ SIC-POVM in
dimension 8.
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