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Quantum learning robust against noise
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Noise is often regarded as anathema to quantum computation, but in some settings it can be an unlikely ally.
We consider the problem of learning the class of n-bit parity functions by making queries to a quantum example
oracle. In the absence of noise, quantum and classical parity learning are easy and almost equally powerful,
both information-theoretically and computationally. We show that in the presence of noise this story changes
dramatically. Indeed, the classical learning problem is believed to be intractable, while the quantum version
remains efficient. Depolarizing the qubits at the oracle’s output at any constant nonzero rate does not increase
the computational (or query) complexity of quantum learning more than logarithmically. However, the problem
of learning from corresponding classical examples is the learning parity with noise problem, for which the
best known algorithms have superpolynomial complexity. This creates the possibility of observing a quantum
advantage with a few hundred noisy qubits. The presence of noise is essential for creating this quantum-classical
separation.
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I. INTRODUCTION

A theory of quantum fault tolerance has been erected to
overcome pervasive decoherence [1–3]. Without such fault-
tolerant machinery, large classes of quantum algorithms can
fail to give any significant improvement over classical algo-
rithms [4]. This may lead one to suppose that noise can only rob
quantum algorithms of their supremacy or at best increase the
cost of running them. However, Burhman, Newman, Rohrig,
and de Wolf presented a model of fault-tolerant decision trees
where one is given oracle access to input bits perturbed by
coherent noise [5]. Among other results, they established a
logarithmic separation between quantum and classical query
complexity, showing that quantum computers can be more
robust than classical computers when computing with noisy
inputs. Here we exhibit a problem for which noise is an
even more significant classical foe and is crucial to achieving
a quantum speed-up, or rather, a classical slow-down. Our
problem is believed to be superpolynomially more difficult
classically when noise is added, but only logarithmically
harder in the quantum case. This challenges the conventional
wisdom that quantum computations are inherently delicate
while classical computation is more robust.

We consider the problem of learning a class of Boolean
functions by making queries to a quantum example oracle [6].
Such an oracle provides a quantum state that encodes a
hidden function, and the goal is to discover the function
efficiently, meaning with a number of queries and an amount
of postprocessing that scales polynomially in the number
of input bits. In the quantum setting, we are permitted to
apply coherent operations to the quantum state, whereas
in the classical setting we must first measure the state in
the computational basis before further computation. This
model of quantum learning differs from other attempts to use
quantum computers to perform machine learning tasks [7–11].
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Information-theoretically, quantum learning from queries to
ideal oracles is only polynomially more powerful than classical
learning [12,13]. Computationally, however, there is a class
of functions that is polynomial time learnable from quantum
coherent queries but not from classical queries, under the
assumption that factoring Blum integers is intractable [12].

In this work, we exhibit a learning problem with a
superpolynomial quantum computational speed-up only in the
presence of noise. The physical implementation of any oracle
on bare qubits will inevitably be noisy. To fairly assess the
performance of a quantum algorithm given access to such an
oracle, we must compare it to a classical algorithm given access
to a noisy classical oracle with similar noise characteristics.
To do this, we imagine constructing a noisy classical oracle
by completely dephasing the inputs and outputs of a noisy
quantum oracle in the computational basis.

For the class of parity functions, we show that depolarizing
the example oracle’s output at any nonzero rate has a small
(logarithmic) effect on the computational complexity of learn-
ing from quantum coherent examples. However, the function
cannot be learned from classical examples provided by the
corresponding noisy classical oracle, as this is equivalent to a
problem called learning parity with noise (LPN), for which the
best known algorithm has superpolynomial complexity [14].
Both problem settings are tractable without noise, so a quantum
advantage is not merely retained; it occurs because of the noise.

The rest of the paper is organized as follows. Section II
reviews definitions relevant to quantum learning. Sections III
and IV consider the learning problem without and with noise,
respectively. Finally, Sec. V concludes.

II. DEFINITIONS

We begin by reviewing relevant definitions. A membership
oracle for a Boolean function f : {0,1}n → {0,1} is an oracle
that, when queried with input x, outputs the result f (x). It is so
called because we can think of f (x) as telling us whether input
x belongs to a set associated with the function (namely, the
set of inputs that evaluate to 1). A query to a uniform random
example oracle for a Boolean function f returns an ordered
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FIG. 1. One can construct a uniform quantum example oracle
from a quantum membership oracle for f . H denotes a Hadamard
gate. The quantum learner then performs a quantum computation to
identify the function f . The corresponding classical example oracle
is obtained from the quantum oracle by measuring its output qubits
in their computational bases. The classical learner uses this output
together with classical computation to learn the function.

pair (x,f (x)) where x is drawn uniformly at random from the
set of all possible inputs of f . The membership oracle gives
an agent freedom to choose the input, whereas the example
oracle merely allows one to “push a button” and request an
output.

The problem of learning a class of Boolean functions
by querying such oracles can be generalized to a quantum
coherent setting [6]. A quantum membership oracle Qf is a
unitary transformation that acts on the computational basis
states as

Qf : |x,b〉 �→ |x,b ⊕ f (x)〉, (1)

where x ∈ {0,1}n and b ∈ {0,1}. A uniform quantum example
oracle for f outputs the quantum state

|ψf 〉 ≡ 1

2n/2

∑
x∈{0,1}n

|x,f (x)〉. (2)

This oracle only gives the learner freedom to request some
number of quantum states, each at unit cost. For both oracles,
the query register comprises the qubits containing x, and the
result qubit is the auxiliary qubit containing f (x) (Fig. 1).

Given any quantum oracle, we define a corresponding
classical oracle by completely dephasing every interface to the
quantum oracle, passing each input or output qubit through a
channel EZ(ρ) = (ρ + ZρZ)/2, where

Z =
(

1 0
0 −1

)
.

Any quantum membership oracle becomes a classical mem-
bership oracle, and any uniform quantum example oracle
becomes a uniform random example oracle. This definition
allows us to begin with a noisy quantum oracle and identify a
corresponding noisy classical oracle with similar noise charac-
teristics. Equivalently, one can instead completely dephase the
learner’s interface by moving the dephasing channels outside
the quantum oracle. One can then define a classical learner as a
learner who interacts with oracles through dephased interfaces,
whereas a quantum learner has no such restriction. Classical
and quantum learners can now be given access to the same
noisy quantum oracle. Note that a classical learner interacting

with a quantum oracle is equivalent to the traditional classical
problem of learning from the corresponding classical oracle.

In the domain of learning theory, a concept f is a Boolean
function f : {0,1}n → {0,1}. A concept class C = ∪n�1Cn

(hereafter, class) is a collection of concepts, and each Cn

contains the concepts whose domain is {0,1}n. Given a target
concept f ∈ C, a typical goal is to construct a hypothesis
function h : {0,1}n → {0,1} that agrees with f on at least
a 1 − ε fraction of the inputs in {0,1}n, i.e.,

Prx[h(x) = f (x)] � 1 − ε, (3)

where x is drawn from the uniform distribution. Such a
function is called an ε approximation of f .

A class C is efficiently PAC (probably approximately
correct [15]) learnable under the uniform distribution if given
a uniform example oracle for any target concept f ∈ C, there
is an algorithm that

(1) for any ε,δ ∈ (0,1/2), outputs an ε approximation h of
f with probability 1 − δ,

(2) runs in time and uses a number of queries, that is
poly(n,1/ε,1/δ).

The definition of learning is identical in the quantum setting
except that the uniform example oracle is replaced by a uniform
quantum example oracle, and the allowed computations may
be coherent. We will also consider example oracles corrupted
by noise of constant rate η < 1/2 in a way that is defined later.
The definition of learning is unchanged in this case, although
one may require the algorithm to run in time poly(1/(1/2 − η))
as well.

We now restrict the discussion to the class of parity
functions,

fa(x) = 〈a,x〉 =
n∑

j=1

ajxj mod 2, (4)

where a ∈ {0,1}n and aj (xj ) denotes the j th bit of a (x).
We are given access to a uniform quantum example oracle
for the unknown concept fa(x) = 〈a,x〉. If we incorrectly
guess even a single bit of a, our hypothesis function is a
1/2 approximation to fa and remains so for any number of
incorrect bits. Therefore, we must with high probability find
a exactly (i.e., probably exactly correct learning), and this is
what we require hereafter.

III. LEARNING FROM IDEAL QUERIES

First, consider the noiseless case where each query returns
a pure quantum state. This case is tractable for both quantum
and classical queries as we now review.

The classical oracle provides an example (x,fa(x)) where
x is uniformly random over {0,1}n. Since fa(x) is a linear
function, it is clear that n queries are sufficient to learn fa

exactly with a constant probability of success. The probability
that n queries produce linearly independent examples is

n−1∏
j=0

(1 − 2j−n), (5)

which is greater than 1/4 for any n > 1. Any algorithm that
detectably fails with constant probability less than p and
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otherwise succeeds can be repeated no more than log1/p(1/δ)
times to reduce the failure probability below δ. The value of a

is obtained from the examples by Gaussian elimination.
In the quantum setting, fa can be learned with constant

probability from a single query. Given |ψf 〉, apply Hadamard
gates

H = 1√
2

(
1 1
1 −1

)
(6)

to each of the n + 1 output qubits. A simple calculation shows
that the output state becomes

1√
2

(|0n,0〉 + |a,1〉). (7)

Therefore, with probability 1/2, measurement reveals the
value of a directly in the query register whenever the result
qubit is 1. Again the probability of success can be amplified
with O( log(1/δ)) queries.

Note that this is very similar to the Bernstein-Vazirani
algorithm [16] but adapted to use an example oracle rather than
a membership oracle. The only difference is our treatment of
the final qubit. In the Bernstein-Vazirani algorithm, the result
qubit is input as a |−〉 state and will, with certainty in the
noiseless case, end up as a |1〉. It then does not even need to be
measured. For the example oracle we have considered, we do
not have the luxury of choosing the input, so we simply check
that the result qubit is |1〉, which collapses the output state of
the other n qubits to the result of the Bernstein-Vazirani oracle.

IV. LEARNING IN THE PRESENCE OF NOISE

Now we consider how the situation changes when we add
noise to the output of the example oracle. We will see that
learning parity from a noisy example oracle seems to become
computationally intractable, while the same task with a noisy
quantum example oracle can be solved efficiently on a quantum
computer. We will first consider a simple case that is easy to
analyze followed by the more realistic case of depolarizing
noise.

A. Classification noise

Just about the most trivial model of noise one can imagine
is this one: flip the result qubit with probability η by applying
the Pauli σx = (0 1

1 0) operator. Classically, learning fa from
such corrupted results is called learning parity with noise
(LPN). The LPN problem is equivalent to decoding a random
linear code in the presence of stochastic noise [14]. In the
worst case, decoding linear codes is NP hard [17] and also
hard to solve approximately [18]. The LPN problem setting
is reminiscent of the Goldreich-Levin (GL) theorem [19], but
there one is free to choose the queries to an oracle that lies
on the answers to some fixed fraction of the queries, but must
lie consistently on repeated queries. This restriction allows
efficient solution of the GL problem. On the other hand, the
LPN problem is believed to be computationally intractable [20]
and potential cryptographic applications have been proposed
for this problem and its generalizations [21]. The best known
algorithms for LPN are subexponential (but superpolynomial)

in n [14,22]. Problem instances with hundreds of bits may be
impractical to solve [23].

However, the quantum case remains easy. With noise, the
output of the oracle transformed by Hadamards becomes the
mixture of (7) with probability 1 − η and

1√
2

(|0n,1〉 + |a,0〉) (8)

with probability η. The probability that the query register
contains a remains 1/2, independent of η. Thus, after k queries,
the probability of observing a is 1 − (1/2)k . This suggests the
simple strategy of reporting either a = “whatever nonzero
result is seen” or 0n otherwise. It fails with a probability that
is exponentially small in k and independent of n.

This strategy is strictly suboptimal since it ignores the
information contained in the result qubit. The fact that it
works so well, regardless, suggests that our noise model is
rather unfair to the classical case by degrading the result qubit,
which the quantum algorithm hardly even needs. Indeed, in the
Bernstein-Vazirani algorithm, the output bit is not measured
at all. Still, this simple case serves to illustrate how noise can
more severely impact the classical learner. Even in the more
realistic noise model we consider next, the quantum algorithm
survives the addition of significant amounts of noise because
the quantum queries reveal so very much.

B. Depolarizing noise

Now we consider the case where the output of the oracle
is subject to independent depolarizing noise D⊗(n+1)

η where
Dη(ρ) = (1 − 2η)ρ + 2ηI/2 and η < 1/2 is a constant known
noise rate. This noise process is an idealization of realistic
independent noise and corrupts the ideal output of the oracle
with probability proportional to η.

Classically, in the presence of this noise, we obtain exam-
ples (x ⊕ e1:n,fa(x) ⊕ en+1) where x is uniformly random over
{0,1}n and each bit of the noise (e1:n,en+1) is 1 with probabil-
ity η. Here e1:n ∈ {0,1}n and en+1 ∈ {0,1}. Since x is uni-
formly random, x ′ = x ⊕ e1:n is uniformly random as well
and

(x ⊕ e1:n,fa(x) ⊕ en+1) = (x ′,fa(x ′ ⊕ e1:n) ⊕ en+1). (9)

The probability that fa(x ′ ⊕ e1:n) 
= fa(x ′) depends on the
value of a and is given by

ζa =
n∑

w=1

w∑
k=1,odd

(|a|
k

)(
n − |a|
w − k

)
ηw(1 − η)n−w, (10)

where |a| denotes the number of 1’s in a (also called the
Hamming weight). The total probability of error on the result
bit is simply η′ := η(1 − ζa) + ζa(1 − η). Therefore, learning
from these examples is the LPN problem with noise rate η′ ∈
[η,1 − η].

In contrast, coherent manipulation of the noisy output state
of the example oracle allows a quantum learner to learn fa in
a number of queries that is logarithmic in n. The algorithm is
as follows. Make k = O(log n) queries to the example oracle,
and for each query, Hadamard transform all n + 1 noisy output
qubits and measure them to obtain an outcome. Each outcome
has the form (m,b) where m ∈ {0,1}n is a result string in the
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query register and the result bit b is uniformly random. Discard
the outcome if b = 0 and otherwise retain the result string m.
We are left with k′ result strings m1, m2, . . . , mk′ on which
we perform a bit-wise majority vote to obtain an estimate â

of a.
We will now argue that the estimate â obtained from this

protocol is equal to a for appropriately chosen parameters.
Given any constant δ > 0, the algorithm must find an estimate
â such that Pr[â 
= a] < δ. We make repeated use of a loose
form of the Chernoff bound,

Pr[|X − ηk| < δηk] > 1 − 2e−δ2ηk/3 ≡ 1 − Bk(η,δ), (11)

where X is the sum of k independent Bernoulli random
variables with Pr(1) = η and 0 < δ < 1. Clearly we can query
the oracle until we retain a total of k′ result strings. This takes
2k′ expected queries. By performing, say, 3k′ queries, we are
guaranteed via Eq. (11) to retain fewer than k′ with probability
exponentially small in k′. Now, let D

η
q be the probability

distribution over {0,1}n that corresponds to the bit string q

corrupted by independent bit-flip noise of rate η. The retained
strings are drawn from the distribution (1 − η)Dη

a + ηD
η

0n .
Let s be the random variable giving the unknown number
of strings drawn from D

η
a . These successful queries, which we

take to be m1,m2, . . . ,ms without loss of generality, contain
information about the hidden function. The expected value
of s is μs = (1 − η)k′, and its variation from this mean is
controlled by

Pr[|s − μs | < δ′μs] > 1 − Bk′(1 − η,δ′). (12)

Our algorithm votes independently on the j th bits of the
strings for each j = 1,2, . . . ,n. Let Mj be the random variable
corresponding to the sum (m1)j + (m2)j + · · · + (mk′)j of
the j th bits. The worst case occurs when aj = 1 and we assume
this. Define random variables M

(a)
j = m1 + · · · + ms and

M
(0)
j = Mj − M

(a)
j with means μ

(a)
j = (1 − η)s and μ

(0)
j =

η(k′ − s), respectively. The mean of Mj is μj = μ
(a)
j + μ

(0)
j .

Conditioned on obtaining a typical value of s, the probability
of a successful vote on the j th bit is

γj � Pr

[
Mj >

k′

2

]
� Pr[|Mj − μj | < δ′μj ] (13)

� Pr
[∣∣M (a)

j − μ
(a)
j

∣∣ < δ′μ(a)
j

]
(14)

× Pr
[∣∣M (0)

j − μ
(0)
j

∣∣ < δ′μ(0)
j

]
(15)

> 1 − 2Bk′(η̃,δ′). (16)

We have defined η̃ = η[1 − (1 + δ′)(1 − η)] and chosen δ′ <

η/(1 − η). The second inequality of (13) follows by further
choosing 1 − δ′ > 1

2 [(1 − 2η)(1 − η) + η]−1. To find (16), we
used η̃ � (1 − δ′)(1 − η)2. This gives us an upper bound

Pr[âj 
= aj ] = 1 − γj < 2Bk′(η̃,δ′), (17)

on the probability of the j th bit being computed incorrectly,
which we can use together with a union bound to find

Pr[â 
= a] �
∑

j

Pr[âj 
= aj ] < 2nBk′(η̃,δ′). (18)

Choosing

k′ >
3

(δ′)2η̃
ln

(
4n

δ

)
(19)

ensures that Pr[â 
= a] < δ. For sufficiently large η, one can
verify easily that (δ′)2η̃ is a polynomial in (1/2 − η), and
therefore k′ = O(poly(1/(1/2 − η))).

C. More general noise

Finally, we consider the case of general noise on the output
of the example oracle. Because the noise is the last thing
that happens before the output is measured, one can think of
the situation as the result of a noiseless oracle as viewed by
a noisy measurement. For any noise processes, the classical
learner will instead of getting results x,fa(x) get x ′,f ′

a(x)
where x → x ′ and fa(x) → f ′

a(x) depend on the details of
the noise. For any noise where f ′

a(x) 
= fa(x ′) this results in
classification noise which is, as we have said above, believed
to be inefficient in the number of queries. Almost any noise
will be of this form unless it is extremely small or consists only
of dephasing, which is noise the classical learner performs by
definition in any event.

For the quantum learner, the voting algorithm given for
depolarizing noise will still work for a wide variety of noise
processes. Again, each example results in a string (m,b). So
long as b is 1 with probability scaling no worse than 1/n, and
whenever it is m differs from the correct result on fewer than
n/2 bits, the vote on a logarithmic number of queries will still
give the correct answer with high probability.

This is a rather operational specification of which types of
noise will remain easy for the quantum learner, and indeed
would need to be analyzed for the actual noise present in any
particular experiment. To see that this specification includes
a wide range of noise processes, consider any independent
noise which can be “twirled” [24] into a depolarizing channel
of η < 1/2. All such channels are no worse for the quantum
learner than the corresponding depolarizing channel.

V. CONCLUSION

We have defined the problem of quantum learning from
a noisy quantum example oracle and shown that the class
of parity functions can be learned in logarithmic time from
corrupted quantum queries. In contrast, it appears to be
intractable to learn this class in polynomial time from classical
queries to the corresponding classical noisy oracle [25]. If the
oracle is ideal, the problem is tractable for both quantum and
classical learners, so the noise plays an essential role in the
exhibited behavior. For this problem at least, decoherence is
an ally of quantum computation.

The example oracle for parity can be implemented in
practice with O(n) one- and two-qubit gates. The quantum
learner then needs only single-qubit gates and measurements,
or even just measurements in a nonstandard basis. This
suggests that an experimental demonstration may be quite
practicable. The independent depolarizing noise model we use
is an idealization of realistic decoherence. Although a more
detailed study of actual experimental noise would be needed,
it should be possible to demonstrate quantum supremacy for
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learning using several hundred noisy qubits, i.e., without the
use of quantum error correction. In the meantime, since a
classical learner requires at least n queries in the noiseless
case while the quantum learner needs only O(log n) queries
with noise, a quantum advantage for query complexity, while
small, could be shown experimentally in existing systems.
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