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I theoretically investigate how the entanglement properties of a two-mode squeezed vacuum state (TMSVS)
can be enhanced by operating quantum-optical catalysis on each mode of the TMSVS. The quantum-optical
catalysis is simply mixing one photon at the beam splitter and post-select the beam-splitter (BS) output based
on detection of one photon, first proposed by Lvovsky and Mlynek [Phys. Rev. Lett. 88, 250401 (2002)]. I find
that there exists some enhancement in the entanglement properties (namely, entanglement entropy, second-order
Einstein-Podolsky-Rosen correlation, and the fidelity of quantum teleportation) in certain parameter ranges
spanned by the low transmissivities of the BSs and the small squeezing parameter of the input TMSVS.
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I. INTRODUCTION

Entangled resources are useful in quantum information
processing, such as quantum teleportation [1], metrology [2],
and communications [3]. Two-mode squeezed vacuum state
(TMSVS) is one of the most popular (if not the most) tools
for quantum-enhanced optical interferometers or continuous
variable (CV) quantum information processing as it is a
Gaussian and entangled state [4–6]. However, theoretical
investigations have shown that Gaussian entangled resources
have some restrictions [7,8]. For example, entanglement dis-
tillation from two Gaussian entangled states is impossible by
Gaussian local operations and classical communication [9,10].
Therefore, it is desirable to seek for non-Gaussian entangled
resources and operations which can be more efficient in
the quantum information processing. In recent years, some
entanglement criteria beyond the Gaussian regime, including
all orders of Einstein-Podolsky-Rosen (EPR) correlations,
have been proposed [11,12]. Moreover, it has been shown that
non-Gaussian two-mode entangled states provide the benefits
of enhancing the entanglement [13–16].

Previously, the effect on the entanglement has been the-
oretically analyzed based on the merit of concrete protocol,
such as the degree of entanglement, the EPR correlation,
and the fidelity of teleportation [13,14]. In fact, it was
shown that the performance of every protocol was improved,
implying that the entanglement of a non-Gaussian state must
be enhanced [12]. In recent years, many schemes of generating
two-mode non-Gaussian entangled states have been proposed.
Among these schemes, performing non-Gaussian operation on
a two-mode Gaussian state is a possible approach to generate
non-Gaussian entangled resources [17,18]. These typical
non-Gaussian operations include the elementary operations
(i.e., photon addition a†,b† and subtraction a,b) and their
sequential operations (e.g., ab,a†b†) [19,20] as well as their
coherent superposition (e.g., a†2 + b†2) [21]. Recently, in order
to implement multiple photon addition and subtraction on
both modes of the TMSVS, Navarrete-Benlloch et al. [15]
demonstrate that the entanglement generally increases with
the number of such operations. On the other hand, one
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can generate non-Gaussian entangled resources by means of
a linear or nonlinear quantum-optical system [22–24]. The
systems generally consist of beam splitting, phase shifting,
squeezing, displacement, and various detection.

About two decades ago, the concept of “conditional mea-
surement” was proposed by Dakna et al. [25] . They generate a
Schrodinger-cat-like state by using a simple beam-splitter (BS)
scheme for a conditional measurement. Following Dakna’s
idea of conditional measurement, many schemes have been
proposed to prepare quantum states [26–28]. Among these
works, the typical proposal is the quantum-optical catalysis,
proposed by Lvovsky and Mlynek [29]. They generated
a coherent superposition state t |0〉 + α|1〉 by conditional
measurement on a BS. This state was generated in one of the
BS output channels if a coherent state |α〉 and a single-photon
Fock state |1〉 are present in two input ports and a single
photon is registered in the other BS output. They call this
transformation as “quantum-optical catalysis” because the
single photon itself remains unaffected but facilitates the
conversion of the target ensemble. Recently, Bartley et al. [30]
perform quantum-optical catalysis to generate multiphoton
nonclassical states, which create a wide range of nonclassical
phenomena. Since performing quantum-optical catalysis on
a single-mode Gaussian state can enhance nonclassicality
of the given state, one can ask whether it is possible to
enhance entanglement of a two-mode Gaussian state via
quantum-optical catalysis. This issue will be addressed here.

In this paper, I propose a scheme to generate a two-mode
non-Gaussian entangled state. This state is generated by oper-
ating quantum-optical catalysis on each mode of a TMSVS. I
investigate the entanglement properties (the degree of entan-
glement and EPR correlation) and the quantum teleportation
fidelity for the state I produce. I show that when ideal quantum-
optical catalysis is used, the input Gaussian state can be trans-
formed into a non-Gaussian state with higher entanglement.

The paper is organized as follows. In Sec. II, I begin with the
generation of a non-Gaussian two-mode entangled state by op-
erating quantum-optical catalysis from a two-mode squeezed
vacuum state (TMSVS) and derive its normalization factor
(i.e., success probability), which is important to discussing
quantum properties. In Sec. III, I investigate the entanglement
properties (degree of entanglement and EPR correlation) of
the non-Gaussian state and analyze the effect of the local
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quantum-optical catalysis. Then, I consider the non-Gaussian
entangled state as an entangled resource to teleport a coherent
state in Sec. IV. The main results are summarized in Sec. V.

II. TWO-MODE NON-GAUSSIAN ENTANGLED STATE BY
LOCAL QUANTUM-OPTICAL CATALYSIS

In this section, I make a brief review of quantum-optical
catalysis and apply it to prepare a two-mode non-Gaussian
quantum state. The theoretical scheme is proposed and the
success probability is derived.

A. Theoretical scheme

The basic idea on the quantum-optical catalysis was
introduced in Ref. [29]. The conceptual schematic is shown in
Fig. 1. If an input state ρin and a single-photon Fock state |1〉
are present in the two input ports of the BS and a single photon
|1〉 is registered in one BS output port, then a catalyzed state
ρc can be generated in the other BS output channel.

My scheme is depicted in Fig. 2. Theoretically, the input
TMSVS |ψ0〉ab is obtained by applying the unitary operator
S2(r) on the two-mode vacuum |0a,0b〉, i.e.,

|ψ0〉ab = S2(r)|0a,0b〉 = 1

cosh r
exp(a†b† tanh r)|0a,0b〉

= 1

cosh r

∞∑
n=0

tanhn r|na,nb〉, (1)

where S2(r) = exp [r(a†b† − ab)] is the two-mode squeezed
operator and the values of r determine the degree of squeezing.
The larger r , the more the state is squeezed. In particular, when
r = 0, |ψ0〉ab reduces to |0a,0b〉. Enlightened by the idea of
quantum-optical catalysis, I prepare a state from the TMSVS
|ψ0〉ab by operating quantum-optical catalysis on each mode.
Then, the prepared state |ψLQC〉ab is given by

|ψLQC〉ab = 1√
pcd

〈1d |〈1c|B2B1S2(r)|0a,0b〉|1c〉|1d〉, (2)

1
BS

1

in

c

FIG. 1. Basic block of the quantum-optical catalysis. An input
state ρin and a single-photon Fock state |1〉 are present in the two
input ports of the BS. Measurement is conditioned on registering a
single photon |1〉 by the single-photon detector. Here, the output state
ρc is called as the catalysis state of the input state ρin and this process
is quantum-optical catalysis. The catalysis parameter is the tunable
transmissivity of the BS.

LQC ab

0 ab

11

a b

dc
BS1 BS2

11

FIG. 2. Optical scheme to prepare a LQC-TMSVS by operating
quantum-optical catalysis on each mode of a TMSVS. The input
state is the TMSVS |ψ0〉ab with the squeezing parameter r and the
output state is the LQC-TMSVS |ψLQC〉

ab
related with the input and

catalysis parameter. The catalysis parameters are determined by the
transmissivities T1 and T2 of the tunable BS1 and BS2, respectively.
In contrast with the TMSVS, the LQC-TMSVS has a wide range of
entanglement properties.

which will be called as “local quantum catalyzed TMSVS”
(LQC-TMSVS). Here, B1 and B2 correspond to the respective
unitary operators of the two tunable BS1 and BS2 with

B1 = exp[θ1(a†c − ac†)], B2 = exp[θ2(b†d − bd†)] (3)

in terms of the creation (annihilation) operator a† (a), b† (b),
c† (c), and d† (d) for modes a, b, c, and d. Using Eq. (3), one
obtains the following transformations:

B1a
†B†

1 = a†t1 − c†r1, B1c
†B†

1 = a†r1 + c†t1,
(4)

B2b
†B†

2 = b†t2 − d†r2, B2d
†B†

2 = b†r2 + d†t2,

where tj = cos θj and rj = sin θj (j = 1,2) are the transmis-
sion coefficient and the reflection coefficient of the beam split-
ter BSj , respectively. The normalization factor pcd represents
the success probability heralded by the detection of a single
photon at the modes c and d.

Using the above relation and some technique (see Ap-
pendix A), the LQC-TMSVS |ψLQC〉ab can be expressed
explicitly as follows:

|ψLQC〉ab = (c0 + c1a
†b† + c2a

†2b†2)S2(λ)|0a,0b〉, (5)

where a squeezing parameter λ satisfying

tanh λ = t1t2 tanh r,

and

c0 = t1t2 cosh λ√
pcd cosh r

,

c1 =
(
r2

1 r2
2 − r2

1 t2
2 − r2

2 t2
1

)
tanh r cosh λ√

pcd cosh r
,

c2 = r2
1 r2

2 tanh r sinh λ√
pcd cosh r

.

Not surprisingly, the input TMSVS becomes non-Gaussian
after the catalysis. From Eq. (5), I find that the LQC-TMSVS
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|ψLQC〉ab is actually a superposition state of S2(λ)|0a,0b〉,
a†b†S2(λ)|0a,0b〉, and a†2b†2S2(λ)|0a,0b〉 with a certain ratio.
Note that the coefficients c0, c1, c2, and λ are all the functions
of the input squeezing parameter r and the transmission
coefficients t1,t2 of the BSs. Meanwhile, this state can also
be looked at as a non-Gaussian state by operating coherent su-
perposition operator (c0 + c1a

†b† + c2a
†2b†2) on S2(λ)|0a,0b〉.

So, I conclude that local quantum-optical catalysis operation
plays a role of preparing the non-Gaussian entangled states.
In the limit of t1 = t2 = 1, |ψLQC〉ab → |ψ0〉ab, i.e., the output
state is just the input one. While at least one of t1,t2 is zero,
leading to λ = 0, c0 = 0, c1 = 1, c2 = 0, so |ψLQC〉ab →
|1a,1b〉, i.e., the output state is a twin single-photon Fock state.

By the way, I often use the catalysis parameters Tj = t2
j

(j = 1,2) (i.e., the transmittance for each BS) in my following
discussion and analysis. Compared with the input TMSVS,
what optimal properties will emerge for the LQC-TMSVS?
By tuning the input and catalysis parameters of the interaction,
the LQC-TMSVS may be modulated, generating a wide range
of entanglement phenomena, as I show in the next sections.

B. Success probability of detection

Normalization is important for discussing the properties of
a quantum state. The normalization factor of the LQC-TMSVS
in theory is actually the probability pcd of detecting success-
fully single photon at the modes c and d in experiment. The
density operator of the LQC-TMSVS ρLQC = |ψLQC〉ab〈ψLQC|
is expressed in Appendix B. According to Tr(ρLQC) = 1, the
success probability to get |ψLQC〉ab from my proposal is given
by

pcd = p0(a0 + a1 tanh2 r + a2 tanh4 r

+ a3 tanh6 r + a4 tanh8 r), (6)

with p0 = cosh10 λ/ cosh2 r and

a0 = t2
1 t2

2 ,

a1 = 1 − 4t2
1 + 4t4

1 − 4t2
2 + 4t4

2 + 16t2
1 t2

2

− 16t4
1 t2

2 − 16t2
1 t4

2 + 11t4
1 t4

2 ,

a2 = 11t2
1 t2

2 − 28t4
1 t2

2 − 28t2
1 t4

2 + 64t4
1 t4

2 + 16t6
1 t2

2

+ 16t2
1 t6

2 − 28t4
1 t6

2 − 28t6
1 t4

2 + 11t6
1 t6

2 ,
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FIG. 3. (Color online) Success probability pcd of detection as a
function of the input parameter r and the catalysis parameter T1,T2 .
(a) In (T1,T2) space for r = 0.5; (b) in (r,T ) space.

a3 = 11t4
1 t4

2 − 16t6
1 t4

2 − 16t4
1 t6

2 + 4t8
1 t4

2 + 4t4
1 t8

2

+ 16t6
1 t6

2 − 4t8
1 t6

2 − 4t6
1 t8

2 + t8
1 t8

2 ,

a4 = t6
1 t6

2 .

In Fig. 3, I plot the distribution of the success probability
pcd in (T1,T2) space for r = 0.5 and in (r,T ) space for the
symmetric catalysis T1 = T2 = T . It is found that the detection
probability of success is relatively low for the case of low
transmissivity. The maximum success probability is 1 for the
limit case of T1 = T2 = 1. While at least one of T1,T2 is zero,
I find that pcd → (1 − 2Tj )2 tanh2 r/ cosh2 r (j = 1,2).

III. ENTANGLEMENT PROPERTIES

In contrast with the input TMSVS, can the local quantum-
optical catalysis be useful to enhance the entanglement
properties? If possible, then how can I adjust the catalysis
parameters in the process of preparing the LQC-TMSVS? In
this section, I shall discuss the entanglement properties of the
LQC-TMSVS quantified by the von Neumann entropy and the
EPR correlation.

A. Degree of entanglement

Entanglement for a pure state in Schmidt form |ψ〉ab =∑
n ωn|αn〉a|βn〉b (ωn real positive), with the orthonormal

states |αn〉a and |βn〉b, is quantified by the partial von Neumann
entropy of the reduced density operator, i.e.,

E(|ψ〉ab) = −Tr(ρa log2 ρa) = −
∑

n

ω2
n log2 ω2

n, (7)

where the local state is given by ρa = Trb(|ψ〉ab〈ψ |) [31]. The
LQC-TMSVS |ψLQC〉ab written in Schmidt form yields

|ψLQC〉ab =
∞∑

n=0

ωn|na,nb〉, (8)

where the Schmidt coefficient is given by

ωn =
(
t2
1 − n + nt2

1

)(
t2
2 − n + nt2

2

)
(t1t2)n−1 tanhn r√

pcd cosh r
. (9)

The entanglement amount of the LQC-TMSVS E(|ψLQC〉ab)
can be evaluated numerically by these Schmidt coefficients, as
shown in Fig. 4.

In the limit cases, when at least one of t1 or t2 is zero,
the output state corresponding to |1a,1b〉 is separate, E =
0. While t1 = t2 = 1, leading to ω2

n = tanh2n r/ cosh2 r , the
output state is just the TMSVS (the input state), whose amount
of entanglement is analytically given by [32,33]

E(|ψ0〉ab) = cosh2 r log2 cosh2 r − sinh2 r log2 sinh2 r. (10)

In order to understand whether the entanglement is en-
hanced by local quantum-optical catalysis, I compare the
von Neumann entropy values of the LQC-TMSVSs with the
TMSVSs. If E(|ψLQC〉ab) > E(|ψ0〉ab), then the entanglement
is enhanced in principle, or else it is weakened.

There are three feasibility regions having E(|ψLQC〉ab) >

E(|ψ0〉ab), as shown in Fig. 5. One region is located in the low
transmissivities of two BSs, i.e., T1,T2 ∈ (0,0.5), the other
two are located in one-small–one-large transmissivity of two
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FIG. 4. (Color online) Neumann entropy E as a function of the
input parameter r and the catalysis parameter T1,T2. (a) In (T1,T2)
space for r = 0.5; (b) in (r,T ) space.

BSs, i.e., T1 ∈ (0,0.5)but T2 ∈ (0.5,1) or T2 ∈ (0,0.5)but T1 ∈
(0.5,1). Three sections of Fig. 5 with r = 0.02,0.2,0.7 are
reshaped in Fig. 6. With increasing the input parameter r ,
the enhancement region decreases and disappears at threshold
r = 0.785, as shown in Fig. 6.

Next, I discuss the symmetric catalysis case, i.e., assuming
T = T1 = T2. The feasibility region for enhancing the entan-
glement is depicted in the (r,T ) plain space in Fig. 7. The
enhancement happens in small-squeezing (0 < r < 0.785)
and low-transmissivity (0 < T < 0.25) regimes. In Fig. 8(a),
I plot the von Neumann entropy E(|ψLQC〉ab) as a function
of the input squeezing parameter r for different T = 0.1,0.3,
compared with T = 1 (corresponding to the input TMSVS).
With reference to the curve of the TMSVS, one sees that
the enhancement is possible for T = 0.1 but not for T = 0.3.
Compared with the corresponding TMSVSs (the red dashed
line), I plot the von Neumann entropy E(|ψLQC〉ab) as a
function of the catalysis parameter T for different input
parameter r = 0.2,0.785,0.9 in Figs. 8(b)–8(d). For instance,

FIG. 5. (Color online) Three-dimensional plot of the feasibility
region for E(|ψLQC〉

ab
) > E(|ψ0〉ab) in (r,T1,T2 ) space.
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FIG. 6. (Color online) Plot of the feasibility region for
E(|ψLQC〉

ab
) > E(|ψ0〉ab) in (T1,T2) space with different r =

0.02,0.2,0.7, also three sections of Fig. 5. If r is larger than a threshold
value 0.785, the enhancement is impossible.
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FIG. 7. (Color online) Plot of the feasibility region for enhancing
entanglement, that is, E(|ψLQC〉

ab
) > E(|ψ0〉ab) in (r,T ) space.
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FIG. 8. (Color online) Neumann entropy E(|ψLQC〉
ab

) is depicted
in (a) as a function of the input squeezing parameter r for different
T = 0.1,0.3, compared with T = 1 (corresponding to the input
TMSVS); in (b)–(d) as a function of the catalysis parameter T (black
solid line) for (b) r = 0.2, (c) r = 0.785, (d) r = 0.9, respectively,
compared with their TMSVSs (red dashed line).
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when r = 0.2, the enhancement of entanglement will happen
in a certain catalysis range (about (0.03,0.23)) [see Fig. 8(b)].
But, above the threshold value r = 0.785, the enhancement is
impossible, as shown in Fig. 8(d) for r = 0.9.

From the above discussion, I conclude that the degree
of entanglement measured by the von Neumann entropy
turns out to be enhanced only in the small-squeezing and
low-transmissivity parameter spaces.

B. Second-order Einstein-Podolsky-Rosen correlation

For two-mode Gaussian entangled states, the entangle-
ment can be fully described by the second-order Einstein-
Podolsky-Rosen (EPR) correlation, which is characterized up
to second-order moments of the state [34–36]. For two-mode
non-Gaussian entangled states, however, the entanglement
is fully described with all orders of moments [37,38]. It is
known to all that a TMSVS (Gaussian) is the correlated
state of two field modes a and b (signal and idle) that
can be generated by a nonlinear medium [39]. But, after
operating local quantum-optical catalysis on the TMSVS, how
does the EPR correlation change? Here, I further investigate
the EPR correlation, another entanglement property for the
LQC-TMSVS.

The EPR correlation of two-mode states is the total variance
of a pair of EPR-type operators

EPR = 	2(xa − xb) + 	2(pa + pb)

= 2(1 + 〈a†a〉 + 〈b†b〉 − 〈a†b†〉 − 〈ab〉)
− 2(〈a〉 − 〈b†〉)(〈a†〉 − 〈b〉), (11)

where xj = 1√
2
(j + j †) and pj = −i√

2
(j − j †) (j = a,b). For

separable two-mode states or any classical two-mode states,
the total variance is larger than or equal to 2 [34]. The
condition EPR < 2, indicating quantum entanglement, can
be an important resource in continuous variable quantum
information processing protocols.

Given a LQC-TMSVS, one can evaluate the EPR correla-
tion with the expectation values in Eq. (11). Using the general
expression of 〈a†k1b†k2al1bl2〉 in Appendix D, I prove that
〈a†〉 = 〈b†〉 = 〈a〉 = 〈b〉 = 0 and

〈a†a〉 = M(x0 + x1 tanh r + x2 tanh2 r + x3 tanh3 r

+ x4 tanh4 r + x5 tanh5 r + x6 tanh6 r

+ x7 tanh7 r + x8 tanh8 r + x9 tanh9 r), (12)

〈b†b〉 = M(y0 + y1 tanh r + y2 tanh2 r + y3 tanh3 r

+ y4 tanh4 r + y5 tanh5 r + y6 tanh6 r

+ y7 tanh7 r + y8 tanh8 r + y9 tanh9 r), (13)

as well as

〈a†b†〉 = 〈ab〉 = N (z0 + z1 tanh r + z2 tanh2 r

+ z3 tanh3 r + z4 tanh4 r + z5 tanh5 r

+ z6 tanh6 r + z7 tanh7 r + z8 tanh8 r), (14)

FIG. 9. (Color online) EPR correlation as a function of the input
squeezing parameter r and the catalysis parameter T1,T2. (a) In (T1,T2)
space for r = 0.5; (b) in (r,T ) space. The colored region represents
the condition EPR < 2.

where I have set xi , yi , zi in Appendix E and

M = (cosh12 λ tanh r)/(pcd cosh2 r),

N = (cosh12 λ tanh λ)/(pcd cosh2 r).

Upon substituting the above equations into Eq. (11), the EPR
correlation of the LQC-TMSVS EPR(|ψLQC〉ab) can be calcu-
lated explicitly, which depends on the input squeezing degree r

and the catalysis parameters T1,T2. In the limit of T1 = T2 = 1,
EPR(|ψLQC〉ab) reduces to EPR(|ψ0〉ab) = 2e−2r , which tends
to zero asymptotically for r → ∞. In Fig. 9, I plot the EPR
correlation of the LQC-TMSVS in (T1,T2) space for r = 0.5
and in (r,T ) space under the condition EPR < 2. One can see
that there exists a threshold curve (boundary of EPR = 2) as a
function of T1 and T2 for r = 0.5 in Fig. 9(a) and as a function
of r and T in Fig. 9(b), respectively.

To exhibit whether the EPR correlation is enhanced, the
fact that EPR(|ψLQC〉ab) must be smaller than EPR(|ψ0〉ab)
must hold. The feasibility enhancement region of the EPR
correlation is shown in Fig. 10. Three sections of Fig. 10 are
shown in Fig. 11. Obviously, the enhancement happens only in
one region with small squeezing and low transmissivity, unlike
that of the degree of entanglement in Figs. 5 and 6. Moreover,
with increasing the input parameter r , the enhancement region
decreases and disappears at threshold r = 0.585.

The feasibility region for enhancing the EPR correlation
is depicted in the (r,T ) plain space in Fig. 12. For a
small squeezing (0 < r < 0.585) and low transmissivity (0 <

T < 0.3), the quantum-optical catalysis enhances the EPR
correlation of the TMSVS (see Fig. 2). In Fig. 13, I plot
the EPR correlation of the LQC-TMSVS as a function of
r or T . In general, the EPR correlation of the TMSVS
is enhanced with the squeezing parameter r , but it may
not be always true for the case of T = 0.1, as shown in
Fig. 13(a). I particulary compare the EPR correlation of the
LQC-TMSVS with that of the TMSVS for the cases r =
0.2,0.585,0.7 in Figs. 13(b)–13(d). For a moderate catalysis
parameter 0.12 < T < 0.3, the catalysis operation gives the
better EPR correlation for r = 0.2. For a large squeezing
(r > 0.585), the quantum-optical catalysis becomes the worse
operation.
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FIG. 10. (Color online) Three-dimensional plot of the feasibility
region for enhancing EPR correlation, that is, EPR(|ψLQC〉

ab
) <

EPR(|ψ0〉ab), in (r,T1,T2) space.

IV. QUANTUM TELEPORTATION USING NON-GAUSSIAN
ENTANGLED STATE

After employing local quantum-optical catalysis on the
TMSVS, I can see that the degree of entanglement and the
EPR correlation can be enhanced in small-squeezing and
low-transmissivity parameter regimes. Now, I consider the
LQC-TMSVS as entangled resources in the Braunstein and
Kimble (BK) protocol [1] to teleport a coherent state |γ 〉 in
CV teleportation. The fidelity between an input state and the
output state is usually used as a measure to describe the quality
of the quantum teleportation (QT).

For a CV system, a teleportation scheme has been proposed
according to the characteristic functions (CFs) of the quantum
states concluding input, source, and teleported states [40].
For the input coherent state, it is sufficient to calculate the
teleportation fidelity for a particular input coherent state since
there is no difference between the amplitudes of the input and
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FIG. 11. (Color online) Plot of the feasibility region for en-
hancing EPR correlation, that is, EPR(|ψLQC〉

ab
) < EPR(|ψ0〉ab), in

(T1,T2) space with different r = 0.02,0.2,0.5, also three sections of
Fig. 10. If r is larger than a threshold value 0.585, the enhancement
is impossible.

EPR enhanced
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r
T

FIG. 12. (Color online) Plot of the feasibility region for enhanc-
ing EPR correlation, that is, EPR(|ψLQC〉

ab
) < EPR(|ψ0〉ab) in (r,T )

space.

output coherent states in the BK protocol. For brevity, I take
γ = 0, and then I only calculate the fidelity of teleporting the
input vacuum state with the CF χin(z) = exp[−|z|2/2]. The CF
of the LQC-TMSVS (entangled resource or channel) |ψLQC〉ab

is given by

χE(α,β) = Tr[Da(α)Db(β)ρLQC], (15)

where Da(α) = eαa†−α∗a,Db(β) = eβb†−β∗b are the displace-
ment operators. The detailed calculation procedure and result
of χE(α,β) are shown in Appendix F. The CF χout(z) of the
output state can be related to the CFs of the input state and the

T 1
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T 0.3
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FIG. 13. (Color online) (a) EPR correlation as a function of the
input parameter r for different T = 0.1,0.3, compared with T = 1
(corresponding to the input TMSVS); in (b)–(d) as a function of T

for different input parameters r = 0.2,0.585,0.7, compared with their
TMSVSs (the red dashed line).
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FIG. 14. (Color online) Teleportation fidelity of a coherent state
with the LQC-TMSVS as a function of the input squeezing parameter
r and the catalysis parameter T1,T2. (a) In (T1,T2) space for r = 0.5;
(b) in (r,T ) space. The red line is the boundary with F = 0.5.

entangled source by formula χout(z) = χin(z)χE(z∗,z). Hence,
the fidelity of QT of CVs can be obtained as [41]

F =
∫

d2z

π
χin(−z)χout(z). (16)

Thus, F yields

F = p0

4pcd

(m0 + m1 tanh r + m2 tanh2 r

+m3 tanh3 r + m4 tanh4 r), (17)

where

m0 = 2t2
1 t2

2 ,

m1 = 2t1t2 − 4t3
1 t2 − 4t1t

3
2 − 2t3

1 t3
2 ,

m2 = 1 − 4t2
1 + 4t4

1 − 4t2
2 + 4t4

2 + 10t2
1 t2

2

− 2t4
1 t2

2 − 2t2
1 t4

2 + 5t4
1 t4

2 ,

m3 = t1t2 − t3
1 t2 − 2t5

1 t2 − t1t
3
2 − 2t1t

5
2

− 2t3
1 t3

2 + t5
1 t3

2 + t3
1 t5

2 − 3t5
1 t5

2 ,

m4 = t2
1 t2

2 − t4
1 t2

2 + t6
1 t2

2 − t2
1 t4

2 + t2
1 t6

2

+ 2t4
1 t4

2 − t6
1 t4

2 − t4
1 t6

2 + t6
1 t6

2 .

In the limit case of t2
1 = t2

2 = 1, the fidelity of LQC-TMSVS
F (|ψLQC〉ab) reduces to that of the TMSVS F (|ψ0〉ab) = (1 +
tanh r)/2, which is 0.5 for r = 0 and tends to 1 asymptotically
for r → ∞. In Fig. 14, I show the fidelity of teleporting a
coherent state using the resource (LQC-TMSVS) in (T1,T2)
space for r = 0.5 and in (r,T ) space. The red line denotes the
boundary with F = 0.5. The fidelity over the classical limit
0.5 may be considered as a successful quantum protocol [42].

Similar analysis of the teleportation fidelity is performed
like that of the degree of entanglement and the EPR correlation
in Sec. III. In Fig. 15, I plot the feasibility region for enhancing
teleportation fidelity of a coherent state with the LQC-TMSVS,
i.e., F (|ψLQC〉ab) > F (|ψ0〉ab), in (r,T1,T2) space. The figures
in Fig. 16 are three sections of Fig. 15 with r = 002,0.2,0.5.
In Fig. 17, I display the feasibility region in (r,T ) space for
enhancing teleportation fidelity of a coherent state using the
LQC-TMSVS. The teleportation fidelity as a function of r

or T is plotted in Fig. 18. Compared with the TMSVS as

FIG. 15. (Color online) Three-dimensional plot of the feasibility
region for enhancing teleportation fidelity of a coherent state with the
LQC-TMSVS, that is, F (|ψLQC〉

ab
) > F (|ψ0〉ab), in (r,T1,T2) space.

the entangled resource, the enhancement of the teleportation
fidelity is found in the range of 0 < r < 0.6 and 0 < T < 0.27.
All these figures indicate that local quantum-optical catalysis
can enhance the teleportation fidelity at the small-squeezing
and low-transmissivity parameter regimes.

V. DISCUSSION AND CONCLUSION

Interestingly, when comparing the different enhancement
feasibility regions of the quantities [degree of entanglement
(orange), the EPR correlation (green), and the teleportation
fidelity (red)] of the LQC-TMSVS in Figs. 5, 10, and 15
and 7, 12, and 17, I find that these enhancement regions
do not overlap completely and locate in different input and
catalysis parameter intervals. Taking the symmetric catalysis
as example, the enhancement regions are different as (i) 0 <

r < 0.785 and 0 < T < 0.25 for the degree of entanglement
(ii) 0 < r < 0.585 and 0 < T < 0.3 for the EPR correlation;
(iii) 0 < r < 0.6 and 0 < T < 0.27 for the teleportation
fidelity. I further reshape each two of the three plots (Figs. 7, 12,

weaken

enhanced
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FIG. 16. (Color online) Plot of the feasibility region for enhanc-
ing teleportation fidelity of a coherent state with the LQC-TMSVS,
that is F (|ψLQC〉

ab
) > F (|ψ0〉ab) in (T1,T2) space with different

r = 0.02,0.2,0.5, also three sections of Fig. 15. If r is larger than
a threshold value 0.6, the enhancement is impossible.
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Fidelity enhanced
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T

FIG. 17. (Color online) Plot of the feasibility region for enhanc-
ing teleportation fidelity of a coherent state with the LQC-TMSVS,
that is, F (|ψLQC〉

ab
) > F (|ψ0〉ab) in (r,T ) space.

and 17) in the same graph, as shown in Fig. 19. The conclusions
are concluded by answering the following question: If A is
enhanced, then must B be enhanced?, as demonstrated in
Table I. For instance, there exists a parameter region where
there is no EPR correlation enhancement, nevertheless, the
fidelity enhancement is achieved [see the red area in Fig. 19(f)],
so my answer is “no.” For all these three quantities, there
are common enhancement regions as shown in Fig. 20. This
region locates in the regime of the relatively low beam-splitter
transmissivities T1 and T2 (from 0 to around 0.25) and the
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FIG. 18. (Color online) (a) Teleportation fidelity of a coherent
state with the LQC-TMSVS as a function of the input parameter r

for different T = 0.1,0.3, compared with T = 1 (corresponding to
the input TMSVS); in (b)–(d) as a function of T for different input
parameter r = 0.2,0.6,0.7, compared with their TMSVSs (the red
dashed line).
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FIG. 19. (Color online) Comparison of the enhancing feasibility
region for each two of the three properties, i.e., the degree of
entanglement (orange, E), EPR correlation (green, EPR), and
teleportation fidelity (red, F ) in (r,T ) space for symmetric catalysis.
(a) E under EPR; (b) EPR under E; (c) E under F ; (d) F under
E; (e) EPR under F ; (f) F under EPR. The stack-ups indicate the
enhancement difference of these three properties. The illustration is
explained in Table I.

small squeezing parameters (from 0 to around 0.6), which are
the most experimentally accessible.

As the quantum-optical catalysis is an operation based
on post-selection, the probability of success is naturally an
issue. However, it is disadvantageous to see that the success
probabilities in the most desirable parameter ranges (i.e., the
enhancement regions) are relatively low in my protocol, as
shown in Fig. 3. There is a fundamental tradeoff between
success probability of the operation and the resultant enhance-
ment in entanglement. In addition, the catalysis operation
maximizes entanglement at low but nonzero probability. Thus,
the success of detecting the single photon, also the key of the
quantum-optical catalysis, is determined by the perfection of
the detectors. As long as the detector is enough perfect, the
single photon can be detected successfully. Using the current
detection technology, the problem of low detection probability
is possible to solve. This is good news. For example, the
single photon can be counted by using superconducting single-
photon detector with high efficiency (>90%), ultralow noise
(<1 Hz), and low timing jitter (<100 ps) [43] . In experiment,
it is possible to count near-infrared single photon with 95%
efficiency. The measured 95% system detection efficiency is
consistent with measurements and simulations of the optical
elements [44] . On the other hand, the probability of success in

TABLE I. If A is enhanced, then must B be enhanced?

Case A B Answer

Fig. 19(a) E EPR No
Fig. 19(b) EPR E No
Fig. 19(c) E F No
Fig. 19(d) F E Yes
Fig. 19(e) EPR F No
Fig. 19(f) F EPR No
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FIG. 20. (Color online) The common feasibility region for en-
hancing entanglement, EPR correlation, and teleportation fidelity in
(r,T ) space (a) and in (r,T1,T2) space (b). The brown regions are
located at small-squeezing and low-transmissivity regimes.

experiment is actually the normalization factor for a prepared
quantum state in theory. From the point of view of quantum
mechanics, once the detection is succeeding, the quantum state
can be generated.

In summary, this paper presents the effects of quantum
optical catalysis on the two-mode squeezed vacuum in terms
of various entanglement measures, namely, entanglement
entropy, second-order EPR correlation, and the fidelity of
quantum teleportation. The operation of the quantum-optical
catalysis is a powerful tool which can be used to increase
entanglement under certain conditions.
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APPENDIX A: EXPLICIT FORM OF |ψLQC〉ab

In this appendix, I derive the the explicit form of |ψLQC〉ab.
Noting the integral form of |ψ0〉ab,

|0〉ab = 1

sinh r

∫
d2α

π
e−|α|2 tanh−1 r+αa†+α∗b† |0,0〉

and the differential form of Fock state |1〉, such as
|1c〉 = d

ds1
es1c

† |0c〉|s1=0 and |1d〉 = d
ds2

es2d
† |0d〉|s2=0, I rewrite

|ψLQC〉ab as

|ψLQC〉ab = 1√
pcd sinh r

d4

ds1ds2ds3ds4

∫
d2α

π
e−|α|2 tanh−1 r

×〈0c|es3cB1e
αa†

es1c
†
B

†
1|0a〉|0c〉

×〈0d |es4dB2e
α∗b†es2d

†
B

†
2|0b〉|0d〉|(s1,s2,s3,s4)=0,

where (s1,s2,s3,s4) = 0 denotes s1 = s2 = s3 = s4 = 0. Fur-
ther using the transformation in Eq. (3), B1|0a〉|0c〉 = |0a〉|0c〉

and B2|0b〉|0d〉 = |0b〉|0d〉, I have

|ψLQC〉ab = 1√
pcd sinh r

d4

ds1ds2ds3ds4

∫
d2α

π
e−|α|2 tanh−1 r

×〈0c|es3cec†(s1t1−αr1)|0c〉〈0d |es4ded†(s2t2−α∗r2)|0d〉
×ea†(αt1+s1r1)|0a〉 ⊗ eb†(s2r2+α∗t2)|0b〉|(s1,s2,s3,s4)=0.

Inserting the completeness relation of coherent state∫ d2zj

π
|zj 〉〈zj | = 1 (j = 1,2) in the appropriate place, I have

|ψLQC〉ab = 1√
pcd sinh r

d4

ds1ds2ds3ds4

∫
d2α

π
e−|α|2 tanh−1 r

×〈0c|es3c

∫
d2z1

π
|z1〉〈z1|ec†(s1t1−αr1)|0c〉

× 〈0d |es4d

∫
d2z2

π
|z2〉〈z2|ed†(s2t2−α∗r2)|0d〉

× ea†(αt1+s1r1)+b†(s2r2+α∗t2)|0a,0b〉|(s1,s2,s3,s4)=0.

After a straightforward integration, I finally arrive at the
derivative form of |ψLQC〉ab:

|ψLQC〉ab = 1√
pcd cosh r

d4

ds1ds2ds3ds4

× e+s3s4r1r2 tanh r+s1s3t1+s2s4t2

× e+a†s1r1−a†s4t1r2 tanh r+b†s2r2−b†s3t2r1 tanh r

× ea†b†t1t2 tanh r |0a,0b〉|(s1,s2,s3,s4)=0.

Therefore, the explicit form in Eq. (5) can be obtained after
making derivation.

APPENDIX B: DENSITY OPERATOR
ρLQC = |ψLQC〉ab〈ψLQC|

The conjugate state of |ψLQC〉ab can be given by

ab〈ψLQC| = 1√
pcd cosh r

d4

dh1dh2dh3dh4
〈0a,0b|eabt1t2 tanh r

× e+ah1r1−ah4t1r2 tanh r+bh2r2−bh3t2r1 tanh r

× e+h3h4r1r2 tanh r+h1h3t1+h2h4t2 |(h1,h2,h3,h4)=0.

Then, the density operator is

ρLQC

= 1

pcd cosh2 r

d8

ds1ds2ds3ds4dh1dh2dh3dh4

× e+s3s4r1r2 tanh r+s1s3t1+s2s4t2

× e+h3h4r1r2 tanh r+h1h3t1+h2h4t2

× ea†s1r1−a†s4t1r2 tanh r+b†s2r2−b†s3t2r1 tanh r

× ea†b†t1t2 tanh r |0a,0b〉〈0a,0b|eabt1t2 tanh r

× eah1r1−ah4t1r2 tanh r+bh2r2−bh3t2r1 tanh r |(s1,s2,s3,s4,h1,h2,h3,h4)=0.
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APPENDIX C: SUCCESS PROBABILITY OF DETECTION

Due to Tr(ρLQC) = 1, I have

pcd = cosh2 λ

cosh2 r

d8

ds1ds2ds3ds4dh1dh2dh3dh4

× exp (�)|(s1,s2,s3,s4,h1,h2,h3,h4)=0,

where I have set

� = +ε1(s3s4 + h3h4) + ε2(s1s2 + h1h2)

+ε3(s1s3 + h1h3) + ε4(s2s4 + h2h4)

−ε5(h2s3 + s2h3) − ε6(s4h1 + s1h4)

+ε7s1h1 + ε8s2h2 + ε9s3h3 + ε10s4h4

with

ε1 = r1r2 sinh 2λ

2t1t2
, ε2 = r1r2 sinh 2λ

2
,

ε3 = t1 cosh2 λ − sinh2 λ

t1
,

ε4 = t2 cosh2 λ − sinh2 λ

t2
,

ε5 = r1r2 sinh 2λ

2t1
, ε6 = r1r2 sinh 2λ

2t2

ε7 = r2
1 cosh2 λ, ε8 = r2

2 cosh2 λ

ε9 = r2
1 sinh2 λ

t2
1

, ε10 = r2
2 sinh2 λ

t2
2

.

APPENDIX D: EXPECTATION VALUE OF 〈a†k1 b†k2 al1 bl2〉
According to 〈a†k1b†k2al1bl2〉 = Tr(a†k1b†k2al1bl2ρLQC) and

making detailed calculation, I obtain

〈a†k1b†k2al1bl2〉

= cosh2 λ

pcd cosh2 r

d8+k1+l1+k2+l2

ds1ds2ds3ds4dh1dh2dh3dh4df
k1
1 df

l1
2 dg

k2
1 dg

l2
2

× exp (� + �)|(s1,s2,s3,s4,h1,h2,h3,h4,f1,f2,g1,g2)=0,

where I have set

� = +η1(s1g1 + h1g2) + η2(s2f1 + h2f2)

+ η3(s2g2 + h2g1) + η4(s1f2 + h1f1)

− η5(s3g2 + h3g1) − η6(s4f2 + h4f1)

− η7(s4g1 + h4g2) − η8(s3f1 + h3f2)

+ η9(f1g1 + f2g2) + η10(f1f2 + g1g2)

with

η1 = r1 sinh 2λ

2
, η2 = r2 sinh 2λ

2
,

η3 = r2 cosh2 λ, η4 = r1 cosh2 λ,

η5 = r1 sinh 2λ

2t1
, η6 = r2 sinh 2λ

2t2
,

η7 = r2 sinh2 λ

t2
, η8 = r1 sinh2 λ

t1
,

η9 = sinh 2λ

2
, η10 = sinh2 λ.

APPENDIX E: EXPRESSIONS OF xi , yi , zi

Here, I list the expressions of xi , yi , and zi as follows:

x0 = −2t2
1 t4

2 + 2t4
1 t4

2 ,

x1 = 1 − 4t2
1 + 4t4

1 − 4t2
2 + 4t4

2 + 16t2
1 t2

2 − 16t4
1 t2

2

− 14t2
1 t4

2 + 14t4
1 t4

2 + t2
1 t6

2 − 2t4
1 t6

2 + t6
1 t6

2 ,

x2 = 4t2
1 t2

2 − 12t4
1 t2

2 + 8t6
1 t2

2 − 16t2
1 t4

2 + 48t4
1 t4

2

− 32t6
1 t4

2 + 14t2
1 t6

2 − 34t4
1 t6

2 + 20t6
1 t6

2 ,

x3 = 22t2
1 t2

2 − 60t4
1 t2

2 + 40t6
1 t2

2 − 56t2
1 t4

2 + 146t4
1 t4

2

− 92t6
1 t4

2 + 2t8
1 t4

2 + 33t2
1 t6

2 − 92t4
1 t6

2 + 61t6
1 t6

2

− 8t8
1 t6

2 + 4t4
1 t8

2 − 8t6
1 t8

2 + 4t8
1 t8

2 ,

x4 = 24t4
1 t4

2 − 52t6
1 t4

2 + 28t8
1 t4

2 − 48t4
1 t6

2 + 88t6
1 t6

2

− 40t8
1 t6

2 + 20t4
1 t8

2 − 34t6
1 t8

2 + 14t8
1 t8

2 ,

x5 = 40t4
1 t4

2 − 76t6
1 t4

2 + 30t8
1 t4

2 − 76t4
1 t6

2 + 140t6
1 t6

2

− 56t8
1 t6

2 + 4t10
1 t6

2 + 36t4
1 t8

2 − 58t6
1 t8

2 + 26t8
1 t8

2

− 4t10
1 t8

2 + t6
1 t10

2 − 2t8
1 t10

2 + t10
1 t10

2 ,

x6 = 8t6
1 t6

2 − 8t8
1 t6

2 − 8t6
1 t8

2 + 8t8
1 t8

2 + 2t6
1 t10

2 − 2t8
1 t10

2 ,

x7 = 14t6
1 t6

2 − 16t8
1 t6

2 + 4t10
1 t6

2 − 20t6
1 t8

2 + 16t8
1 t8

2

− 4t10
1 t8

2 + 5t6
1 t10

2 − 4t8
1 t10

2 + t10
1 t10

2 ,

x8 = 0, x9 = t8
1 t8

2 ,

y0 = −2t4
1 t2

2 + 2t4
1 t4

2 ,

y1 = 1 − 4t2
1 + 4t4

1 − 4t2
2 + 4t4

2 + 16t2
1 t2

2 − 16t2
1 t4

2

− 14t4
1 t2

2 + 14t4
1 t4

2 + t6
1 t2

2 − 2t6
1 t4

2 + t6
1 t6

2 ,

y2 = 4t2
1 t2

2 − 16t4
1 t2

2 + 14t6
1 t2

2 − 12t2
1 t4

2 + 48t4
1 t4

2

− 34t6
1 t4

2 + 8t2
1 t6

2 − 32t4
1 t6

2 + 20t6
1 t6

2 ,

y3 = 22t2
1 t2

2 − 56t4
1 t2

2 + 33t6
1 t2

2 − 60t2
1 t4

2 + 146t4
1 t4

2

− 92t6
1 t4

2 + 4t8
1 t4

2 + 40t2
1 t6

2 − 92t4
1 t6

2 + 61t6
1 t6

2

− 8t8
1 t6

2 + 2t4
1 t8

2 − 8t6
1 t8

2 + 4t8
1 t8

2 ,

y4 = 24t4
1 t4

2 − 48t6
1 t4

2 + 20t8
1 t4

2 − 52t4
1 t6

2 + 88t6
1 t6

2

− 34t8
1 t6

2 + 28t4
1 t8

2 − 40t6
1 t8

2 + 14t8
1 t8

2 ,

y5 = 40t4
1 t4

2 − 76t6
1 t4

2 + 36t8
1 t4

2 − 76t4
1 t6

2 + 140t6
1 t6

2

− 58t8
1 t6

2 + t10
1 t6

2 + 30t4
1 t8

2 − 56t6
1 t8

2 + 26t8
1 t8

2

− 2t10
1 t8

2 + 4t6
1 t10

2 − 4t8
1 t10

2 + t10
1 t10

2 ,

y6 = 8t6
1 t6

2 − 8t8
1 t6

2 − 8t6
1 t8

2 + 8t8
1 t8

2 + 2t10
1 t6

2 − 2t10
1 t8

2 ,
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y7 = 14t6
1 t6

2 − 20t8
1 t6

2 + 5t10
1 t6

2 − 16t6
1 t8

2 + 16t8
1 t8

2

− 4t10
1 t8

2 + 4t6
1 t10

2 − 4t8
1 t10

2 + t10
1 t10

2 ,

y8 = 0, y9 = t8
1 t8

2 ,

as well as

z0 = 1 − 2t2
1 − 2t2

2 + 4t2
1 t2

2 ,

z1 = −t2
1 + 2t4

1 − t2
2 + 2t4

2 + 6t2
1 t2

2 − 8t4
1 t2

2

− 8t2
1 t4

2 + 8t4
1 t4

2 ,

z2 = 8 − 27t2
1 + 22t4

1 − 27t2
2 + 22t4

2 + 87t2
1 t2

2

− 67t4
1 t2

2 + 2t6
1 t2

2 − 67t2
1 t4

2 + 49t4
1 t4

2 − 6t6
1 t4

2

+ 2t2
1 t6

2 − 6t4
1 t6

2 + 4t6
1 t6

2 ,

z3 = 14t2
1 t2

2 − 37t4
1 t2

2 + 22t6
1 t2

2 − 37t2
1 t4

2 + 92t4
1 t4

2

− 50t6
1 t4

2 + 22t2
1 t6

2 − 50t4
1 t6

2 + 24t6
1 t6

2 ,

z4 = 45t2
1 t2

2 − 98t4
1 t2

2 + 48t6
1 t2

2 − 98t2
1 t4

2 + 197t4
1 t4

2

− 90t6
1 t4

2 + 4t8
1 t4

2 + 48t2
1 t6

2 − 90t4
1 t6

2 + 46t6
1 t6

2

− 6t8
1 t6

2 + 4t4
1 t8

2 − 6t6
1 t8

2 + 2t8
1 t8

2 ,

z5 = 20t4
1 t4

2 − 33t6
1 t4

2 + 12t8
1 t4

2 − 33t4
1 t6

2 + 46t6
1 t6

2

− 14t8
1 t6

2 + 12t4
1 t8

2 − 14t6
1 t8

2 + 4t8
1 t8

2 ,

z6 = 24t4
1 t4

2 − 31t6
1 t4

2 + 8t8
1 t4

2 − 31t4
1 t6

2 + 33t6
1 t6

2

− 9t8
1 t6

2 + 8t4
1 t8

2 − 9t6
1 t8

2 + 3t8
1 t8

2 ,

z7 = 2t6
1 t6

2 − t8
1 t6

2 − t6
1 t8

2 , z8 = t6
1 t6

2 .

APPENDIX F: CHARACTERISTIC FUNCTION OF
∣∣�LQC

〉
ab

Noticing the displacement operators Da(α) =
e

|α|2
2 e−α∗aeαa†

,Db(β) = e
|β|2

2 e−β∗beβb† , the CF of |ψLQC〉ab

can be calculated as

χE(α,β) = cosh2 λ

pcd cosh2 r

d8

ds1ds2ds3ds4dh1dh2dh3dh4

×e�−�|α|2+χαα+χα∗ α∗−�|β|2+χββ+χβ∗ β∗+η9(αβ+α∗β∗)

×|(s1,s2,s3,s4,h1,h2,h3,h4)=0,

where I have set � = cosh2 λ − 1
2 and

χα = h1η4 + s2η2 − s3η8 − h4η6,

χα∗ = −s1η4 − h2η2 + h3η8 + s4η6,

χβ = s1η1 + h2η3 − h3η5 − s4η7,

χβ∗ = −h1η1 − s2η3 + s3η5 + h4η7.

APPENDIX G: FIDELITY OF QT OF CVs

Considering the entangled state |ψLQC〉ab to teleport a co-
herent (vacuum) state and substituting χin(z) = exp[−|z|2/2]
and χout(z) = χin(z)χE(z∗,z) into F = ∫

d2z
π

χin(−z)χout(z)
yields

F = κ0

pcd cosh2 r

d8

ds1ds2ds3ds4dh1dh2dh3dh4

× exp (�)|(s1,s2,s3,s4,h1,h2,h3,h4)=0,

where I have set

� = +κ1(s1s2 + h1h2) + κ2(s3s4 + h3h4)

+ κ3(s1s3 + h1h3) + κ4(s2s4 + h2h4)

− κ5(s3h2 + s2h3) − κ6(s4h1 + s1h4)

+ κ7s1h1 + κ8s2h2 + κ9s3h3 + κ10s4h4

with κ0 = [2(1 − tanh λ)]−1 and

κ1 = κ0r1r2,κ2 =
(

κ0 + 1

2

)
r1r2 tanh r,

κ3 = t1 sinh 2λ

8κ0
− κ0 tanh λ

t1
+ t1 cosh2 λ,

κ4 = t2 sinh 2λ

8κ0
− κ0 tanh λ

t2
+ t2 cosh2 λ

κ5 = κ0r1r2 tanh λ

t1
, κ6 = κ0r1r2 tanh λ

t2
,

κ7 = κ0r
2
1 , κ8 = κ0r

2
2 ,

κ9 = κ0r
2
1 tanh2 λ

t2
1

, κ10 = κ0r
2
2 tanh2 λ

t2
2

.

Thus, Eq. (17) can be obtained.
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