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Zhong-Xiao Man,1,2 Yun-Jie Xia,1 and Rosario Lo Franco3,4,5

1Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University,
Qufu 273165, China

2Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, China
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Controlling the non-Markovian dynamics of open quantum systems is essential in quantum information
technology since it plays a crucial role in preserving quantum memory. Albeit in many realistic scenarios
the quantum system can simultaneously interact with composite environments, this condition remains little
understood, particularly regarding the effect of the coupling between environmental parts. We analyze the
non-Markovian behavior of a qubit interacting at the same time with two coupled single-mode cavities which in
turn dissipate into memoryless or memory-keeping reservoirs. We show that increasing the control parameter, that
is the two-mode coupling, allows for triggering and enhancing a non-Markovian dynamics for the qubit starting
from a Markovian one in the absence of coupling. Surprisingly, if the qubit dynamics is non-Markovian for the zero
control parameter, increasing the latter enables multiple transitions from non-Markovian to Markovian regimes.
These results hold independently on the nature of the reservoirs. This work highlights that suitably engineering
the coupling between parts of a compound environment can efficiently harness the quantum memory, stored in a
qubit, based on non-Markovianity.
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I. INTRODUCTION

A thorough understanding of the dynamics of an open
quantum system has experienced a long-term pursuit [1]
and nowadays attracts ever-increasing attention due to the
development of quantum information technology [2,3] that
employs open quantum systems as a basic resource. In the
theory of open quantum systems, the non-Markovian dynamics
is one of the main concerns being linked to the preservation
of quantum memory stored in a quantum system [1,4,5]. It
arises in many realistic situations [4–23] and also proves
useful in quantum information processing such as quantum
state engineering, quantum channel capacity, and quantum
control [4,24–29]. The degree of a non-Markovian evolution,
the so-called non-Markovianity, can be quantified by different
measures based on dynamical features of the system capable of
grasping the memory effects of the environment on the system
evolution [28–36]. So far, many factors that can trigger and
modify the non-Markovian dynamics have been found, such
as strong system-environment coupling, structured reservoirs,
low temperatures, and initial system-environment correla-
tions [1,4–6,37–41]. Apart from these mechanisms, some other
peculiar conditions such as classical environments [42,43]
and environmental initial correlations [44,45] have also been
predicted and experimentally demonstrated [43,45], enabling
the emergence of non-Markovianity.

In the conventional study, one usually considers the quan-
tum system being coupled to a single environment [1,4,5].
However, in several realistic scenarios the system may be
simultaneously influenced by many environments [46–50].
For instance, in a quantum dot the electron spin may be
affected strongly by the surrounding nuclei and weakly by
the phonons [46]. The neighbor nitrogen impurities constitute
the principal bath for a nitrogen-vacancy center, while the

carbon-13 nuclear spins also have some interaction with
it [47]. A similar situation also occurs for a single-donor
electron spin in silicon [48]. Motivated by these practical
situations [46–48], some efforts have been devoted to studying
the effects of multiple environments on the dynamics of an
open system [49–53]. Quantum interference effects have been
found to occur between independent reservoirs when all of
them interact with a quantum system and are in non-Markovian
regimes, which qualitatively modify the dynamics of the
interested system [49]. The dynamics of a spin simultaneously
coupled to two decoherence channels, one Markovian and the
other non-Markovian, has been analyzed with respect to the
different decoherence mechanisms [50]. As is known, a qubit
(i.e., a two-level system) interacting with a single vacuum
bosonic reservoir may exhibit Markovian or non-Markovian
dynamics depending on the strength of the system-reservoir
coupling [1]. By contrast, if the qubit simultaneously interacts
with several reservoirs, its dynamics can be always non-
Markovian provided that the number of the contributing
reservoirs is greater than a critical value [51]. The dynamics
of a qubit coupled to a hierarchical environment made of a
single-mode cavity and a structured reservoir with Lorentzian
spectral density has been studied, showing that a shorter
(longer) memory time of the reservoir does not generally mean
a smaller (larger) non-Markovianity of the system [52]. A new
analytical method based on a phase-space representation of
the system density matrix has been also proposed to study the
dynamics of a discrete system in a two-tiered non-Markovian
environment [53].

In the treatments of composite environments [49–51], the
role of the coupling between environmental parts is not
typically taken into account. Despite this, the knowledge
of how this environmental parameter influences the non-
Markovian character of an open quantum system would
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provide insightful developments for engineering and control-
ling quantum memories for possible technological applica-
tions. Therefore, this aspect deserves careful investigation,
possibly starting from a paradigmatic model where it can sim-
ply emerge and be understood. Here we choose a model which
complies with this requirement, namely, a qubit interacting at
the same time with two coupled single-mode cavities which in
turn dissipate photons into their own memoryless (Markovian)
or memory-keeping (non-Markovian) reservoirs. This system
finds its natural implementation in current technologies of
circuit quantum electrodynamics [54] and also in simulating
all-optical setups [55]. We show that the coupling strength be-
tween the two modes can harness the qubit non-Markovianity
in different and even counterintuitive ways, independently of
the nature of the reservoirs. The paper is organized as follows.
In Sec. II we describe the system of interest. In Sec. III we
study the case of memoryless reservoirs, while in Sec. IV we
investigate the case of memory-keeping reservoirs. In Sec. V
we summarize our conclusions.

II. THE SYSTEM

Our global system consists of a qubit, s, simultaneously
interacting with two environments, E1 and E2. To fix the
ideas, we model each environment En (n = 1,2) as a bosonic
mode, mn, decaying to a zero-temperature bosonic reservoir,
Rn, as depicted in Fig. 1. The qubit is here meant as the
quantum memory whose efficiency is to be quantified by its
non-Markovianity, that is, by the degree of non-Markovian
evolution. The interaction of the two environments is due to
the coupling of the two bosonic cavity modes, which instead
plays the role of a control parameter for the non-Markovianity
of the qubit. The coupling strength of the qubit with each mode
mn is κn, while � denotes the coupling between the two modes.
For the sake of simplicity, we assume that the two modes have
the same frequency ωc, which in turn is equal to the qubit
transition frequency ω0, that is, ω0 = ωc.

FIG. 1. (Color online) Pictorial description of the global system.
A qubit, i.e., a two-level system (TLS), simultaneously interacts with
two environments, En (n = 1 and 2), each containing a single cavity
mode, mn, that in turn is affected by a vacuum (zero-temperature)
reservoir, Rn. The qubit is directly coupled to each mode mn with
strength κn. The two cavity modes m1 and m2 are coupled with
strength �.

The total Hamiltonian is given by (� = 1)

Ĥ = Ĥs +
2∑

n=1

[
Ĥmn

+ ĤRn
+ Ĥsmn

+ ĤmnRn

] + Ĥm1m2 ,

(1)

where Ĥs = (ω0/2)σ̂z is the qubit Hamiltonian, Ĥmn
= ωcâ

†
nân

the mode Hamiltonian, ĤRn
= ∑

k ωn,kb̂
†
n,kb̂n,k the reser-

voir Hamiltonian, Ĥsmn
= κn(â†

nσ̂− + ânσ̂+) the qubit-mode
interaction Hamiltonian, ĤmnRn

= ∑
k gn,k(ânb̂

†
n,k + â

†
nb̂n,k)

the mode-reservoir interaction Hamiltonian, and Ĥm1m2 =
�(â†

1â2 + â1â
†
2) the interaction Hamiltonian between the two

modes. In the expressions above σ̂z = |1〉〈1| − |0〉〈0| is a
Pauli operator for the system with transition frequency ω0,
σ̂± represent the raising and lowering operators of the qubit,
and ân (â†

n) is the annihilation (creation) operator of mode
mn. Furthermore, in the Hamiltonians involving the reservoirs,
b̂n,k (b̂†n,k) is the annihilation (creation) operator of field mode
k with frequency ωn,k of reservoir Rn, and gn,k denotes the
coupling of mode mn with mode k of its own reservoir Rn. In
the interaction picture, the total Hamiltonian can be expressed
as

Ĥint =
2∑

n=1

Ĥsmn
+ Ĥm1m2

+
2∑

n=1

∑
k

gn,k(ânb̂
†
n,ke

i�n,k t + â†
nb̂n,ke

−i�n,k t ), (2)

where �n,k = ωn,k − ω0.
The reservoirs Rn of the global system can be either mem-

oryless (Markovian) or memory-keeping (non-Markovian).
Depending on the kind of reservoir, different methods are used
to obtain the reduced dynamics of the qubit. In the following
two sections we study these two cases.

III. MEMORYLESS RESERVOIRS

In this section we consider both the reservoirsRn as vacuum
Markovian ones, their correlation times being much smaller
than the single-mode relaxation times. Although our system
can be exactly solved (see Sec. IV), we first treat it under
the Markov approximation since this analysis constitutes a
strategic first step in order to strongly evidence the crucial
role of the two-mode coupling parameter to harness quantum
non-Markovianity for the dynamics of the qubit even under this
condition. In this case, the density operator ρ(t) of the qubit
plus the two modes obeys the following master equation [1]:

ρ̇(t) = −i[Ĥ ,ρ(t)]

−
2∑

n=1

�n

2
[a†

nanρ(t) − 2anρ(t)a†
n + ρ(t)a†

nan], (3)

where ρ̇(t) ≡ dρ(t)/dt , Ĥ is given by Eq. (1) without the terms
involving the reservoirs, and �n denotes the decay rate of the
mode mn. We initially take the qubit in its excited state |1〉s and
both modes in the ground states |00〉m1,m2

, so that the initial
overall state is ρ(0) = |100〉〈100|, where the first, second, and
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third elements correspond to the qubit s, mode m1, and mode
m2, respectively. Since there exist at most one excitation in the
total system at any time, we can make the ansatz for ρ(t) in
the form

ρ(t) = (1 − λ(t))|ψ(t)〉〈ψ(t)| + λ(t)|000〉〈000|, (4)

where 0 � λ(t) � 1, with λ(0) = 0, and |ψ(t)〉 = h(t)|100〉 +
c1(t)|010〉 + c2(t)|001〉, with h(0) = 1 and c1(0) = c2(0) = 0.

It is convenient to introduce the unnormalized state vector [56]

|ψ̃(t)〉 ≡
√

1 − λ(t)|ψ(t)〉,
= h̃(t)|100〉 + c̃1(t)|010〉 + c̃2(t)|001〉, (5)

where h̃(t) ≡ √
1 − λ(t)h(t) represents the probability ampli-

tude of the qubit and c̃n(t) ≡ √
1 − λ(t)cn(t) that of the mode

mn being in their excited states. In terms of the unnormalized
state vector we then get

ρ(t) = |ψ̃(t)〉〈ψ̃(t)| + λ(t)|000〉〈000|. (6)

Inserting this expression in Eq. (3), the time-dependent
amplitudes h̃(t), c̃1(t), and c̃2(t) of Eq. (5) are determined
by a set of differential equations as

i
dh̃(t)

dt
= ω0h̃(t) + κ1c̃1(t) + κ2c̃2(t),

i
dc̃1(t)

dt
=

(
ωc − i

2
�1

)
c̃1(t) + κ1h̃(t) + �c̃2(t), (7)

i
dc̃2(t)

dt
=

(
ωc − i

2
�2

)
c̃2(t) + κ2h̃(t) + �c̃1(t).

The above differential equations can be solved by means of
standard Laplace transformations combined with numerical
simulations to obtain the reduced density operators of the qubit
as well as of each of the modes.

To quantify the non-Markovianity we adopt a measure
based on the dynamics of the trace distance between two
different initial states ρ1(0) and ρ2(0) of an open system [30]. A
Markovian evolution can never increase the distinguishability
between different initial states in terms of their trace distance;
hence a nonmonotonic time behavior of the latter would signify
non-Markovian dynamics of the system. Such a measure
is consistent with the interpretation of non-Markovianity in
terms of a backflow of information from the environment
to the system, which is responsible for the distance (state-
distinguishability) growth. Based on this concept, the non-
Markovianity can be quantified by the measure N defined
as [30]

N = max
ρ1(0),ρ2(0)

∫
σ>0

σ [t,ρ1(0),ρ2(0)]dt, (8)

in which σ [t,ρ1(0),ρ2(0)] = dD[ρ1(t),ρ2(t)]/dt is the rate of
change of the trace distance given by

D[ρ1(t),ρ2(t)] = 1
2 Tr|ρ1(t) − ρ2(t)|, (9)

where |A| =
√

A†A. In order to evaluate N , we have to find
a specific pair of optimal initial states to maximize the time
derivative of the trace distance. In Ref. [57], it is proven that
the pair of optimal states is associated with two antipodal
pure states on the surface of the Bloch sphere. We thus
adopt a pair of initial states, ρ1,2(0) = |ψ1,2(0)〉〈ψ1,2(0)|, with

FIG. 2. (Color online) Non-Markovianity measure N as a func-
tion of the coupling constant �/� between the two modes for (a)
weak and (b) strong system-mode coupling regimes.

|ψ1,2(0)〉 = (|0〉 ± |1〉)√2, as the optimal ones throughout the
paper. This allows us to obtain the time derivative of the trace
distance in the simple form σ [t,ρ1(0),ρ2(0)] = d |̃h(t)|/dt .

In the absence of the coupling between m1 and m2, the qubit
exhibits Markovian dynamics when the couplings of the qubit
with the two modes in terms of κ1/�1 and κ2/�2 are weak.
In this case, we show that the introduction of mode-mode
coupling with sufficient strength � can transform the Marko-
vian dynamics to the non-Markovian dynamics. In Fig. 2(a),
we plot the non-Markovianity N as a function of the scaled
coupling strength �/� between the two modes for different
values of κ1 and κ2 (�1 = �2 = � is assumed throughout the
paper). As shown in the figure, the system exhibits Markovian
dynamics, individuated by N = 0, until the two modes are
weakly coupled and below a certain threshold. However, when
�/� exceeds this threshold the Markovian dynamics of the
qubit changes to non-Markovian dynamics (i.e., N > 0). In
general, non-Markovianity increases with �/� for the given
values of κ1 and κ2 and is also proportional to κ1 and κ2 for
a fixed �/�. Therefore, the coupling of the two modes can
trigger the non-Markovian dynamics of the system.

On the other hand, if the qubit-mode couplings κ1 and κ2

are strong the qubit exhibits non-Markovian dynamics without
the need of mode-mode coupling. Under these conditions,
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FIG. 3. (Color online) Phase diagram in the κ/�-�/� plane for
the crossover between Markovian and non-Markovian dynamics.
The colored regions represent the non-Markovian dynamics, while
the white regions denote the Markovian dynamics. The dotted line
near κ/� = 0.18 divides the weak and strong couplings between the
system and the modes, above (below) which is the strong (weak)
system-modes coupling regime.

how the additional coupling of the two modes influences the
system non-Markovianity is to be revealed. From the above
discussion about the case of weak qubit-mode couplings,
one might expect that the mode-mode coupling would enhance
the non-Markovianity of the system. However, as shown in
Fig. 2(b), for different κ1 and κ2 the relation between the non-
Markovianity N and the mode-mode coupling strength is non-
monotonic. Increasing �/� from zero, the non-Markovianity
first diminishes to a minimal value and then rises. Remarkably,
for some smaller values of κ1 and κ2, the non-Markovianity
can even decrease to zero (Markovian regime), remain zero
for a finite range of �/�, and then recover nonzero values
with a further increase of �/�. The mode-mode coupling is
thus able not only to enhance the memory effects of the overall
environment but also to restrain them.

For a comprehensive understanding of the effects of system-
mode and mode-mode couplings on the qubit dynamics,
in Fig. 3 we display the phase diagram in the κ-� plane
(κ1 = κ2 = κ) of the transitions between Markovian and
non-Markovian dynamics. In the strong qubit-mode coupling
regime (above the dotted line), the qubit may experience
two transitions: from non-Markovian to Markovian and again
to non-Markovian dynamics (e.g., from point A to B and
then to C) with an increase of �. In the weak qubit-mode
coupling regime (below the dotted line), an increase of the
mode-mode coupling can drive the Markovian dynamics to
the non-Markovian one (e.g., from point D to E). Moreover,
the smaller the κ is, the larger the � required to activate the
non-Markovian dynamics.

So far, we have shown that the mode-mode coupling can
trigger and modify the non-Markovianity of the system. In
fact, the two modes can be regarded as effective memories of
the overall environment since the compensated rate W (t) of
their population changes, given by [58]

W (t) ≡ d
( ∑2

n=1 |̃cn(t)|2)
dt

+
2∑

n=1

�n |̃cn(t)|2, (10)

completely determines the qubit non-Markovian dynamics.
The meaning of Eq. (10) can be explained as follows. The en-
ergy dissipations are one-way from the modes to their memo-
ryless reservoirs so that �1 and �2 are always positive. If the en-
ergy of the two modes decreases (i.e., d(

∑2
n=1 |̃cn(t)|2)/dt <

0) and this decrease is not compensated by the dissipation of
the modes, quantified by

∑2
n=1 �n |̃cn(t)|2, then W (t) < 0. This

situation can only happen when part of the two-mode energy
has come back to the quantum system; thus a negative value
of W (t) identifies a backaction (or backflow of information)
and therefore the onset of non-Markovianity. Therefore, the
results discussed above indicate that the coupling between
the two environmental modes, the memories, can enhance or
inhibit their own memory effects on the qubit. As a further
verification, in Fig. 4 we compare the dynamics of the trace
distance D[ρ1(t),ρ2(t)] of Eq. (9) and of the rate W (t) to
directly demonstrate that the negativity of W (t) assesses qubit
non-Markovianity. To this aim, we choose three points in
the κ-� phase diagram (Fig. 3) with the same κ = 0.3�,
while � = 0, �, and 2�, respectively. These points pass
through the regime transitions non-Markovian → Markovian
→ non-Markovian as � increases. As expected, D[ρ1(t),ρ2(t)]
exhibit oscillations for � = 0 and � = 2� [see Fig. 4(a)
and 4(c)], while asymptotically decay to zero for � = �

[Fig. 4(b)]. The witness W (t) becomes negative at the points
where D[ρ1(t),ρ2(t)] begins to grow and remains negative
during the whole time interval when D[ρ1(t),ρ2(t)] increases,
which entails an information backflow from the modes to the
qubit. Differently, W (t) remains positive when D[ρ1(t),ρ2(t)]
asymptotically decays, as in Fig. 4(b). It is worth noting
that, although the qubit undergoes non-Markovian dynamics
for both � = 0 [Fig. 4(a)] and � = 2� [Fig. 4(c)], the
dynamical curves of the trace distance D[ρ1(t),ρ2(t)] (state
distinguishability) are very different regarding the points
when they start increasing, implying different mechanisms of
information backflow in the two cases.

IV. MEMORY-KEEPING RESERVOIRS

In the above section, we have considered a qubit, s,
interacting with two coupling modes, m1 and m2, which are
dissipated respectively by two memoryless reservoirs, R1 and
R2. Under these conditions, we have seen that the two modes
are fully responsible for the memory effects of the overall
environment on the qubit and their coupling can modify this
effect. However, if the two modes are only components of the
compound memory of the overall environment, the way their
coupling changes the overall memory effects on the qubit needs
to be explored. We accomplish this analysis in this section. To
this purpose, we consider a more complex situation where
the coupling modes are dissipated by structured reservoirs R1

and R2 exhibiting inherent memory effects and are therefore
non-Markovian [1,5].

We again assume the two modes and the corresponding
reservoirs are initially in their ground states with only up to one
excitation present in the total system. The qubit can initially be
in a (normalized) superposition |ψ〉s = c0(0)|0〉s + h(0)|1〉s ,
so that the initial total state is |�(0)〉 = |ψ〉s |00〉m1m2 |00〉R1R2 ,
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FIG. 4. Dynamics of the trace distance D[ρ1(t),ρ2(t)] (top panels) and the witness W (t) (unit s−1) of Eq. (10) (bottom panels), for
κ1 = κ2 = 0.3� and � = 0 (a), � = � (b), and � = 2� (c).

with |0〉Rn
≡ ∏

k |0k〉Rn
. The total evolved pure state then reads

|�(t)〉 = [c0(0)|0〉s + h(t)|1〉s]|00〉m1m2 |00〉R1R2

+ |0〉s
[
c1(t)|10〉m1m2

+ c2(t)|01〉m1m2

]|00〉R1R2

+ |0〉s |00〉m1m2

2∑
n=1

∑
k

cn,k(t)|1k〉Rn
|0〉Rn̄

, (11)

where |1k〉Rn
≡ |0 · · · 1k · · · 0〉Rn

means that there is one
excitation in the kth mode of the reservoir Rn and n̄ is the
complementary of n (i.e., n̄ = 2 if n = 1 and vice versa).
The initial conditions of the coefficients appearing in |�(t)〉
are c1(0) = c2(0) = cn,k(0) = 0. From the Schrödinger equa-
tion [1], the time evolution of the total system in the interaction
picture with the Hamiltonian of Eq. (2) is determined by the
following differential equations:

ḣ(t) = −iκ1c1(t) − iκ2c2(t),

ċ1(t) = −iκ1h(t) − i�c2(t) − ig∗
1,ke

i�1,k t c1,k(t),

ċ2(t) = −iκ2h(t) − i�c1(t) − ig∗
2,ke

i�2,k t c2,k(t), (12)

ċ1,k(t) = −ig∗
1,ke

i�1,k t c1(t),

ċ2,k(t) = −ig∗
2,ke

i�n,k t c2(t).

Integrating the last two equations with the initial condition
cn,k(0) = 0 (n = 1 and 2) and inserting their solutions into the
second and third equations above, one obtains two integro-
differential equations for the amplitudes c1(t) and c2(t):

ċ1(t) = −iκ1h(t) − i�c2(t)

−
∫ t

0

∑
k

|g1,k|2e−i�1,k (t−t ′)c1(t ′)dt ′,

(13)
ċ2(t) = −iκ2h(t) − i�c1(t)

−
∫ t

0

∑
k

|g2,k|2e−i�2,k (t−t ′)c2(t ′)dt ′.

The sum
∑

k |gn,k|2ei(ω0−ωn,k)(t−t ′) in the above equations
is recognized as the correlation function fn(t − t ′) of the

reservoir Rn, which in the limit of a large number of modes
can be changed into an integration in terms of the spectral
density Jn(ω) as [1]

fn(t − t ′) =
∫

dωJn(ω) exp[i(ω0 − ω)(t − t ′)]. (14)

We take each reservoirRn with the Lorentzian spectral density
Jn(ω) = γnλ

2
n/{2π [(ω − ω0)2 + λ2

n]}, where γn is the mode-
reservoir coupling strength and λ−1

n the reservoir correlation
time [1,5]. The two-point correlation function of Eq. (14) can
be then expressed as fn(τ ) = 1

2γnλn exp(−λn|τ |). Therefore,
the amplitudes h(t), c1(t), and c2(t) can be obtained by solving
the first one of Eq. (12) together with Eq. (13) by using the
standard Laplace transform technique. The reduced dynamics
of the qubit and of the other parts of the overall system are then
determined by tracing out the opportune degrees of freedom
from the evolved total state |�(t)〉 of Eq. (11).

In Fig. 5, we plot the non-Markovianity N as a function
of the scaled mode-mode coupling strength �/γ for different
values of system-mode couplings κ1 and κ2 and assuming γ1 =
γ2 = γ . As shown in Fig. 5(a), when the memory effects of the
two reservoirs alone (that is, with �/γ = 0) are not sufficient
to make the system experience non-Markovian dynamics, the
introduction of mode-mode coupling with sufficient strength
can drive the Markovian dynamics to the non-Markovian
dynamics. The non-Markovianity is moreover proportional
to the coupling strength for given values of κn and λn. This
implies that the coupling of the modes, as constituents of the
compound memory of the overall environment, can further
enhance the memory effects of the latter on the qubit. On the
other hand, if the system already undergoes the non-Markovian
dynamics without mode-mode coupling, the relation between
the non-Markovianity and the mode-mode coupling results
in being nonmonotonic. The mode-mode coupling reduces
the non-Markovianity and can even transform non-Markovian
dynamics (N > 0) into Markovian dynamics (N = 0). Nev-
ertheless, the further increase of the coupling strength �

can recover and increase the non-Markovianity, as shown in
Fig. 5(b). These behaviors are analogous to the ones found
before for the case of memoryless reservoirs, a slight difference
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FIG. 5. (Color online) The non-Markovianity N as a function of
the coupling constant �/γ between two modes that are dissipated
by Lorentzian reservoirs with γ1 = γ2 = γ . Panels (a) and (b)
demonstrate weak and strong couplings between the qubit and the
modes in terms of κ1 and κ2. The other parameters are chosen as
λ1 = λ2 = 0.5γ in panel (a) and λ1 = λ2 = 0.8γ in panel (b).

being that here the non-Markovianity exhibits oscillations
as �/γ increases before reaching its minimal value [see
Figs. 2(b) and 5(b)].

V. CONCLUSION

In this paper we have addressed the study of the effects
of the coupling between two parts of a multiple environment
on the dynamics of a quantum system. In particular, we have
considered a qubit (the quantum memory) simultaneously in-
teracting with two coupled bosonic modes (the control devices)
which are in turn dissipated into memoryless or memory-
keeping reservoirs. In the case of memoryless reservoirs, we
have proven that the two cavity modes play the role of unique

memory sources of the overall environment for the qubit and
their coupling can be thus viewed as a coupling between two
quantum memory sources. In the case of memory-keeping
reservoirs, the two modes are instead the constituent parts
of the total memory source of the overall environment and
their coupling can be now meant as a coupling between two
partial memory sources for the qubit. We have shown that
in both cases the Markovian dynamics of the qubit, existing
without the mode-mode coupling (the control parameter), can
become non-Markovian by adjusting the control parameter
over a certain threshold. Moreover, higher values of the
control parameter enable larger non-Markovianity for the
qubit. Differently, when the qubit evolution is already in a
non-Markovian regime for a zero mode-mode coupling, a
nonmonotonic relationship arises between non-Markovianity
and the control parameter. Namely, multiple crossovers from
non-Markovian to Markovian regimes may occur by increasing
the mode-mode coupling. This may appear surprising since,
on the basis that increasing the coupling between memory
sources for the qubit entails a transition from Markovian
to non-Markovian regimes for the qubit, one expects that
an increasing of the control parameter always induces an
enhancement of memory effects on the qubit dynamics.

We remark that the behaviors above happen independently
of the nature of the reservoirs. Our findings evidence that
when the environment is composite the underlying physical
mechanisms may be counterintuitive. The environmental
coupling is thus revealed as a powerful and effective tool
to activate and harness quantum non-Markovianity of open
systems. It is worth noting that our system has the advantage
of making the effects of this coupling on the dynamics of
a quantum system emerge in a clear way and, at the same
time, of being simple enough to find feasibility within current
experimental technologies, for instance, in circuit QED [54] or
in simulating all-optical setups [55]. Since non-Markovianity
is linked to a dynamical recovery of the quantum coherence of a
qubit [1,6], our work highlights that engineering and exploiting
suitably structured compound environments can supply useful
developments for controlling and preserving quantum memory
resources. It also motivates further studies regarding the effects
of multiple environments on the dynamics of correlations in
many-qubit systems.
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