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Switching effect of the side chain on quantum walks on triple graphs
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We consider a continuous-time quantum walk on a triple graph and investigate the influence of the side chain
on propagation in the main chain. Calculating the interchange of the probabilities between the two parts of the
main chain, we find that a switching effect appears if there is an odd number of points in the side chain when
concrete conditions between the length of the main chain and the position of the side chain are satisfied. However,
such an effect does not occur if there is an even number of points in the side chain. We also suggest two proposals
for experiments to demonstrate this effect, which may be employed to design a new type of switching device.
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I. INTRODUCTION

Although the quantum walk was proposed as the quantum
mechanical counterpart of the classical random walk [1], it ex-
hibits exotic features and has extensive potential applications
in many fields compared with the classical random walk. For
example, the quantum walk not only can provide us a simple
model for study of coherent quantum control over atoms or
photons in physical systems but also offer us an advanced
tool for new quantum algorithms [2–4]. So study of the
quantum walk has received increasing attention in recent years.
In the context of quantum information, continuous-time and
discrete-time quantum walks were sequentially proposed [1,5]
with the goal of applying them to quantum algorithms. For
discrete-time quantum walks, one needs a quantum coin to
generate a superposition state for each step, whereas for
continuous-time quantum walks, the quantum coin is not
needed and the quantum-walk process is realized through
continuous tunneling between neighbor sites, which implies
that the continuous-time quantum walk can be implemented at
some possible lattice sites.

The propagation features of the quantum walk are ob-
viously affected by the graph where the quantum walk is
implemented. So far, quantum walks on different graphs, such
as hypercube [6–10], cycle [11–13], hypercycle [14], and
percolation [15–17] graphs, have been widely investigated. For
example, the mixing time and hitting time of quantum walks
were studied in Refs. [6–10] where the hitting time of quantum
walks in opposite corners in the hypercube graph was shown
to be exponentially faster than that of classical random walks.
The upper bound of the mixing time of quantum walks on
a cycle graph was also estimated in Ref. [12]. Additionally,
in some studies [18–21], the quantum walk was used to
distinguish the isomorphism of the graph.

Since quantum walks on different graphs can exhibit
different characters, studying this not only can simulate some
phenomena in conventional systems but also can help us
to find more potential applications of the quantum walk.
Therefore we consider a continuous-time quantum walk on
a triple graph in this paper. We show how the length and
the position of the side chain and the length of the main

*lhlu@zju.edu.cn

chain influence the propagation properties. Especially, we find
that the quantum-walk system can exhibit obviously different
propagation properties when the parity of the number of points
in the side chain is changed. This parity effect on quantum
walks is expected to be used for switching devices. A similar
effect was noted in mesoscopic metal rings [22], where there
is a circulating current when a magnetic flux crosses the
mesoscopic metal ring. Such a circulating current can be
influenced by the parity of the number of electrons, which
implies that the parity effect can be exhibited in mesoscopic
metal microstructures. In a word, comparing quantum walks
in one-dimensional lattices, the existence of a side chain
can obviously change the propagation properties of quantum
walks, therefore it is worthwhile for us to study quantum walks
on triple graphs.

This paper is organized as follows. In the next section, we
present the model of the system. In Sec. III A, with the help of
the Green function we investigate the quantum walk on a triple
graph with a side chain of one point and find that the system
can exhibit the switching effect via changing the length of the
main chain or the position of the side chain when the tunneling
strength in the side chain is much greater than that in the main
chain. In Secs. III B and III C, we investigate the case of side
chains with two points and more points, respectively. We find
that when the number of points in the side chain is even, the
system cannot exhibit the switching effect no matter what the
length of the main chain is, which is in contrast to the case of
a side chain with an odd number of points. In the last section
(IV), we propose two possible experimental schemes in which
to observe or apply the dynamical properties exhibited in the
system we consider and give a brief summary.

II. MODELING QUANTUM RANDOM WALKS
IN A TRIPLE GRAPH

We consider quantum random walks of a single particle on
the following triple-type graph:
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The graph contains a main chain of N points and a side chain
of S points where the side chain is connected to a certain point
on the main chain. It becomes more convenient for us to label
the points in the main chain 1, 2, . . . ,N , and the points in the
side chain N + 1, N + 2, . . . , N + S. Then the graph can be
equivalently plotted as

1 2 N N +1 N +S

This is a one-dimensional chain of N + S points with the
connection broken between point N and point N + 1 but with
an additional “long-distance” connection between point � and
point N + 1. This implies that � is a special point that divides
the main chain into two parts. Then we can model the quantum
random walk on the triple-type graph by the Hamiltonian

H =
⎛
⎝−

N−1∑
j=1

| j 〉〈j + 1 | −J

N+S−1∑
j=N+1

| j 〉〈j + 1 |

− J | �〉〈N + 1 |
⎞
⎠ + H.c., (1)

where |j 〉 denotes the state where a particle occupies the j th
site on a one-dimensional lattice and J is the hopping strength
in the side chain and that between the side chain and the �th
point in the main chain. The hopping strength in the main chain
is set to unity for simplicity.

We know that the properties of continuous-time quantum
walks sensitively depend on the type of graphs on which the
quantum walk is implemented. Although the quantum walk
in one dimension has been well studied, the addition of a
side chain can obviously change the propagation character of
quantum walks. Thus our main purpose is to determine how
the side chain influences state evolution in the main chain by
calculating the interchange of the probabilities between the
two parts of the main chain. And we further expect to use
the side chain to manipulate the evolution of the probability
in the main chain, which may be enlightening for switching
devices.

III. GREEN FUNCTION AND DYNAMICAL
PROPAGATION FEATURES

Let us start from the main-chain-relevant part of the total
Hamiltonian, (1),

HM = −
N−1∑
j=1

|j 〉〈j + 1| + H.c.

We know that its eigenvalues and the eigenstates are given by

Em = −2 cos

(
m

π

N + 1

)
,

(2)

|ψm〉 =
N∑

j=1

√
2

N + 1
sin

(
jm

π

N + 1

)
|j 〉.

Here, m = 1,2, . . . ,N , and j = 1,2, . . . ,N . Then we can
obtain the Green function of the main-chain Hamiltonian HM :

g0(z) =
N∑

m=1

|ψm〉〈ψm|
z + 2 cos

(
mπ
N+1

) . (3)

Note that when the side chain is included, the Green
function of our model, (1), can also be obtained. Then with
the help of the Green function and numerical calculation, we
mainly aim to find out how the side chain influences state
evolution in the main chain by calculating the interchange of
the probabilities between the two parts of the main chain. Here
the points to the left of the connection point � (i.e., points j with
1 � j < �) constitute the left part, and the other points in the
main chain (i.e., points j with � < j � N ) make up the right
part. Taking the two cases of S = 1 and S = 2 as examples
(i.e., there are one or two sites on the side chain, respectively),
we find that the propagation features for S = 1 and S = 2 are
completely different even if the other parameters and initial
states are the same. Additionally, we also show the influence
of the position of the connection point � and the number of
points in the main chain on the propagation properties of the
system.

A. Side chain with one point

Now we are in a position to consider the case of a side chain
with one point (i.e., S = 1). In this case, the Green function
can be written as

G1 = |N + 1〉〈N + 1|
z

+ g0 + g0|�〉〈�|g0

z/J 2 − 〈�|g0|�〉
+ 〈�|g0|�〉

z
× |N + 1〉〈N + 1|

z/J 2 − 〈�|g0|�〉
− 1

J
× g0|�〉〈N + 1| + |N + 1〉〈�|g0

z/J 2 − 〈�|g0|�〉 . (4)

From the above Green function, one can easily obtain the
eigenvalues of Hamiltonian (1) for S = 1. We find that the
existence of a side chain with one point divides the eigenvalues
of the main-chain Hamiltonian HM into two kinds. Eigenvalues
of HM remain when the corresponding eigenstates satisfy
〈�|ψm〉 = 0 [i.e., these eigenvalues are also eigenvalues of
Hamiltonian (1) for S = 1], while the others are shifted and
no longer the eigenvalues of Hamiltonian (1) for S = 1 due
to the existence of the side chain. Except for the remaining
eigenvalues of HM , the other eigenvalues of Hamiltonian (1)
for S = 1 can be obtained via the roots of the equation
z/J 2 − 〈�|g0|�〉 = 0.

Let us look at the case of J � 1, where the above equation
can be solved analytically, and the corresponding roots read

z =
{
z0 + �(z0),

±J,
(5)

�(z0) = − z0

J 2〈�|g0(z0)2|�〉 ,

where z0 is determined by 〈�|g0(z0)|�〉 = 0. Substituting
Eq. (3) into Eq. (5), we can obtain the value of z0. Then the
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changed energy levels can be written as

En = −2 cos

(
nπ

�

)
, (6)

En′ = −2 cos

(
n′π

N + 1 − �

)
, (7)

with n = 1,2, . . . ,� − 1 and n′ = 1,2, . . . ,N − �. Here the
perturbation term �(z0) ∼ 1

J 2 is neglected due to the fact that
J � 1. From the above expressions of En(n′), we can find
that if (N + 1) and � have a greatest common divisor larger
than 2, some energy levels of En can be degenerate with that
of En′ , respectively, and the corresponding values of these
degeneracy energy levels are just equal to those remaining
eigenvalues of HM . However, if (N + 1) and � do not have
a greatest common divisor larger than 2, once the side chain
with one point is included, none of the eigenvalues of HM

remain and the energy levels of En and En′ are not degenerate.
The above expression implies that the relation between the
position of the connection point and the number of points in
the main chain can obviously affect the distribution of the
energy levels of the system. So the propagation properties on
the triple graph we considered can exhibit essentially different
features for different numbers of points in the main chain and
positions of the connection point.

In order to investigate the propagation features of a particle
on the triple graph, let us observe the time evolution of the
probability amplitude. Assuming that the particle is at the j2th
site of the main chain, one can write the probability amplitude
A(j1,j2) for the particle being at the j1th site at time t as

A(j1,j2) =
∑
E

ResG1(E,j1,j2) exp(−iEt), (8)

where G1(E,j1,j2) = 〈j1|G1(E)|j2〉, with E including all the
eigenvalues of Hamiltonian (1) for S = 1, and Res stands for
the residue of a function. If j1 > � and j2 < �, the probability
amplitude can be given as

p(j1,j2) = O

(
1

J 2

)
+

∑
E∈Er

2

N + 1
sin[j1θ (E)]

× sin[j2θ (E)]e(−iEt)[e(−i�(E)t) − 1], (9)

where Er refer to the remaining eigenvalues of HM [i.e.,
Er are the energies given in Eq. (2) whose corresponding
eigenstates |ψm〉 satisfy 〈�|ψm〉 = 0], θ (E) = arccos(−E

2 ),
and the expression of �(E) is given in Eq. (5). From
expression (9), we find that for J � 1, the value of p(j1,j2)
is not 0 only when nonzero eigenvalues of HM remain, i.e.,
(N + 1) and � have a greatest common divisor larger than 2.
So the particle can cross the connection point from one part
into the other part of the main chain for (N + 1) and � having
a greatest common divisor larger than 2, while the particle is
always in the initial part of the main chain for (N + 1) and
� not having a greatest common divisor larger than 2, which
is confirmed in Fig. 1. Additionally, we can also obtain the
probability amplitude of a particle’s crossing from the main
chain into the side chain,

Res〈j |G1(J )|N + 1〉 = −1

2
δj� − 1

2J
〈j |HM |�〉, (10)
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FIG. 1. (Color online) Time evolution of the probabilities for the
particle in the two parts of the main chain, respectively, for S = 1.
Parameters are J = 10, N = 11, and � = 5 for solid lines and � = 6
for dotted lines.

which is 0 as long as the particle is not at the connection point
at the initial time.

In Fig. 1, we plot the time evolution of probabilities for
particles in the left part and in the right part of the main chain,
respectively, for different values of �. Note that in this and the
following figures, the time t is in units of the inverse of the
hopping strength in the main chain, and the tunneling strength
J is in units of the hopping strength in the main chain. At
the initial time, the particle is at the third point so that the
particle is initially in the left part of the main chain. Since
the probability amplitude A(j1,j2) for the particle’s tunneling
between different points is given in Eq. (9), the probability of
the particle in the right part of the main chain at time t can be
written as

∑
�<j1�N |A(j1,3)|2, and that in the left part of the

main chain as
∑

1�j1<� |A(j1,3)|2. Note that once the particle
is in the left part of the main chain, which concrete points
the particle is in does not affect the evolutionary features of
the probability distribution in the two parts of the main chain.
This is also true for the case of a side chain with more than
one point. In Fig. 1, we find that for the particle with � = 6
(N + 1 and � having a greatest common divisor larger than 2),
the probabilities in the left and right parts of the main chain
oscillate quasiperiodically with time. However, the particle
always stays in the left part of the main chain and has no
probability of crossing the connection point � into the right
part of the main chain for � = 5 (N + 1 and � not having a
greatest common divisor larger than 2), which demonstrates
the switching effect of the side chain. Note that, except for the
position of the connection point (i.e., the value of �), all the
other parameters and the initial states are the same for the two
cases.

B. Side chain with two points

For Hamiltonian (1) with S = 2, the Green function of
the system is written as G2, whose expression can be given
carefully. Then the energy eigenvalues of the system can also
be obtained with the help of G2. For the case of J � 1, some
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FIG. 2. (Color online) Time evolution of the probabilities for a
particle in the two parts of the main chain for S = 2. Parameters are
J = 10, N = 11, and (a) � = 5 and (b) � = 6.

energy levels of HM also remain if (N + 1) and � have a
greatest common divisor larger than 2, and the others are
determined via the roots of

1

z
+ 〈�|g0|�〉 = 0 (11)

and are not degenerate regardless whether (N + 1) and �

have a greatest common divisor larger than 2. In analogy
to the discussion in the above subsection, we can obtain the
probability amplitude of a particle crossing from one point to
another point in the main chain by calculating the residues of

〈j1|G2|j2〉 = 〈j1|g0|j2〉 + 〈j1|g0|�〉〈�|g0|j2〉
z/J 2 − (

1
z

+ 〈�|g0|�〉
) . (12)

Although it is difficult to give the analytical expression of
the residues of Eq. (12), we find that the summation of these
residues is never 0 for any values of (N + 1) and � because the
nonzero energy levels near 0 also exist for a system with a side
chain of two points. This implies that the particle can always
cross the connection point into the other part of the main chain
whether or not (N + 1) and � have a greatest common divisor
larger than 2, which is confirmed in Fig. 2.

In Fig. 2, we plot the time evolution of the probability
of a particle in the left and right parts of the main chain,
respectively. Note that we find that the probabilities of a
particle in the left and right parts of the main chain oscillate
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FIG. 3. (Color online) Time evolution of the probabilities for
particles in the two parts of the main chain for different values of
S. Parameters are � = 5, J = 10, N = 11, and (a) S = 3 and (b)
S = 4.

very rapidly through the numerical calculation. So in order to
make Fig. 2 clear, we take a shorter time compared to Fig. 1. At
the initial time, the particle is in the left part of the main chain.
From this figure, we find that the probabilities of a particle
in the two parts of the main chain oscillate with time for both
� = 5 and � = 6, which is in contrast to the case of a side chain
with one point (see Fig. 1). Additionally, the oscillation of the
probability is not quasiperiodical like that in Fig. 1 due to the
fact that the roots of Eq. (11) are not periodical.

C. Side chain with more points

In the above subsections, we consider the two examples of
side chains with one and two points, respectively. Now let us
look at the case of a side chain with more than two points. In
Fig. 3, we plot the time evolution of the probability distribution
in the left and right parts of the main chain, respectively, for
different values of S. Here the value of � = 5, i.e., N + 1 and �

have no greatest common divisor larger than 2, and the particle
is in the left part of the main chain at the initial time. In this
figure, we find that the particle cannot cross the connection
point into the other part of the main chain for S = 3, which

012309-4



SWITCHING EFFECT OF THE SIDE CHAIN ON QUANTUM . . . PHYSICAL REVIEW A 92, 012309 (2015)

is in contrast to the cases of S = 4. Meanwhile, comparing
Fig. 3(a) with Fig. 1 and Fig. 3(b) with Fig. 2 (a), respectively,
we can see that the system of a side chain with an odd number of
points (even number of points) exhibits analogous propagation
features. But the features of a system with a side chain of an odd
number of points differ significantly from those of a system
with a side chain of an even number of points. This feature can
be regarded as the parity effect in the quantum walk, which
can be explained with the help of the Green function. The
parity effect also appears in other physical systems, such as
the mesoscopic metal ring [22].

For the system of a side chain with more points, the Green
function of the system can be written as

GS = g̃0 + g0 + g0|�〉J 2 × 〈N + 1|g̃0|N + 1〉〈�|g0

1 − J 2 × 〈N + 1|g̃0|N + 1〉〈�|g0|�〉

+ g̃0|N + 1〉J 2 × 〈�|g0|�〉〈N + 1|g̃0

1 − J 2 × 〈N + 1|g̃0|N + 1〉〈�|g0|�〉
− J g̃0|N + 1〉〈�|g0 + Jg0|�〉〈N + 1|g̃0

1 − J 2 × 〈N + 1|g̃0|N + 1〉〈�|g0|�〉 , (13)

where

g̃0(z) = 2

S + 1

S∑
n=1

|n〉〈n|
z + 2J cos

(
nπ
S+1

) .

As in the previous discussion, one can neglect the perturbation
term of �(z0) if J � 1. Then except for the remaining energy
levels of HM , the other energy levels of the system for a side
chain with S points are obtained as

〈�|g0(z0)|�〉 = 0, S = odd,
(14)

〈�|g0(z0)|�〉 + λS

z0
= 0, S = even,

where λS = 1
2(S+1)

∑S
n=1 tan2 nπ

S+1 . We find that if the number
of points in the side chain is odd, the energy levels of the
system are the same as in the case of S = 1, which is discussed
in Sec. III A. This implies that the distributions of the energy
levels for the cases of side chains with an odd number of points
are the same. Then the propagation features of a particle on
the triple graph for a side chain with an odd number of points
are analogous. So all systems with side chains with an odd
number of points exhibit the switching effect when the number
of points in the main chain and the position of the side chain
satisfy concrete conditions. Additionally, for the case of S

being even, the distribution of the energy levels resembles the
case of S = 2 discussed in Sec. III B due to the fact that the
second Eq. (14) is of the same kind except for the difference
in the coefficient λS . So the propagation features of particles
on triple graphs for a side chain with an even number of points
resemble each other and never exhibit the switching effect,
which is shown in Figs. 2(a) and 3(b). According to the above
discussion, we find that whether the particle can cross through
the connection points into the other part of the main chain
can be significantly influenced by the parity of the number of
points in the side chain, which differs from the case studied
in Ref. [23]. In that reference, the quantum walk in a chain
of points with an attached NAND tree was studied, where the
transmission coefficient is determined by the evaluation results

of the NAND tree. Additionally, the transmission coefficient
can only be 0 or 1. In the system we considered, we show
that the probability of a particle in one part of the main
chain can oscillate with time for a side chain with even
points.

IV. EXPERIMENT PROPOSAL AND CONCLUSION

Since the quantum-walk system we consider can exhibit
the above novel features, we expect that it can be observed in
experiments and even be designed as a switching device. Then
we propose the following possible experimental proposals.
First, we expect to realize such a quantum-walk system in solid
systems. Assume that there is a one-dimensional lattice system
and a particle with spin can tunnel between nearest sites. If
one applies an external magnetic field B to the lattice system,
the spin will be polarized in the direction of the magnetic
field when the temperature is low enough. In this case, the
spin degree of the particle is frozen, and thus the Hamiltonian
describing this system amounts to that of a quantum walk in
a one-dimensional lattice without a side chain. Meanwhile, if
one applies another magnetic field whose value and direction
are equal and opposite to those of B, respectively, to site �,
the total magnetic field at site � is 0. Then once the particle
tunnels to site �, the spin degree of the particle will be released
so that there is a probability of the particle spin’s flipping into
the other direction at site �. Assuming that the particle is an
electron with spin 1/2, one can easily find that the Hamiltonian
of this solid system is essentially equal to Eq. (1) with S = 1.
So it is possible to realize in this system a quantum walk on
a triple graph with a side chain of one point. Naturally, for
a particle with spin larger than 1/2, such a system can also
be used to realize a quantum walk on a triple graph with a
side chain of more points. Note that in the conventional solid
system it is difficult to simulate a quantum walk on a triple
graph with a side chain of more points because the spin of the
particle in the conventional solid system is usually equal to 1/2
and it is difficult to reach larger values. However, cold-atom
systems trapped in a magnetic lattice can make up for this
defect due to the fact that the spin of the particle can vary
more for different alkali and alkali earth metals.

The aforementioned quantum-walk system is also expected
to be realized in artificial systems. For example, N qubits are
coupled by a single-mode resonant cavity, and the interaction
Hamiltonian is given in Ref. [24]. If at the initial time, one of
the qubits is applied into a microwave pulse that is resonant
with the transition between two levels of the qubit, the initial
state of the N -qubit system is

∏
k 	=j |g〉k|e〉j |0〉c. Such an initial

state means that the j th qubit is in its exited state |e〉, the others
are in the ground state |g〉, respectively, and the cavity mode is
initially in the vacuum state |0〉c. For convenience, the initial
state of the system can be written as |e〉j |0〉c. In second-order
perturbation and taking the state

∏
k |g〉k|1〉c as the medium

state, the effective Hamiltonian is just Eq. (1) without the side
chain, and the Fock basis corresponding to the system can be
simply denoted as a single-particle state |j 〉 (j = 1,2, . . . ,N ).
Additionally, one can set up other S qubits coupled by another
single-mode resonant cavity as the side chain and, meanwhile,
couple the first qubit of the side chain with the �th qubit of
the above N qubits. In this case, the system can simulate
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the quantum walk on the triple graph we considered. Note
that the coupling strength J can be tuned due to the device
parameters and/or the placement of the qubits in the cavity
can be changed. So the coupled-qubit system may be more
powerful for realizing the quantum walk on the triple graph
we considered.

In this paper, we have investigated the quantum random
walk on a triple-type graph and shown the effect of the side
chain on the propagation features of the main chain. We found
that if the tunneling strength in the side chain is much greater
than that in the main chain, the system can exhibit the switching
effect in the case of a side chain with an odd number of points
when the number of points in the main chain and the position
of the side chain satisfy concrete conditions. However, for the
case of a side chain with an even number of points, the particle
can always pass through the connection point into the other
part of the main chain no matter where the connection point

between the main chain and the side chain is located. So the
quantum walk on a triple-type graph with a side chain with
an even number of points cannot exhibit the switching effect,
which is in contrast to the case of a side chain with an odd
number of points. Such propagation properties were explained
with the help of the Green function. We also suggest two
proposals for experiments to demonstrate this effect, which
are expected to be enlightening for the design of a new type of
switching device.
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