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Topological and nematic ordered phases in many-body cluster-Ising models
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We present a fully analytically solvable family of models with many-body cluster interaction and Ising
interaction. This family exhibits two phases, dubbed cluster and Ising phases, respectively. The critical point
turns out to be independent of the cluster size n + 2 and is reached exactly when both interactions are equally
weighted. For even n we prove that the cluster phase corresponds to a nematic ordered phase and in the case
of odd n to a symmetry-protected topological ordered phase. Though complex, we are able to quantify the
multiparticle entanglement content of neighboring spins. We prove that there exists no bipartite or, in more detail,
no n + 1-partite entanglement. This is possible since the nontrivial symmetries of the Hamiltonian restrict the
state space. Indeed, only if the Ising interaction is strong enough (local) genuine n + 2-partite entanglement
is built up. Due to their analytical solvableness the n-cluster-Ising models serve as a prototype for studying
nontrivial-spin orderings, and due to their peculiar entanglement properties they serve as a potential reference
system for the performance of quantum information tasks.
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I. INTRODUCTION

In many-body systems described by classical mechanics the
presence of an ordered phase is connected to the spontaneous
breaking of symmetries associated with local order parameters.
A system consisting of classical spins, for instance, may admit
a ground state having all spins oriented along a given direction.
Such ground states simultaneously break the spin rotation
and the time-reversal symmetry witnessed by a nonvanishing
magnetic moment.

Considering quantum systems, in contrast, one finds also
different phases connected to some physical quantity but
not necessarily to the magnetic moment. The paradigmatic
example is a translation-invariant spin- 1

2 chain for which the
ground states correspond to the so-called valence bond states;
i.e., states build up by tensor products of maximally entangled
bipartite states [1,2]. In such systems neither the spin-rotation
nor the time-reversal symmetry is broken; nevertheless, it is
possible to define order parameters characterizing the phases.
Typically, nematic phases occur if at least one symmetry of
the Hamiltonian is broken, which are phases with long-range
ordering, i.e., defined by order parameters on a finite set of
sides. Other examples intensively discussed are topological
order phases [3,4] that, for instance, are associated with the
robustness of ground-state degeneracies [5], are quantized
non-Abelian geometric phases [3], or possess patterns due
to long-range quantum entanglement [6].

Frustration occurs for systems with competing interactions
or nontrivial geometries and can be related to quantum
entanglement [7]. Nontrivial-spin orders are usually found if
an interplay between frustration and quantum fluctuations is at
work, resulting in chiral, nematic, or general multipolar phases.
In contrast to topological phases, even in the case of a vanishing
magnetic moment, the spin-rotation symmetry is broken [8,9].
These phases are also interesting from the point of applications.
The topological ordered phases play a fundamental role in the

spin liquids [10,11] and in non-Abelian fractional Hall systems
[12] and are predicted to play a key role in the future develop-
ment of fault-tolerant quantum computers [13]. The nematic
order is usually found in materials commercially used in the
liquid-crystal technology [14], such as liquid-crystal displays.

Nontrivial ordered spins appear usually for higher-
dimensional systems (lattices) or sites with more than two
degrees of freedom (spins higher than 1

2 ). Exceptions are the
frustrated one-dimensional ferromagnetic spin- 1

2 chain in an
external magnetic field having a nematic ordered phase [15,16]
and the one-dimensional cluster-Ising model exhibiting a
symmetry-protected topological ordered phase [17–19].

In general, mathematical tools to handle such systems are
rare and only few very specific Hamiltonians have been found
to be analytically solvable. The present paper introduces a huge
class of analytically solvable one-dimensional models with
two degrees of freedoms (spin- 1

2 ) exhibiting both topologically
and nematic ordered phases, which we dub n-cluster-Ising
models. The index n = 1,2, . . . refers to the presence of
an n + 2-body interaction, a cluster size of n + 2. The
physical systems under investigation are characterized by two
competing interactions, a two-body Ising interaction along the
y axis and an n + 2-body interaction along the x axis and the z

axis. The Hamiltonian of the family of models can be written as

H (n) = J

⎡
⎣sin(φ)

∑
j

σ
y

j σ
y

j+1 − cos(φ)
∑

j

σ x
j Oz

j,nσ
x
j+n+1

⎤
⎦,

(1)

where J has the dimension of an energy (which we set equal
to one in the computation) and Oz

j,n stands for

Oz
j,n =

n⊗
k=1

σ z
j+k. (2)
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Via the parameter φ the relative weight of the two interactions
is controlled: When φ approaches 0 the system is dominated
by the multibody interaction, whereas when φ tends to π/2
the system is dominated by the (antiferromagnetic) Ising
interaction.

We show that this family of models can be analytically
solved (Sec. II) and how the spin-correlation function can be
obtained (Sec. III). We prove that there is a quantum critical
point at φc = π/4 separating the cluster phase from the Ising
phase. This corresponds to the case when both interactions
have equal weights. This critical point φc, surprisingly, does
not depend on the n + 2-body interaction; hence, it does not
depend on the cluster size. In strong contrast to the relevant
ordering in the cluster phase that depends strongly on n: In case
of odd n, a symmetry-protected topologically ordered phase is
present, whereas for even n a nematic phase is present. In both
cases we determine the order parameter (string order parameter
for the topological ordered phase and block order parameter
for the nematic phase), as well as the order parameter of the
Ising phase (Sec. IV).

In the next step we study the various entanglement proper-
ties of the family of models (Sec. V). The first observation is
that for any n and φ—as proven for the standard cluster-Ising
model (n = 1) in Ref. [19]—there is no bipartite entanglement.
Picking out any two spins the state is separable. Indeed, we
find that this family of Hamiltonians leads to ground states
that possess genuine k = n + 2-partite entanglement between
any contiguous spins and any k < n + 2-partite entanglement
vanishes. The symmetries in the state space of the ground
states force the reduced state of any n + 2 adjacent spins into
a so-called X-form [20]; i.e., by applying certain local unitary
operators the reduced density matrix has only nonzero entries
on the two diagonals. Due to this form we can exactly evaluate
a measure for genuine multipartite entanglement [21–23],
i.e., quantify the entanglement content. So far, long-range
multipartite entanglement close to a phase transition has been
studied in terms of entanglement witnesses, e.g., for the XXZ

spin chain [24] or for the XY model [25–27]. Having this
strong tool at hand, a measure of genuine multipartite entangle-
ment, we find that nonzero genuine multipartite entanglement
is only nonzero in the Ising phase φ > φc (except n = 1),
thus exhibiting a fortunate behavior for applications such as
utilizing these quantum systems for quantum algorithms.

The block entanglement properties are studied with focus
around the quantum phase transition. Via the relation between
conformal field theory [28] and the divergence of the block
entanglement at the quantum phase transition we are able to
evaluate the central charges of the models that turns out to
depend on n.

Last but not least, we conclude (Sec. VI) by discussing
the interplay between the characterization of the many-body
systems by ordered parameters and by symmetries in the
Hilbert-Schmidt space of the ground states revealing the
entanglement properties.

II. SOLUTION OF THE MODELS

In this section we present how to compute analytically the
ground states of the models under investigation. The idea
is to map the Hamiltonian, Eq. (1), of spin- 1

2 particles into

noninteracting fermions moving freely along the chain only
obeying Pauli’s exclusion principle. This method works even
for the case in which the length of the system diverges [29,30].
Having finally computed the energy density function, we find
a phase transition that is further analyzed in Sec. IV.

The mapping of a spin model to a fermionic one is
obtained by applying the Jordan-Wigner transformation [31].
Providing the correct anticommutation rules in the Jordan-
Wigner transformation, one associates the local spin operators
with nonlocal fermionic operators

cj =
j−1⊗
k=1

(
σ z

k

)
σ−

j , c
†
j =

j−1⊗
k=1

(
σ z

k

)
σ+

j , (3)

where σ± are the respective ladder operators. Herewith the
Hamiltonian in Eq. (1) becomes

H (n) = J sin(φ)
∑

j

(c†j c
†
j+1 − c

†
j cj+1 + cj c

†
j+1 − cj cj+1)

+ J cos(φ)
∑

j

(c†j cj+n+1 − cj c
†
j+n+1

+ c
†
j c

†
j+n+1 − cj cj+n+1). (4)

One notes that herewith the cluster interaction is reduced from
a n + 2 interaction to a two-body interaction between sites
at distance n + 1. After having reduced the problem to an
effective two-body one, the model can be diagonalized via the
Fourier transforms of the fermionic operators, i.e.,

bk = 1√
N

∑
j

ck e−i kj ,

b
†
k = 1√

N

∑
j

c
†
k ei kj , (5)

where the wave number k is equal to k = 2πl/N and l runs
from −N/2 to N/2 and N is the total number of spins (sites)
in the chain. The Hamiltonian transforms to

H (n) =
∑
k>0

h
(n)
k , (6)

with

h
(n)
k = 2 i δk,n (b†kb

†
−k − b−kbk) + 2εk,n (b†kbk + b

†
−kb−k − 1),

where the parameters δk,n and εk,n are respectively given by

δk,n = J {sin [(n + 1)k] cos φ + sin(k) sin φ},
εk,n = J {cos [(n + 1)k] cos φ − cos(k) sin φ}. (7)

Via these transformations we rewrote the Hamiltonian under
investigation into the sum of noninteracting terms h

(n)
k , each

one of them acting only on fermionic states with wave number
equal to k or −k. Each h

(n)
k corresponds to a four-level

system that can be expressed in an occupation number basis
by |1k,1−k〉, |0k,0−k〉, |1k,0−k〉, |0k,1−k〉 and is explicitly
represented by the matrix

h
(n)
k =

⎛
⎜⎝

2 εk,n +2 i δk,n 0 0
−2 i δk,n −2 εk,n 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎠, (8)
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which ground-state energy computes to

E
(n)
k = −2

√
ε2
k,n + δ2

k,n = −2J
√

1 − cos[(n + 2)k] sin(2φ).

(9)

The associated ground state |ψ (n)
k 〉 is a superposition of

|1k,1−k〉 and |0k,0−k〉,∣∣ψ (n)
k

〉 = αk,n |1k,1−k〉 + βk,n |0k,0−k〉, (10)

with

αk,n = i
εk,n + E

(n)
k√

δ2
k,n + (

εk,n + E
(n)
k

)2
,

βk,n = δk,n√
δ2
k,n + (

εk,n + E
(n)
k

)2
. (11)

Since the Hamiltonian is the sum of the noninteracting terms
h

(n)
k , each one of them is acting on a different Hilbert space,

and the ground state of the total Hamiltonian is consequently
a tensor product of all |ψ (n)

k 〉
|ψ (n)〉 =

⊗
k

∣∣ψ (n)
k

〉
. (12)

The associated energy density En,φ is the sum E
(n)
k divided by

the total number of the spins N . In the thermodynamic limit
the energy density becomes

En,φ = −2J

π

∫ π

0

√
1 − cos[(n + 2)k] sin(2φ)dk. (13)

According to the general theory of continuous phase
transitions at zero temperature [32], the presence of a quantum
critical point is signaled by the divergence of the second
derivative of the energy density with respect to the Hamiltonian
parameter. In Fig. 1 the second derivative of the energy density
is plotted in dependence of φ and shows a divergence for

∂
2
E

n
,φ

(J
)/

∂
φ

2

n = 1 n = 2

n = 3 n = 4

10

5

2

1

10

5

2

1

10−2 10−1 10−2 10−1

|φ − π/4|

FIG. 1. (Color online) The graphs show the second derivative of
the energy density of the ground state En,φ as a function of φ for
different cluster sizes n + 2. The divergence is independent of n at
the critical value φc = π

4 and corresponds to a vanishing energy gap
between the ground state and the first excited state.

the value φ = φc ≡ π/4 independent of n. The singularity is
ultimately due to the vanishing of the energy gap between the
ground state and the first excited state at the critical value φc,
with the modes k = jπ

n+2 , where j runs from 0 to n + 1.

III. THE SPIN-CORRELATION FUNCTIONS

To obtain a generic spin-correlation function, we can adapt
the strategy that we used to compute the energy density.
Then applying Wick’s theorem [33] simplifies the issue
further since it makes it possible to express any multibody
fermionic correlation function in terms of two-body correlation
functions. More precisely, it is possible to prove [30] that
defining for each site j , two fermionic operators, Aj and Bj ,
via

Aj = cj + c
†
j and Bj = cj − c

†
j , (14)

any spin-correlation function can be written as an ordered
product of these operators. Hence, due to Wick’s theorem, any
spin-correlation function can be written as a combination of
one- and two-body expectation values involving only operators
Aj and Bk on the same or different sites. With Eq. (11) we
obtain

〈Ai〉 = 0,

〈Bi〉 = 0,

〈AiAk〉 = δik, (15)

〈BiBk〉 = −δik,

〈BiAk〉 = Gi,k(n,φ).

The fact that we have that both 〈Ai〉 = 〈Bi〉 = 0 and 〈AiAk〉 =
〈BiBk〉 = 0 for i �= k has several important consequences. In
fact, let us consider a spin-correlation function associated with
an operator that is the product of many local spin operators,
each one acting on different spins, in which σx

j and/or σ
y

j

appears an odd number of times on different sites. To this
operator we may associate a fermionic operator made by a
different number of Aj and Bj operators acting on different
spins. Therefore, when we apply the Wick’s theorem, we have
an expectation value of a single fermionic operator and/or
an expectation value of two operators of the same kind on
different spins. Hence, taking into account Eq. (15), such spin-
correlation functions have to vanish. Consequently, the only
correlation function that can be different from zero are the
ones associated with an operator that is a product of local spin
operators in which both σx

j and σ
y

j appear an even number of
times.

To obtain the explicit expression of the nonzero spin-
correlation functions, we need to evaluate Gi,k(n,φ). At first
we note that, in the thermodynamic limit, the Gi,k(n,φ) must
be independent from the choice of i and k but may depend
on their relative distance r = i − k. With Eq. (11) we find
Gi,k(n,φ) = Gr (n,φ) with

Gr (n,φ)

= 1

π

∫ π

0

cos[k(n+1+r)] cos φ− cos[k(r − 1)] sin φ√
1 − cos[(n + 2)k] sin(2φ)

dk.

(16)
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Solving this integral we find that if r �= l(n + 2) + 1, where l is
an integer number that runs from −∞ to ∞, then the Gr (n,φ)
vanishes for all values of φ. This fact, as we show in Sec. V,
plays a fundamental role in the behavior of the entanglement
property among different spins.

Obviously, from Eq. (15) and the explicit expressions
Gi,k(n,φ) one can recover all spin-correlation functions of
interest. Here we wish to point out some interesting results
about some specific ones.

If one allows for a magnetization along the z direction,
i.e., 〈σ z

j 〉, one finds that it equals G0(n,φ) and, therefore,
vanishes identically for all possible values of φ and n. Let
us consider two-body spin-correlation functions that can be
written as 〈σμ

i σ
μ

i+r〉, with μ = x,y,z. If μ coincides with z,
the correlation function can be written as〈

σ z
i σ z

i+r

〉 = G2
0(n,φ) − Gr (n,φ)G−r (n,φ). (17)

Since Gr (n,φ) with r �= l(2 + n) + 1 vanishes, we find that〈
σ z

i σ z
i+r

〉 = 0 (18)

for all values of n and φ. Setting μ = x,y the spin-correlation
functions are given by the determinant

〈
σx

i σ x
i+r

〉 =

∣∣∣∣∣∣∣∣

G−1(n,φ) G−2(n,φ) · · · G−r (n,φ)
G−2(n,φ) G−1(n,φ) · · · G−r+1(n,φ)

...
...

. . .
...

G−r (n,φ) G−r+1(n,φ) · · · G−1(n,φ)

∣∣∣∣∣∣∣∣
,

(19)

〈
σ

y

i σ
y

i+r

〉 =

∣∣∣∣∣∣∣∣

G1(n,φ) G2(n,φ) · · · Gr (n,φ)
G2(n,φ) G1(n,φ) · · · Gr−1(n,φ)

...
...

. . .
...

Gr (n,φ) Gr−1(n,φ) · · · G1(n,φ)

∣∣∣∣∣∣∣∣
.

(20)

Numerical evaluations reveal that 〈σx
i σ x

i+r〉 is nonvanishing
only when r is an integer multiple of n + 2, in strong contrast
to the correlation function 〈σy

i σ
y

i+r〉, which is always nonzero.
It changes from negative to positive values in the case r

varies from odd to even values. This is expected due to the
antiferromagnetic nature of the Ising interaction.

IV. THE ORDER PARAMETERS

As we have seen in Sec. II, the behavior of the second
derivative of the ground-state energy density shows a phase
transition at φ = φc ≡ π/4 for all n. Now we characterize
the properties of these two phases via the help of the spin-
correlation functions (Sec. III).

Let us start from the phase φ > φc, i.e., when the system is
dominated by a two-body anti-ferromagnetic Ising interaction
along the y spin direction. Due to the Z2 symmetry of the
Hamiltonian (1) we cannot compute the staggered magnetiza-
tion by directly applying the definition my = (−1)j 〈σy

j 〉 since
this gives always a vanishing result. Approaching the problem
we may first evaluate the value of the magnetization with
respect to its relation to the long-distance correlation function
along the same spin direction, i.e.,

my =
√

lim
r→∞(−1)r

〈
σ

y

i σ
y

i+r

〉
. (21)

m
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e
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π/4 3π/8 π/2

φ

FIG. 2. (Color online) Behavior of magnetic order parameter in
the Ising phase φ > φc plotted for n = 1,2, . . . ,6: red (uppermost
curve), n = 1; blue, n = 2; green, n = 3; black, n = 4; magenta,
n = 5; orange (lowest curve), n = 6. The dots represent the numerical
results of my for r going to infinity, Eq. (21), whereas the curves
corresponds to the guessed function of the staggered magnetization
m(n)

y , Eq. (22).

This can be evaluated via the help of Eq. (20). We have com-
puted for different n numerically the quantity (−1)r〈σy

i σ
y

i+r〉
with r up to 200, showing that an increase of the distance r

results only in a very small variation of my (of a factor less
than 10−8) for each value of φ > π

4 .
The results that we have obtained for different n and

φ are plotted in Fig. 2. This shows the presence of an
antiferromagnetic phase along the y direction for φ > φc

independent of the value of n. However, differently from
what happens for the second derivative of the density of
the ground-state energy, the staggered magnetization shows
a clear dependence on n. Analyzing the numerical data we can
conclude that the staggered magnetization has the following
dependence on φ � φc and n:

m(n)
y = [1 − tan(φ)−2]

n+2
8 . (22)

From that we can deduce the critical exponent β over n

β(n) = n + 2

8
. (23)

The fact that the critical exponent β depends on n means
that the class of symmetry to which the models given by the
Hamiltonian (1) belongs depends on n.

The situation changes drastically when we move in the
phase below the quantum critical point φ < φc. In this phase
our Hamiltonian is dominated by the many-body interaction
terms and my drops to zero for any n. It is not straightforward to
find a proper candidate or the role of order parameter as it was
for the antiferromagnetic phase discussed above. However,
after a heavy numerical analysis we were able to obtain a clear
picture on the ongoing physics of the system.

For a system with odd n we can define a string order
parameter as

Sn =
√

lim
r→∞

〈
σx

1 σ
y

2 σx
3 · · · σy

n+1Oσ
y

r−n+1 · · · σx
r−2σ

y

r−1σ
x
r

〉
,

(24)
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FIG. 3. (Color online) Behavior of the string order parameter for
φ < φc for n = 1,3,5: black (upper curve), n = 1; red (middle curve),
n = 3; blue (lower curve), n = 5. The dots represent the numerical
results of the string order parameter Sn given in Eq. (24), whereas the
curves correspond to the behavior of the string order parameter S(n)

defined in Eq. (27).

where the operator O = Oz
n+1,r−2(n+1). In Fig. 3 the behavior

of this string order parameter Sn for n = 1,3,5 is plotted.
The existence of such a nonvanishing string order parameter
can be traced back to the presence of diverging localiz-
able entanglement [34,35]. This signals the presence of a
symmetry-protected topological order.

For even n we find that the phase is a nematic one thus we
can define the following order parameter (since the system is
translation invariant the quantity is understood to not depend
on the particular i):

Bn = 〈Oi,n〉 = 〈
σx

i σ
y

i+1σ
x
i+2 · · · σx

i+n

〉
. (25)

As in the staggered magnetic order phase Bn cannot be
evaluated directly since it vanishes (for any even n the
operators σx

i or σ
y

i appear an odd number of times). Again
we can circumvent this problem by defining

Bn =
√

lim
r→∞〈Oi,nOi+r,n〉. (26)

In Fig. 4 we plotted the behavior of Bn for n = 2,4,6.
Analyzing the numerical data obtained for both defined

string order parameters, Sn and Bn, we find finally the same
dependence on n and φ, i.e.,

S(n) = [1 − tan(φ)2]
n+2

8 ,

B(n) = [1 − tan(φ)2]
n+2

8 . (27)

Summarizing all results, we can formulate a general concise
formula for all order parameters of the whole class of models
given by the Hamiltonian (1):

order parameter = [
1 − tan(φ)−2sgn(φ− π

4 )
] n+2

8 . (28)

Moreover, the existence of a duality, i.e., a transformation that
brings the order parameters before and after the critical point
in relation, is thus proven.

In summary, we find that for both phases we can define order
parameters that each is ruled by the dominated interactions,
i.e., Ising interaction or multibody cluster interaction. In the
multibody cluster phase a strong dependence on the size of

n
e
m
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c
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r

p
a
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m
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0 π/8 π/4

φ

FIG. 4. (Color online) Behavior of the nematic order parameter
for φ < φc for n = 2,4,6; black (upper curve), n = 2; red (middle
curve), n = 4; blue (lower curve), n = 6. The dots represent the
numerical results of the nematic order parameter Bn, Eq. (26),
whereas the curves correspond to nematic order parameter B (n),
Eq. (27).

the cluster n + 2 is present, revealing either a nematic phase
(even n) or a topologically ordered phase (odd n).

V. THE ENTANGLEMENT PROPERTIES

In this section we analyze the entanglement properties
between adjacent spins as well as between a block of spins
and the remaining part of the chain. Despite the complexity
of the class of models under investigation we obtain general
results showing the relevance of the entanglement features in
these complex matter systems.

The object of matter is the reduced density of m spins,
which is obtained by taking the trace over all remaining spins
of the ground state. Any such reduced density matrix we can
decompose by the spin-correlation functions,

ρ(n)
m = 1

2m

∑
α1,...,αm

〈
σ

α1
1 σ

α2
2 · · · σαm

m

〉
σ

α1
1 σ

α2
2 · · · σαk

k , (29)

where αi runs from 0,x,y,z and σ 0
i denotes the identity.

The next section introduces the concept of different types of
multipartite entanglement. Then we compute the entanglement
properties of adjacent spins and the entanglement between a
block of spins and the remaining part of the chain.

A. Definition of hierarchies of multipartite separability

The quantum separability problem reduces for bipartite
entangled systems to the question of whether the state is
entangled or not. In the multipartite case the problem is more
involved. First, there exist different hierarchies of separability
since an n-partite entangled state ρ may be a convex combi-
nation of pure entangled states with maximally k entangled
particles. Any tripartite pure state, e.g., can be written as

|ψk=3〉 = |φA〉 ⊗ |φB〉 ⊗ |φC〉,
|ψk=2〉 = |φA〉 ⊗ |φBC〉, |φB〉 ⊗ |φAC〉

or |φAB〉 ⊗ |φC〉,
|ψk=1〉 = |ψ〉ABC, (30)
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where k gives the number of partitions dubbed the k

separability. In general, a pure state |�k〉 is called k separable,
if and only if it can be written as a tensor product of k factors
|ψi〉, each of which describes one or several subsystems, i.e.,

|�k〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψk〉 = |ψ1ψ2 . . . ψk〉. (31)

A mixed state ρ is called k separable, if and only if it can be
decomposed into a mixture of k-separable pure states,

ρ =
∑

i

pi

∣∣�k
i

〉 〈
�k

i

∣∣ , (32)

where all |�k
i 〉 are k separable (possibly with respect to

different k partitions) and the pi form a probability distribution.
An n-partite state (pure or mixed) is called fully separable if
and only if it is n separable. It is called genuinely multipartite
entangled if and only if it is not biseparable (2 separable).
If neither of these is the case, the state is called partially
multipartite entangled or partially multipartite separable.
Note that obviously a k = 3-separable state is necessarily also
k = 2 separable; thus, k-separable states have a nested-convex
structure.

In particular, note that the tripartite mixed state

ρ =
∑

i

pi |ψi〉AB〈ψi |AB ⊗ |σi〉C〈σi |C

+
∑

i

qi |χi〉AC〈χi |AC ⊗ |τi〉B〈τi |B

+
∑

i

ri |ξi〉BC〈ξi |BC ⊗ |ωi〉A〈ωi |A, (33)

with pi,qi,ri � 0 and
∑

pi + qi + ri = 1, is biseparable,
though it is not biseparable with respect to a certain splitting.
This property and the fact that the convex sum of pure
states is not unique are the reasons why it is hard to detect
genuine multipartite entanglement, i.e., a state that cannot be
written in the above form. Consequently, the entanglement
characterization of multipartite states needs more than the
combination of bipartite entanglement criteria [36].

B. Entanglement properties among adjacent spins

Let us start by analyzing the case of m adjacent spins
thus having a maximum distance of r = m − 1. Then all
spin-correlation functions can be expressed by Gr (n,φ), with
−(m − 1) < r < m − 1.

Theorem 1. If the number of adjacent spins m is smaller
than the cluster size, i.e., m < n + 2, then all k � m-partite
entanglement vanishes; i.e., the reduced state is k � m

separable. If the number of adjacent spins equals the cluster
size, i.e., k = n + 2, then there exists a finite range of values
of φ for which the reduced density matrix to this set of spins
is genuinely n + 2-partite entangled (plotted in Fig. 5).

Proof. Let us start with m < n + 2. In Sec. III we have
computed all spin-correlation functions Gr (n,φ) and found
that they vanish if r �= (n + 2)l + 1. The reduced density
matrix ρ(n)

m depends only on a single function, i.e., G1(n,φ).
This implies that only spin-correlation functions that are
different from zero are the ones along the y direction.
Consequently, the reduced matrix ρ(n)

m is a mixture of states

C
(n

+
2
)

g
m

(φ
)

0 .2

0 .1

0

0 π/4 π/2

φ

FIG. 5. (Color online) Dependence of the genuine multipartite
concurrence C(n+2)

gm as function of the weighted interactions φ for
different n that runs from 1 (highest curve) to 12 (lowest curve).
Note that only for n = 1 genuine tripartite entanglement is nonzero
before and after the critical point and, generally, genuine n + 2-partite
entanglement decrease with increasing cluster size.

being eigenvectors to the single-spin operators σ
y

j . Applying
the local unitary operators

Uj = exp

(
−i

π

4
σx

j

)
(34)

brings the density matrix ρ(n)
m of m adjacent spins into a

diagonal form which obviously is separable.
In the case where the adjacent spins equals the cluster

size, m = n + 2, the reduced density matrix ρ
(n)
n+2 depends on

G1(n,φ) and G−(n+1)(n,φ) that corresponds to the spin-cluster
correlation function 〈σx

k Oz
k,nσ

x
k+n+1〉. Again applying the

above-defined local unitary operators Uj to each spin we obtain
a reduced density matrix ρ(n)

m that has an X form [20]; i.e., only
entries on both diagonals are nonzero. It has been shown that if
a density matrix can be written in such an X form, the genuine
multipartite entanglement can be exactly evaluated by a certain
measure, dubbed genuine multipartite concurrence introduced
in Refs. [21–23]. Thus, by applying the above-defined local
unitaries we find the following expression for the genuine
(n + 2)-partite concurrence for any n and φ:

C(n+2)
gm (φ)

= max

{
0,

1

2n+1
[1−G1(n,φ)]n+1[G−(n+1)(n,φ)+1]−1

}
.

(35)

In Fig. 5 we have plotted the genuine (n + 2)-partite
concurrence for n = 1, . . . ,12 and find for certain φ nonzero
values. �

Looking more carefully at the curves, one observes a
similar behavior for all n and, except for n = 1, a nonzero
value of genuine (n + 2)-partite multipartite is only obtained
in the Ising phase. Moreover, the genuine (n + 2)-partite
concurrence is always smaller for bigger cluster sizes. That
proves that the entanglement in the ground state becomes
robust against the Ising interaction (remember the ground state
of φ = 0 is a graph state and for φ = π

2 a totally factorized
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π 2

−
φ

m n

2

1

0 .5

0 .2

0 .1

0 .05

1 2 5 10 20 50 100

n

FIG. 6. (Color online) Behavior of π

2 − φ(n)
max as function of n,

where the maximization is taken for the genuine multipartite concur-
rence. The red dots are the result of the numerical maximization for
any n, while the black line represents the fit, obtained for large n,
in Eq. (36).

state [37–39]). Consequently, higher cluster sizes allow for
better properties for running quantum algorithms.

In Figs. 6 and 7 a deeper analysis of the entanglement
properties of the reduced matrix can be found concerning the
maximal value of the weight φ(n)

max of the two interactions,
which corresponds to the maximal reachable value of genuine
n + 2-partite concurrence C(n+2)

gm . Both values show a similar
dependence that for n > 10 is in good approximation given by

φ(n)
max = π

2
− 3.1

n
,

C(n+2)
gm

(
φ(n)

max

) = 0.47

n
, (36)

where the numerical coefficients are obtained by a best-
fit algorithm. Analogously, the point in which the genuine
(n + 2)-partite entanglement becomes different from zero

C
(
n
+

2
)

g
m

(φ
m n

)

0 .5

0 .2

0 .1

0 .05

0 .02

0 .01

0 .005

1 2 5 10 20 50 100

n

FIG. 7. (Color online) Dependence of the maximum value of the
genuine multipartite concurrence C(n+2)

gm (φ(n)
max) on the cluster size

n + 2. The (red) dots are the results of the numerical maximization
for any n, whereas the (black) line represent the fit obtained for large
n presented in Eq. (36).

π 2
−

φ
∗ n

5

2

1

0 .5

0 .2

0 .1

1 2 5 10 20 50 100

n

FIG. 8. (Color online) Dependence of π

2 − φ(n)
∗ as function of n.

The (red) dots are the result of the numerical result for specific cluster
sizes n + 2, whereas the (black) line represents the fit result obtained
for large n presented in Eq. (37).

depends on the inverse of n, plotted in Fig. 8,

φ(n)
∗ = π

2
− 6.2

n
. (37)

From these equations we immediately reveal an interesting
relation between φ(n)

max and φ
(n)
∗ ; i.e.,

(
φ(n)

∗ − π

2

)
= 2

(
φ(n)

max − π

2

)
, (38)

valid for large n.
In summary, these cluster-Ising models with different clus-

ter sizes have interesting local entanglement properties. There
is no bipartite, tripartite, . . . , n + 1 entanglement, but only
for large-enough values of Ising interaction φ > π

4 one finds
local entanglement, in particular only genuine n + 2-partite
multipartite entanglement. In Ref. [40] the authors computed
that the maximal value of maximal possible entanglement of
two adjacent spins in a translation-invariant chain was found to
give a (bipartite) concurrence of C = 0.434 467. This optimal
value serves for interpreting entanglement values obtained for
real physical systems. In the very same manner the maximal
values of the multipartite entanglement quantified by the
above-introduced genuine multipartite entanglement measure
serves as an reference for a real physical system exhibiting
cluster and Ising interactions.

C. Entanglement properties between a block of spins
and the rest of the chain

Another important property to analyze in multipartite
systems concerns the entanglement features of a block of m

spins with the rest of the chain and how it classifies to the
holomorphic and antiholomorphic sectors in conformal field
theories.

For that purpose we have to compute the von Neumann
entropy of the reduced density matrix of m spins,

S(n)
m = Tr

[
ρ(n)

m log2

(
ρ(n)

m

)]
. (39)
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S
(n

)
m

15

10

5

0
2 50 100 150 200

m

FIG. 9. (Color online) Here the von Neumann entropy S(n)
m ,

Eq. (39), in dependence of a block size m for different cluster sizes
n, is plotted, from which we fit the numerical solution of the von
Neuman entropy; see Eq. (45). The value of n runs from 1 lowest
(black) curve to 8 the highest (pink) curve.

Using the methods developed in Refs. [41,42], we find

S(n)
m =

m∑
j=1

HShannon

(
1 + νj

2

)
, (40)

where HShannon(x) is the Shannon entropy

HShannon(x) = −x log2(x) − (1 − x) log2(1 − x), (41)

and νj is the imaginary part of the eigenvalues of the matrix

�′ = δij − i�m, (42)

with

�m =

⎛
⎜⎜⎝

�0 �−1 · · · �−m+1

�1 �0 · · · �−m+2
...

...
. . .

...
�m−1 �m−2 · · · �0

⎞
⎟⎟⎠ (43)

and

�r =
(

0 Gr (n,φ)
−G−r (n,φ) 0

)
. (44)

We have evaluated numerically the von Neumann entropy
for blocks of length ranging from 2 to 200 spins at the critical
point φc for n that runs from 1 to 10. The obtained values of
the von Neumann entropy are displayed in Fig. 9.

Analyzing the numerical data we deduce

S(n)
m � (0.32 + 0.18 n) log2 m + const(n). (45)

The multiplicative constant in front of the logarithmic term
is known to be related to the central charge of the 1 + 1-
dimensional conformal theory describing the critical behavior
of the chain via the relation [28]

Sm = c + c
6

log2 m, (46)

where c and c are the central charges of the so-called
holomorphic and antiholomorphic sectors of the conformal
field theory. Due to the existence of a duality in the system
under investigation we have that c = c and, hence, via Eq. (45)
we obtain

c � 3(0.32 + 0.18 n). (47)

For two-quantum one-dimensional systems to belong to the
same universality class, they need to have the same central
charge. Since in our case we find a dependence on n, this
central charge, in addition to the critical exponent β, Eq. (23),
of the order parameters, Eq. (28), proves that the many-body
cluster-Ising models fall into different classes with respect to
their symmetries.

VI. CONCLUSIONS

In summary, we have analytically solved, characterized,
and analyzed the properties of a family of models that we
named n-cluster-Ising models. These are models characterized
by different cluster sizes (n + 2) and different weighted cluster
interaction and Ising interaction. We proved that there occurs
a phase transition exactly when both interactions are equally
weighted and, interestingly, independent of the cluster size.

With respect to their symmetries, the family of models falls
into different classes proved via the dependence on n of the
critical exponent β of properly defined order parameters and
the central charge of the holomorphic and antiholomorphic
sectors in conformal field theories. In particular, we find
that the cluster phase has very different orderings for odd
or even cluster size, namely a topological or a nematic order.
Since nematic order usually shows up only for nonanalytically
solvable systems, these cluster-Ising models may become a
prototype testing model for exploiting the physical potential
of nematic ordering of spins.

In the next step we have investigated how the apparent
complexity of the ordering translates to the multipartite
entanglement properties shared among spins or block of spins
with the rest of the system. Surprisingly, exactly all reduced
density matrices with m adjacent spins smaller than the cluster
size (= n + 2 adjacent spins) posses no entanglement, whereas
the reduced density matrices for exactly the cluster size (n + 2)
possesses genuine n + 2-multipartite entanglement if the Ising
interaction is strong enough, but not maximal (see Fig. 5). This
absence of bipartite or n − 1-partite multipartite entanglement
is very different from other one-dimensional spin models, i.e.,
the Ising one [43,44] or the XY model [25]. That computation
was possible because the symmetries of the Hamiltonian
constrain the state space in the Hilbert-space in a nontrivial
way enabling even the computation of a measure of genuine
multipartite entanglement. From the quantum information
perspective, these results show that increasing the cluster size
reduces local entanglement and, herewith, the robustness of
the performance of any quantum algorithm. From the per-
spective of comparison of different condensed-matter systems
the family of models serves as a reference system of the
possible amount of local genuine multipartite entanglement
that can be shared.
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Our family of models can be generalized with respect
to higher dimensions both in space and degrees of freedom
(higher spins). These models may become a good testing
ground for nontrivial-spin orderings and serve as a prototype
for studying the potential of a quantum computer.
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