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Wigner representation of the rotational dynamics of rigid tops

Dmitry V. Zhdanov* and Tamar Seideman†

Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
(Received 2 January 2015; revised manuscript received 13 April 2015; published 30 July 2015)

We propose a methodology to design Wigner representations in phase spaces with nontrivial topology having
evolution equations with desired mathematical properties. As an illustration, two representations of molecular
rotations are developed to facilitate the analysis of molecular alignment in moderately intense laser fields, reaction
dynamics, scattering phenomena, and dissipative processes.
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I. INTRODUCTION

The dynamics of complex quantum systems on the border
between classical and quantum mechanics is relevant to a
variety of fields, including quantum optics and information,
structural analysis, studies of matter waves, and mechanisms
of chemical reactions (see, e.g., [1–5]). The details of these
dynamics can be experimentally traced with up to attosecond
resolution, owing to the advances in quantum state preparation
and transient probing [6–9]. However, specialized models
are needed to numerically access this regime. Attractive
approaches are based on semiclassical propagation of the
Wigner function [10–13], including phase integral methods
[14] and a large family of initial value representations and
their related techniques and extensions [5,15,16].

The idea underlying all these approaches is to find a
computationally efficient way to expand any given exact
generator of quantum motion in a rapidly converging series
[17]. However, the mathematical form of the exact generator of
motion can be substantially altered by changing the topology of
the underlying configuration space [4,15,18]. Such structural
flexibility potentially embodies wide opportunities to equip
the representation with the desired properties and behavior
[19–21]. The analysis of this resource with the specific appli-
cation to rotational motion of extended bodies, a fascinating
problem with many applications [22–26]), constitutes the
subject of the present paper.

A variety of ways to extend the original Wigner quantization
ansatz to the case of rotational dynamics were suggested and
analyzed [27–39], but only a few of them are applicable
to unrestricted rotations of three-dimensional bodies. The
early solutions of Refs. [35,36] reduce the problem to the
canonical case at the cost of extending the phase space by two
artificial dimensions. A variant suggested in Ref. [37] allows
one to directly extract the most useful partial distributions
but involves rather complicated quantum Liouville equations.
Conversely, in the Nasyrov proposal [38], the equations for free
symmetric and linear tops coincide with the classical ones at
the expense of a complicated integro-differential form for the
dynamical equations and common observables in the general
case. Similar drawbacks also limit the utility of schemes
[39] based on direct extension of the Stratonovich-Weyl
correspondence for spin [40].
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In this paper we suggest that the roots of many of the
dynamical drawbacks are hidden in the employed phase-space
quantization procedure. The latter usually follows closely the
original Wigner reasoning [10,41], grounded on axiomatizing
certain static properties of desired quasiprobability distribution
[10,41] (a notable exception is the Nasyrov scheme [38]).
This approach, however, lacks the tools to explicitly control
the mathematical structure and complexity of the resulting
dynamical equations.

Here we show that this issue can be resolved by replacing
certain traditional axioms of phase-space quantization with the
postulates imposed on the properties of evolution equations
for the Wigner function. The basics of the resulting hybrid
static-dynamical phase-space quantization scheme are detailed
in Sec. II. In Secs. III and IV we apply this scheme to
address the problem of developing a numerically efficient
phase-space quantization of rotation motions. We explore two
design routes by departing from the classical Euler equations
and from the Liouville equations written in terms of the
components of angular momenta and quaternion parameters.
Correspondingly, we arrive at two alternative representations.
In both cases we resolve many of the mentioned drawbacks
of the existing phase-space quantizations but also gain a
better understanding of quantum rotations. For example, the
second representation uncovers the deep physical relation
between quaternions and the raising and lowering operators
of the Schwinger oscillator model and also complements the
dynamical picture in the Nasyrov quantization approach [38].
These findings clarify the origins of the remarkable possibility
to exactly reduce the quantum Liouville equation of the free
symmetric top to the classical form. We encourage readers to
check Sec. V for a brief summary of the key features and the
expected advantages of the these representations in numerical
simulations. We defer to five Appendixes mathematical details
that we expect to interest the reader but are not necessary for
conveying our message.

II. FUNDAMENTALS OF GENERALIZED WIGNER
REPRESENTATIONS

Despite being essentially different, the quantum and classi-
cal statistical mechanics operate with the same set of objects:
the set of all elementary physical events (the probability space)
�, the algebra B of these events, and the probability measure
P for any measurable subset in B [42]. Fortunately, the
Hilbert space framework is fully compatible with both clas-
sical and quantum-mechanical objects [43,44]. The Wigner
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representation exploits this fundamental fact. It is constructed
by equipping the classical phase space � with such an
additional scalar product ( , )W in which the resulted Hilbert
space �W can simultaneously host both classical and quantum
algebras. This change formally converts both classical and
quantum quantities into operators acting in �W. To distinguish
between them we will denote the latter by a curved right

overarrow (e.g.
�

F ), preserving the caret notation for operators
in the ordinary configuration Hilbert space.

Compatibility with classical mechanics requires consis-
tency of the definitions of ( , )W and (scalar-valued) classical
averaging of any physical quantity F over classical canonical
coordinates and momenta qi and pi (i = 1, . . . ,N):

〈F 〉 = (F,
�
ρ)W =

∫
· · ·
∫

�W

F
�
ρ d�, (1)

where d� = dp1 · · · dpNdq1 · · · dqN and
�
ρ denotes the gener-

alized probability distribution in phase space called the Wigner
function (or the Weyl symbol of the density matrix). This
relation should be viewed as a classical analog of the quantum
equality 〈F̂ 〉 = Tr[F̂ ρ̂] if the classical quantity F is substituted

by its quantum counterpart
�

F ,

〈F̂ 〉 = (
�

F,
�
ρ)W. (2)

Since in quantum mechanics the observables and states are
treated on the same footing, it is worth requiring the following
traciality relation for any two states ρ̂1 and ρ̂2:

(
�
ρ1,

�
ρ2)W = C Tr[ρ̂1ρ̂2], C = const. (3)

It is also natural to impose the constraint that the images
�

F of
quantum observables F̂ remain Hermitian in �W:

�

F = �

F †. (4)

Equations (3) and (4) imply that

�
ρ = �

ρ† = �
ρ∗ (5)

is a real-valued symmetric function of phase variables.
With this, the explicit form of images

�

xi and
�

pi of the
quantum coordinate and momentum operators (termed Bopp
operators [11,45]) is uniquely defined by (i) the fundamental
property of Galilean invariance of nonrelativistic phase space
�W (which requires

�

xi and
�

pi to be linear in both pi,qi and
∂

∂pi
, ∂

∂qi
), (ii) the canonical commutation relation [

�

xi,
�

pi] = i�,

and (iii) the requirement of proper classical limit
�

pi |�→0 = pi

and
�

qi |�→0 = qi :

�

xi = xi+ i�

2

∂

∂pi

,
�

pi = pi − i�

2

∂

∂xi

. (6)

Note that these operators when applied to
�
ρ produce images

of the left multiplications p̂i ρ̂ and q̂i ρ̂. It is convenient

to introduce the operators
�

pi and
�

qi whose effect on
�
ρ is

associated with the right multiplications. The associativity
relations of form ∀ρ̂ : q̂i(ρ̂q̂j ) = (q̂i ρ̂)q̂j and the equality
[q̂i ,p̂i]ρ̂ = −(ρ̂†[q̂i ,p̂i])† imply that the right operators should

satisfy the commutation relations

[
�

pi,
�

pj ] = [
�

pi,
�

qj ] = [
�

qi,
�

pj ] = [
�

qi,
�

qj ] = 0,

[
�

qi,
�

pj ] = −iδi,j�. (7)

Combining Eq. (7) with the requirements of Galilean invari-
ance and proper classical limit, one can conclude that

�

pi = xi − i�

2

∂

∂pi

= �

pi
∗
,

�

qi = pi+ i�

2

∂

∂xi

= �

qi
∗
. (8)

The equality Tr[q̂n
i ρ̂] = 1

2n

∑n
m=0 Cm

n Tr[q̂m
i ρ̂q̂n−m

i ], where
Cm

n are binomial coefficients, and the similar expression for p̂i

lead to the conclusion that(
�

qi
n,

�
ρ
)

W = 1

2n
((�

qi + �

qi)
n,

�
ρ)W = (qn

i ,
�
ρ
)

W,

(
�

pi
n,

�
ρ
)

W = (pn
i ,

�
ρ
)

W.

(9)

In particular, Eqs. (9) mean that the partial integration on
the right-hand side of (1) over coordinates (momenta) with
F = 1 returning the correct marginal probability distributions
for values of momenta (coordinates).

Equations (6) and (8) completely specify the quantum
algebra. Indeed, they establish a one-to-one correspondence
between an arbitrary quantum operator F̂ = F (p̂,q̂), its

Wigner image
�

F = F (
�

p,
�

q ), and the Weyl symbol FW(p,q) =
F (

�

p,
�

q )1 (see [11,12]) for details), and define the image of
the master equation ∂

∂t
ρ̂ = −i

�
[Ĥ ,ρ̂] with the Hamiltonian

Ĥ = H (p̂,q̂):

∂

∂t

�
ρ = �

L
�
ρ, (10)

where the quantum Liouville operator
�

L is given by the real
operator

�

L = −i

�
[H (

�

p,
�

q ) − H (
�

p,
�

q )]. (11)

However, in the general case of noncanonical phase spaces,
Eqs. (2)–(10) are not self-consistent and hence some of them
must be relaxed. For example:

(I) one can impose the desired static properties of the
quasiprobablilty distribution like (2), (3), (5), and (9) and then
deduce from them the expressions for Weyl symbols, Moyal
products, and evolution equations or, alternatively,

(II) one can depart from the desired algebraic and dynamic
properties of images of quantum operators and/or generators
of motion [e.g., Eqs. (4), (6), and (7)].

Algorithm I is rigorously axiomatized [41]; its abstracted
generalization in group-theoretic terms (termed Stratonovich-
Weyl correspondence [40]) can be applied to arbitrary phase
spaces with complex symmetries (see, e.g., [46,47]). One
practical and formally justified [48,49] axiomatic basis for
algorithm II postulates the equations of motion for averages of
certain physical quantities [38,50]. Another possible starting
point is Feynman’s path-integral representations of the time
evolution [12]. One of the fundamental origins of this diversity
of possible definitions is the wide freedom in choosing
either the Weyl symbols of density matrices �

ρ or quantum

observables
�

F to be a main carriers of nonclassicality (see
[4,51] for details).
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The quantization method presented in this paper uses this
diversity to construct Wigner quantizers tailored to specific
dynamical problems. First, we identify the desired dynamical
characteristics of the quantizer that would enhance its applied
value. In our examples we consider goals such as compu-
tational simplicity of the quantum equations of motion and
preferable forms of certain Bopp operators. At the next step we
introduce these preferences into the standard set of postulates
of Wigner quantization. In doing this, we have to relax
some of these canonical postulates (considered as the least
important ones in the context of the anticipated applications)
in order to obtain a consistent axiomatic basis. The modified
postulates no longer uniquely specify the representation but are
accompanied by additional loose dynamical criteria (such as
simplicity of certain operators) defined in physical rather than
mathematical terms. This makes the construction algorithm II
more suitable: One starts with deducing the forms of dynamical
Bopp operators that best account for these additional criteria
and then completes the definition of the Wigner function
and its static properties accordingly. In the following sec-
tions we demonstrate the efficacy of this general scheme
by obtaining different computationally efficient phase-space
representations of the rotational dynamics of rigid tops.

III. QUANTIZATION OF THE EULER EQUATIONS

Euler’s celebrated equations

d

dt
Li =

3∑
j,k=1

εi,j,k

(
1

Ik

− 1

Ij

)
LjLk

2
(i = 1,2,3), (12)

where εi,j,k is the Levi-Cività symbol, Ik are moments of inertia
about the principal axes �ek of the rigid body, and Lk are the
projections of the angular momentum on �ek , describe the free
dynamics of rigid bodies in the moving frame S in terms of the
phase space �L

W = {L1,L2,L3}. We will require the quantum
generalization of Eq. (12) to obey:

(E:1) the condition (5) of reality of the quasiprobability

distributions
�
ρ = �

ρ(L1,L2,L3), i.e., any real-valued Weyl

symbol
�
ρ ′ should correspond to a unique Hermitian (but not

necessarily positive) matrix ρ̂ ′;

(E:2) the traciality relation (3) in �L
W where (

�	1,
�	2)W

def=∫
�L

W

�	∗
1

�	2 dL1dL2dL3 and C = 1;

(E:3) the consistency of the classical limit for
�

Li and the
evolution equation (10) with the Euler equations (12)

�

Li |h→0 = Li,
�

L |�→0 = L =
3∑

i,j,k=1

εi,j,k

(
LjLk

Ik

)
∂

∂Li

.

(13)

Postulates (E:1) and (E:2) match the conventional Wigner
reasoning [41]. They also guarantee that the Hermiticity

condition (4) holds (i.e.,
�

F ∗|∂/∂Lj →−∂/∂Lj
= �

F for the image
�

F of any observable). Hence, these postulates preserve the
essential subset of the properties of the conventional Wigner
function. However, in defining (E:3) we apply algorithm II and

substitute the static condition (9) on the marginal distributions
with a dynamical restriction. The postulates (E:1)–(E:3) do
not uniquely determine the Wigner representation. This allows
us to introduce the condition of mathematical simplicity of

the quantum Liouville operator
�

L as the additional loose
dynamical figure of merit.

It is worth stressing that the postulates (E:1)–(E:3) do
not allow us to immediately identify (i.e., in a way similar
to the standard quantization scheme [41]) the explicit form
of the isomorphism between the density-matrix formulation
and the Wigner function formulation. Instead, we have to
start by identifying the structure of the key dynamical Bopp

operators
�

Lk and
�

L consistent with the given postulates and

then go back and complete the identification of the function
�
ρ

that enters Eq. (10).
The images of the associativity and commutation relations

∀ρ : L̂k(ρL̂l) = (L̂kρ)L̂l ; [L̂l,L̂k] = i�
∑

m εk,l,mL̂m satisfy-
ing (E:1)–(E:3) read

∀k,l : [
�

Lk,
�

Ll] = 0, [
�

Lk,
�

Ll] = −i�

3∑
m=1

εk,l,m

�

Lm. (14)

Postulate (E:1) uniquely defines the form of any right operator
�

F . Indeed, the images of the expressions i[F̂ ,ρ̂ ′] and [F̂ ,ρ̂ ′]+
must be real for any Hermitian ρ̂ ′. Thus, the operators

i(
�

F − �

F ) and (
�

F+�

F ) have to be real, i.e.,

�

F = �

F ∗ (15)

[cf. (6) and (8)]. Relation (15) allows us to define
�

Lk = ò

Lre,k +
i

ò

Lim,k and
�

Lk = ò

Lre,k − i
ò

Lim,k and rewrite Eqs. (14) in the
equivalent form

∀k,l : [
ò

Lre,k,
ò

Lim,k] = 0; (16a)

[
ò

Lim,l ,
ò

Lim,k] = [
ò

Lre,k,
ò

Lre,l] = �

2

3∑
m=1

εk,l,m

ò

Lim,m,

(16b)

[
ò

Lre,k,
ò

Lim,l] = �

2

3∑
m=1

εk,l,m

ò

Lre,m. (16c)

Using Eq. (11) and the free rigid top Hamiltonian

Ĥ =
3∑

k=1

L̂2
k

2Ik

, (17)

one obtains

�

L = 2
3∑

k=1

ò

Lre,k
ò

Lim,k

�Ik

. (18)

Applying (E:3) to (18) leads to the following expression for
ò

Lim,k:

ò

Lim,k = 1

2
�

3∑
i,j=1

εi,j,kLi

∂

∂Lj

(19)
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up to terms of order �
2 that should be chosen equal to zero in

order to best satisfy our requirement of simplicity of
�

L . The
system of differential equations (19) and (16) can be solved

for
ò

Lre,k:

ò

Lre,k = Lk+�
2

16

(
− 2

3∑
i=1

Li

∂

∂Li

∂

∂Lk

+ Lk

3∑
i=1

∂2

∂L2
i

+c1
∂

∂Lk

+ξ 2 Lk

L2

)
, (20)

where we define L =
√

L2
1+L2

2+L2
3. The angular momentum

components defined by (19) and (20) satisfy the relations (14)
and (15) for any real values of c1 and ξ , but only the choice c1 =
−3 is consistent with the Hermiticity condition (4). The value
of ξ can be selected to simplify the expression for averages
originating from (E:2):

〈F̂ 〉 = (
�
i ,

�

F
�
ρ)W (21)

[cf. Eq. (2)], where
�
i is the Weyl symbol of the reduced

identity matrix î =∑l îl . Here îl =∑l
m,k=−l ρ̂l,k;l,k ,

where ρ̂l,k1;l,k2 = 1
2l+1 Trm[|l,m,k1〉 〈l,m,k2|] are

reduced projectors that satisfy the standard relations
L̂2ρ̂l,k1;l,k2 = � l(l+1)ρ̂l,k1;l,k2 , L̂3ρ̂l,k1;l,k2 = � k1ρ̂l,k1;l,k2 , and
Tr[ρ̂l,k1;l,k2 ρ̂l,k3;l,k4 ] = δk1,k4δk2,k3 . The trace Tr m[	̂] is taken
only over the quantum number m of the projection of the
angular momentum on an arbitrary laboratory-fixed axis. The
results of Appendix A indicate that the following isomorphism

holds between the Weyl symbols
�
ρ and the reduced density

matrices ρ̂red = Tr m[ρ̂] such that Tr[ρ̂redρ̂l1,k1;l2,k2 ] = 0 for any
l1 
=l2 (the origin of the latter limitation will be clarified below):

�
ρ =

∑
l,k1,k2

Tr[ρ̂l,k2;l,k1 ρ̂red]
�
ρl,k1;l,k2

, (22a)

ρ̂red =
∑

l,k1,k2

(
�
ρl,k1;l,k2

,
�
ρ)Wρ̂l,k1;l,k2 . (22b)

The general expressions for basis functions
�
ρl,k1;l,k2

valid for
arbitrary values of ξ are given in Appendix A. They take the
most convenient nonsingular form when ξ = 1

2 . For this case

Eqs. (A5) and (A6) give
�
i |ξ=1/2 = 1

�
√

πL
and

�
ρl,l;l,l |ξ=1/2 = 4

�
√

πL
(−1)2le−4L/�L2l

[
4(L+L3)

�

]
, (23)

�
ρl,k1;l,k2

= c(
�

L1+i
�

L2)l−k1 (
�

L1 − i
�

L2)l−k2
�
ρl,l;l,l , (24)

where c = �
k1+k2−2l

(2l)!

√
(l+k1)!(l+k2)!
(l−k1)!(l−k2)! and the notation L2l stands

for Laguerre polynomials.
It is useful to highlight several peculiarities of the obtained

representation.

1. In the angular momentum case, Eqs. (2) and (3) cannot
be simultaneously satisfied because of nonuniform density of

quantum states in �L
W:

�
i 
=1. However, one may set c1 = −4,

ξ = 0 to satisfy (2) instead of (3), which is equivalent to the

nonunitary transformation
�
ρ ′ = (�2πL)η

�
ρ|ξ=1/2,c1=−3,

�

F ′ = Lη
�

F |ξ=1/2,c1=−3L
−η,

(25)

with η = −1/2.
2. The conceptual drawback of the Wigner representations

corresponding to the choices c1 = −3, ξ = 1/2 and c1 = −4,

ξ = 0 is that the associated Weyl symbols
�
i = 1

�
√

πL
and

�
i ′ = 1

�2πL
are not equivalent to the Bopp operator

�

i = 1
of the identity matrix. This drawback can be eliminated by
the choice c1 = −2, ξ = 0, which corresponds to η = 1

2 in
(25). The resulting formalism will be referred to as the �L�

W

representation. It is straightforward to check that
�
i � = �

i � = 1

so that the associated Bopp operators
�

O� and Weyl symbols
�
O� and

�
ρ�

red of any reduced density matrix ρ̂red and operator
Ô obey the following simple correspondence rules:

�
O� = �

O�
�
i � = �

O�1 =
�
W dir(Ô),

�
ρ� =

�
W dir(ρ̂red); (26a)

ρ̂red = Ŵrev(
�
ρ�), Ô = Ŵrev(

�
O�), (26b)

where the direct and reverse transforms are defined as
�
W dir(	̂) = Tr[	̂

�
�̂], Ŵrev(

�	) =
(

1

�2(πL)
,

�
�̂

�	
)

W

. (27)

Here
�
�̂ is the Stratonovich-Weyl (SW) kernel

�
�̂ =

∑
l,k1,k2

�
ρl

�
,k1;l,k2 ρ̂l,k2;l,k1 (28)

and the basis functions ρ̂l,k1;l,k2 are related to those defined by
Eqs. (23) and (24) as

�
ρl

�
,k1;l,k2 = �(πL)1/2�

ρl,k1;l,k2
. (29)

Remarkably, the mathematical structure of the resulting

Wigner images
�

L
�

k is identical (up to the complex conjugation)
to the conventional generalized Bopp operators for spin
[12,52]. This analogy makes it evident that the correspon-
dences (26) allow us to define the familiar phase-space star
product of any two Weyl symbols

�	�
1 �

�	�
2 = �	�

1

�	�
2 =

�
W dir[Ŵrev(

�	�
1)Ŵrev(

�	�
2)], (30)

so that, e.g.,

〈F̂ 〉 =
(

1

�2(πL)
,

�

F��
ρ�

)
W

=
(

1

�2(πL)
,

�
F��

�
ρ�

)
W

. (31)

In principle, one can similarly construct the star product
version of any generalized Wigner quantizer. However, as we
will see in Sec. IV, in the general case there is no guarantee that
complete consistency with the SW formalism will be achieved.
This is the price one has to pay for extended capabilities
of algorithm II to give the quantizer’s desirable dynamic
properties.

3. It follows from Eq. (16b) that 1
2 (

�

Li+
�

Li) = ò

Lre,i 
=Li

regardless of the particular choice of averaging and normal-
ization. This precludes the analogs of relations (9) for angular
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components
�
Lk , so one can no longer obtain meaningful

marginal distributions via partial integration over
�
ρ. Neverthe-

less, other characteristic semiclassical features of the Wigner
representation remain preserved. Specifically, one can still
apply the recipe from [48,49] to relate the Wigner equations
of motion (10) for pure states (with c1 = −3, ξ = 1/2) to the
respective classical equations in standard or Koopman–von
Neumann form.

4. The truncated Euler phase space �L
W is incapable of

handling the orientation of top relative to the laboratory frame
S ′. In particular, we cannot define the �e ′

3 projection of the
angular momentum and the associated quantum number m.

Also, it is easy to verify the equality
�

L2 =
�

L2, which gives rise

to the relation [L̂2,ρ̂red] = (
�

L2 −
�

L2)
�
ρ = 0 and many-to-one

ambiguity

∀α : αL̂2ρ̂red + (1 − α)ρ̂redL̂
2↔

�

L2�
ρ. (32)

Consequently, the feasible density matrices ρ̂red must obey
the condition ∀l1 
=l2 : Tr[ρ̂l1,k1;l2,k2 ρ̂red] = 0, which justifies
the specific form of the isomorphism (22). Beyond that, the

equality
�

L2 =
�

L2 implies that the quantum Liouville operator
of the free spherical top exactly coincides with its classical

counterpart
�

L = L = 0.
5. By virtue of the many-to-one ambiguousness (32), the

equation
�

L2
�
i l = �l(l+1)

�
i l has bounded, isotropic, Lebesgue,

and square integrable in �W solutions
�
i l for any real l > − 1

2
[see Eq. (A4)]. However, the coefficients κl,j in the expansion
îl =∑∞

j=0 κl,j îj/2 take negative values for noninteger values

of 2l since κl,j |2l 
∈Z,j→∞ ∝ (−1)j

j
. Consequently, îl|2l 
∈Z are

Weyl symbols of nonpositive operators and do not represent
valid physical states. These properties should be considered
with caution in calculations because they indicate that a small
numerical error can result in a dramatic physical mistake.

IV. COMPLETE PHASE-SPACE REPRESENTATION
OF ROTATIONAL MOTION

Various sets of generalized coordinates enable establishing
the link of the rotational dynamics with the laboratory
frame missed in the Euler quantization picture. However, the
evolution equations take the most elegant form in terms of the
four quaternions λk defined as

λ0 = cos
�

2
, λk = ηk sin

�

2
(k = 1,2,3), (33)

where the parameters �η and � are such that rotation about
the vector �η by angle −� will superimpose the axes �ek

and �ek
′ of the moving and laboratory frames S and S ′

(Fig. 1). Unlike angular variables, the quaternions are true
canonical coordinates (in the sense Ref. [19]). This makes
the construction of the Wigner representation in terms of
λi and the associated canonically conjugated momenta pλ,i

straightforward since the associated Bopp operators obey
the canonical commutation relations identical to (6) and (8)
[35,36] (see Appendix B for details and a brief review of
the algebra of quaternions). However, extra dimensionality

FIG. 1. (Color online) Physical meaning of the parameters enter-
ing the definition (33) of the quaternions λk .

of the phase space makes this approach computationally
impractical.

In order to solve this problem while keeping the simple form
of the dynamical equations, we will consider the noncanonical
phase space �

λ,L′
W composed of λk and the projections L′

k of the
angular momentum on the laboratory axes. The corresponding
classical Liouville operator reads

L = 1

2

3∑
k=1

3∑
m,n=0

m
Q
m,n,kωkλm

∂

∂λn

, (34)

where m
Q
m,n,k are quaternion multiplication coefficients

m
Q
k,i,j

=
{

εi,j,k if i > 0 ∧ j>0 ∧ k>0

δj,0δk,i + δi,0δk,j − δk,0δi,j otherwise
(35)

and ωk =∑3
j=1 Qk,jL

′
j /Ik are the angular frequencies about

axes �ek . The entries Qi,j of the directional cosine matrix are
bilinear in terms of λk , Qi,j = (�ei,�e′

j ) =∑m,n qi,j,m,nλmλn,
with coefficients

qi,j,m,n = (1 − 2δj,m)
3∑

k=0

m
Q
i,j,km

Q
k,m,n. (36)

In choosing a strategy to quantize Eqs. (33) and (34), we
will follow the reasoning of the previous section and define a
set of postulates similar to (E:1)–(E:3):

(C:1) the enforced reality condition similar to (E:1),

(C:2) the traciality relation (3) [with (
�	1,

�	2)W
def=∫

�
λ,L′
W

�	∗
1

�	2 dL1dL2dL3dλ0dλ1dλ2dλ3],

(C:3) (C:3) the proper classical limits
�

L
′
i |h→0 = L′

i ,
�

Li |h→0 = Li,
�

L |�→0 = L ,
�

λj |h→0 = λi,

(37)

together with the commutation relations (14)–(16) and

2

i�
[L̂i,λ̂j ] =

3∑
k=1

m
Q
k,j,i λ̂k. (38)

As in Sec. III, our intention is to make use of the variability in
the framework of the above postulates in favor of the simplest

form of the phase-space Liouville operator
�

L .
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Reproducing the steps leading to Eqs. (19) and (20), one
gets

�

Lk = 1

2

[∑3
s=1 Qk,sL

′
s∑3

s=0 λ2
s

,1 − �
2

16

3∑
s=1

∂2

∂L′2
s

]
+

+
3∑

m,n=0

(
�

2

16

3∑
s=1

qk,s,m,n

∂

∂L′
s

+i
�

4
m

Q
m,n,k

)
λm

∂

∂λn

,

(39)

�

λk = �

N
− 1

2

(
λk + i

�

4

3∑
m=0

3∑
n=1

m
Q
k,n,mλm

∂

∂L′
n

)
, (40)

�

N =
(

3∑
s=0

λ2
s

)(
1 − �

2

16

3∑
s=1

∂2

∂L′2
s

)
, (41)

where the operator
�

N commutes with all physical observables

of the form F (
�

L′
k,

�

λn). The existence of such
�

N 
= 1 is due
to overcompleteness of our seven-dimensional phase space
�

λ,L′
W .
The Wigner representation (39)–(41) is not convenient

for exact numerical implementation. One problem is caused

by the term
�

N
− 1

2
in the expression (40) for the quaternion

images, which is a differential operator of infinite order. This
prefactor, however, can be ignored when choosing to work

only with images of states satisfying the equation
�

N
�
ρ = �

ρ

(which is possible owing to its commutation properties).
Another possibility is to Fourier or Laplace transform the
phase space �

λ,L′
W with respect to L′

1, L′
2, and L′

3. However, the
resulting equations will lose the key characteristic properties
of the Wigner representation. Another technical complication
is introduced by the excessive dimensionality of �

λ,L′
W . In

addition, unlike the classical generator of free motion (34),
the quantum counterpart (11) no longer evidently manifests
the angular momentum conservation by preserving the values
of L′

k . One would desire to retain this remarkable property of
Eq. (34) in the quantum case because it would allow reduction
of the seven-dimensional differential propagation equation to
a series of four-dimensional ones.

We found that these issues can be resolved by relaxing
the traciality requirement (C:2) in favor of more explicit

specification of the desired form of the Bopp operators
�

Lk .
The resulting modified set of postulates imposes:

(C̄:1) the reality condition (15),
(C̄:2) the requirement (37) of well-defined classical limits,
(C̄:3) the requirement of the absence of derivatives over L′

1,

L′
2, and L′

3 in the expressions for the images
�

Lk .

The expressions for
�

Lk satisfying these postulates can
be compactly written in terms of the variables �m =√

L′√8/�λm:

�

Lk = �

8

3∑
m,n=0

[
3∑

s=1

qk,s,m,n

L′
s

L′

(
�m�n − ∂2

∂�m∂�n

)

+ 2 i m
Q
m,n,k�m

∂

∂�n

]
, (42)

where L′ =
√∑3

k=1 L′2
k . It is useful to introduce the interme-

diate fixed frame S ′′ whose third axis �e ′′
3 coincides with the

(conserved) direction of the angular moment. We denote by
1
L′ q the quaternion that represents the rotation connecting S ′
and S ′′ and introduce the parameters ϡm as exact analogs of
the parameters �m characterizing the orientation of the rotor
relative to S ′′:

L′
n =

3∑
m,n=0

qi,j,m,nqiqj , �k =
∑3

i,j=0 m
Q
k,i,jqiϡj√∑3

n=0 q
2
n

. (43)

Note that Eqs. (43) do not fix the directions of the axes �e ′′
1 and

�e ′′
2 of S ′′ and so do not uniquely define qk . Equation (42) takes

simple forms in terms of the variables ϡm:

�

L1 ± i
�

L2 = �
�

a
†
∓

�

a±,
�

L3 = �

2
(

�

a
†
+

�

a+ − â
†
−â−), (44)

where
�

a
†
± and

�

a± are the conventional ladder operators

�

a
†
±+�

a± = ϡ2±1 ± i
∂

∂ϡ1∓1
,

�

a±−�

a
†
± = ∂

∂ϡ2±1
±iϡ1∓1;

(45)

[
�

a±,
�

a
†
±] = 1, [

�

a∓,
�

a
†
±] = [

�

a∓,
�

a±] = 0. (46)

(It is worth stressing that notation such as
�

a
†
± hereafter means

the Wigner image of the creation operator â†, not the Hermitian
conjugate of the Bopp operator

�

a±.)

The fact that
�

a
†
± and

�

a± do not depend on qk and
the commutation relation ∀m,n : [L̂m,L̂′

n] = 0 hints that the

images
�

L′
m should have a form similar to (44),

�

L′
1 ± i

�

L′
2 = �

�

b
†
±

�

b∓,
�

L
′
3 = �

2
(

�

b
†
+

�

b+ − b̂
†
−b̂−), (47)

where the operators
�

b
†
± and

�

b± do not depend on ϡk and
satisfy commutation relations identical to (46). The validity of
Eqs. (47) is proven in Appendix C, where the following explicit
expressions are obtained [up to invariance transformation (52);
see below]:

�

b
†
± =

√
2(q1∓1 + iq2±1),

�

b± = 1√
8

(
∂

∂q1∓1
−i

∂

∂q2±1

)
;

(48)

�

L′
k = L′

k

L′

�

l + �

l

2
− �

4

3∑
r=0

3∑
s=1

m
Q
k,r,s

(
(1 − δr,0)

L′
r

L′ + iδr,0

)

×
3∑

m,n=0

mQ
n,s,m

(
2(1 − δm×n,0)L′

m

∂

∂L′
n

+�m

∂

∂�n

)
,

(49)

where
�
l is the image of operator of quantum number l:

�

l(
�

l + �) =
3∑

k=1

�

L
2

k =
3∑

k=1

�

L′
k

2 = �

L
2
, (50)
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�

l = �

8

3∑
m=0

(
�2

m − ∂2

∂�2
m

−1 − 2i

×
3∑

k=1

3∑
n=0

m
Q
n,k,m

L′
k

L′ �m

∂

∂�n

)
. (51)

We emphasize several important properties of the Wigner
quantizer generated by operators (42) and (49).

1. The following invariance relations hold for any operator

S representable as a function of only
�

l,
�

l, L′, and the operator
ò

Q =∑3
s=1 L′

s
∂

∂L′
s
:

�

Lk = S
�

LkS
−1,

�

L′
k = S

�

L′
kS

−1. (52)

In particular, if
�
ρε is the solution of the eigenvalue problem

f (
�

Lk,
�

L′
l ,

�

Lm,
�

L′
n,L

′)ρε = ερε with arbitrary function f , then
Sρε is also its solution. Furthermore, the variables replacement
L′

k → εL′
k with arbitrary ε does not change the form of

the operators (49), (42), and (51). This implies that the

basis function
�
ρα,β corresponding to an arbitrary projector

ρ̂α,β = |lα,mα,kα〉 〈lβ,mβ,kβ | can be written as

�
ρα,β = rL′,lα,lβ

�
ρ

(0)
α,β

(
�,

L′
1

L′ ,
L′

2

L′ ,
L′

3

L′

)
, (53)

where the variable prefactor
ò

r l(L′) depends on the choice of
S in the invariance relation (52).

2. The Bopp operators
�

Lk ,
�

L2, and 1
2 (

�

L′
3 − �

L′
3) are

Hermitian in �
�,L′
W , but the operators

�

L′
k are not:

�

L
′†
k = �

L∗
k |∂/∂�n→−∂/∂�n,∂/∂Lm→−∂/∂Lm

+ �
L′

k

L′ 
= �

L′
k. (54)

[The extra term �(L′
k/L

′) in Eq. (54) arises from symmetriza-

tion of the operators (49).] The Bopp operators
�

L
′†
k also fulfill

relations (14) and (50) and can be used as an alternative
variant of the images of the operators L̂′

k . Nevertheless, the

original isomorphism L̂′
k↔

�

L′
k results in more convenient

forms of the Weyl symbols. Indeed, we denote by
�
i l the Weyl

symbols of the identity submatrices
∑l

k,m=−l |l,m,k〉 〈l,m,k|
for subspaces with well-defined quantum number l. Each

�
i l

should be the symmetric solution of the eigenvalue problem
�

l
�
i l = l

�
i l . If the isomorphism L̂′

k↔
�

L′
k is accepted, one

obtains

�
i l = rl(L

′)L1
2l

(
3∑

m=0

�2
m

)
exp

(
−1

2

3∑
m=0

�2
m

)
(55)

and
�
i l|�m→±∞ = 0. Conversely, the choice L̂′

k↔
�

L
′†
k

leads to the divergent solutions
�
i l ∝ L1

2l(
∑3

m=0 �2
m)

exp(+ 1
2

∑3
m=0 �2

m). This substantially complicates the defi-
nition of normalization and the rule for calculation of averages
and makes this choice inconvenient. However, even the original
definition (42) leads to nonorthogonality of certain basis

functions because of the non-Hermiticity of the operators
�

L′
k:

∫∫∫ 3∏
k=1

dLk

∫∫∫∫ 3∏
m=0

d�kρ
∗
α1,β1

ρα2,β2 
= 0

for any pair of basis functions such that lα1 = lα2 , lβ1 = lβ2 ,
kα1 = kα2 , and kβ1 = kβ2 mα1 − mα2 = mβ1 − mβ2 , including
the cases where mα1 
= mα2 . Thus, the discussed Wigner
representation cannot be equipped with a traciality relation
similar to (3).

Nevertheless, due to the invariance relation (52), one can
define a convenient rule for the calculation of averages by
selecting the following L′-independent prefactor rL′,lα,lβ in
Eq. (53):

rlα,lβ = (−1)lα+lβ

16π3

√
2lα + 1

√
2lβ + 1. (56)

In this case only six out of the seven arguments of the Wigner

function
�
ρ = �

ρ(�,
L′

1
L′ ,

L′
2

L′ ,
L′

3
L′ ) are independent, so the effective

size of the phase space is equal to 6. Furthermore, the averaging
rule is defined through the scalar product (1), where

(	∗
1,	2)W =

∫∫∫∫ ∞

−∞
d�0d�1d�2d�3

∫
�

dω
	1	2

�2κ2
. (57)

The inner integral
∫
�

dω · · · in Eq. (57) is taken over the
surface of a sphere L′ = κ� with an arbitrary radius κ .

3. Lack of a traciality relation like (C:2) makes elucidation

of the correspondence rule ρ̂↔�
ρ less straightforward than in

the canonical case. Formally, the Weyl symbol
�
ρα,β of any

basis function ρ̂α,β can be obtained by sequential application
of the Schwinger ladder operators (45) and (48) to the ground

state ρ =
�
i 0. However, the direct analogs of these operators

cannot exist in �
�,L′
W space because they would result in

two independent and conflicting definitions for the operator
�

L2. Nevertheless, the Wigner images
�

a±b± and
�

a
†
±b

†
± of the

compound Schwinger operators â±b̂± and â
†
±b̂

†
± are well

defined and can be directly deduced by the technique used in
Appendix C. The derivation and resulting rather cumbersome
expressions are deferred to Appendix D.

The compound ladder operators allow us to explicitly
calculate any basis function (53):

�
ρα,β = ò

R↑(α,β)
�
i 0,

�
i 0 = ò

R↓(α,β)
�
ρα,β, (58)

where

ò

R↑(α,β) =
∏

κ,μ=±1

(
�

a†
κb

†
μ)pκ,μ(α)(

�

a†
κb

†
μ)pκ,μ(β)∏

λ=m,k

∏
ξ=α,β

√
(lξ − λξ )!(lξ + λξ )!

,

(59)

ò

R↓(α,β) =
∏

κ,μ=±1

(
�

aκbμ)pκ,μ(α)(
�

aκbμ)pκ,μ(β)∏
λ=m,k

∏
ξ=α,β

√
(lξ − λξ )!(lξ + λξ )!

,

(60)

and the factors pκ,μ can be any set of non-negative
numbers satisfying the relations

∑
κ,μ=±1 pκ,μ(ξ ) = 2lξ ,
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∑
κ,μ=±1 κpκ,μ(ξ ) = 2kξ , and

∑
κ,μ=±1 μpκ,μ(ξ ) = 2mξ . Us-

ing the operator
ò

R↓ and the orthogonality relation ∀�
ρα,β 
=

�
i 0 : (

�
i 0,

�
ρα,β)W = 0 (the latter follows from the Hermiticity of

the images
�

Lk), one can establish the desired correspondences
�
ρ =

�
W dir(ρ̂) and ρ̂ = Ŵrev(

�
ρ):

�
W dir(ρ̂) =

∑
α,β

ò

R↑(α,β)
�
i 0 Tr[ρ̂†

α,β ρ̂], (61a)

Ŵrev(
�
ρ) =

∑
α,β

(
�
i 0,

ò

R↓(α,β)
�
ρ)Wρα,β

=
∑
α,β

(
ò

R†
↓(α,β)

�
i 0,

�
ρ)Wρ̂α,β . (61b)

It is worth stressing that the notation
ò

R†
↓(α,β) means

the Hermitian conjugate of the phase-space Bopp operator
ò

R↓(α,β) in �
�,L′
W rather than the Wigner image of the

Hermitian conjugate R̂†
↓ of the associated operator R̂↓.

4. Unlike the Wigner quantization of the Euler equations,
the traciality-deficient {�,L′} representation cannot be tuned
to become fully consistent with the standard Stratonovich-
Weyl quantization scheme. Specifically, it is still possible to

achieve the identity
�
i � = �

i � = 1 by applying the suitable
invariance transform (52) with S = S� = 256π3∑3

m=0�
2
m

,

�
ρ� = S��

ρ,
�

F� = S�
�

F (S�)−1, (62)

and introduce the Weyl symbols of operators
�
F� = �

F�
�
i �.

However, the inequality
ò

R�
↑(α,β) 
= ò

R�†
↓ (α,β) makes it im-

possible to define the Stratonovich-Weyl kernel similar to (28).
Instead, one has to introduce the direct and reverse transforms
�
W �

dir(	̂) = S�
�
W dir(	̂) and Ŵ �

rev(
�	) = Ŵrev[(S�)−1

�	] as inde-
pendent operations. These transforms nevertheless allow us to
define the analog of the star product algebra similar to (30) so
that, e.g.,

〈F̂ 〉 = (S−1,
�

F
�
ρ)W = (S−1,

�
F �

�
ρ)W. (63)

5. None of the expressions 1
2 (

�

L′
k + �

L′
k) and 1

2 (
�

λ ′
n + �

λ ′
n)

coincides with its classical analog Lk , L′
k , and λn, hence the

marginal distributions associated with the Wigner function
�
ρ have no exact physical meaning. Instead, any of the
representations {�,L′}, {�,q}, and {ϡ,q} allow us to easily

cast the generators of motion
�

L for free linear, spherical, or
symmetric tops with principal moments of inertia I1 = I2 
= I3

in the familiar classical-like form

�

L = −A
ò

J
∂

∂α
+(A − B)

ò

K
∂

∂γ
, (64)

where A = 1
I1

= 1
I2

, B = 1
I3

(B = ò

K = 0 for linear tops), and

ò

J =
�

l + �

l + �

2
,

ò

K =
�

L3 + �

L3

2
, (65)

by expressing the parameters ϡm in terms of the Euler angles
α, β, and γ relating the frames S ′ and S ′′ [53]:

ϡ0 ± iϡ3 =
√

8L′

�
cos

[
β

2

]
exp

[
± i

α + γ

2

]
,

(66)

ϡ1 ± iϡ2 =
√

8L′

�
sin

[
β

2

]
exp

[
± i

α − γ

2

]
.

(Note that in the definitions of Euler angles we adopted the
conventions of Edmonds [54] and Zare [55].)

The only difference between the quantum Liouville op-
erator (64) and its classical counterpart is that the classical
variables L′ and L′

3 are replaced with the quantum Bopp

operators
ò

J and
ò

K with discrete spectra. That is, the values
of axial and precession frequencies of the quantum top can
take only a discrete set of equidistant values (A − B) �

2 k

and A�

2 (|j | + 1) (k,j ∈ Z). which gives rise to the familiar
phenomenon of quantum rotational revivals.

The analogy to the classical case can be pushed even further

by forcing the operators
�

l and
�

L3 to take the mathematical
structure of canonical Bopp operators

�

x j and
�

pj [Eq. (6)] via
an appropriate variable transformation. By comparing the form

(65) of the operators
ò

J and
ò

K with the fact that
�

x j +�

x j

2 = xj ,
we can expect that such a transformation will lead us to a
Nasyrov-type Wigner quantizer [38], in which the quantum
generator of motion (64) is identical to the classical one:
�

L = L . The derivation and the properties of this represen-
tation are detailed in Appendix E. Its existence leads to the
remarkable and intriguing conclusion that the free symmetric
top shares with the free particle and harmonic oscillator the
exceptional property of having identical classical and quantum
dynamics.

V. CONCLUSION

In this work we introduced a semiphenomenological quan-
tization scheme on nonstandard phase spaces and validated
its utility by finding useful generalized Wigner quantizers of
rotation motion. Specifically, the truncated quantizer derived
in Sec. III allows one to perform the density-matrix-type
calculations within the wave-function-sized rotational phase
space of three parameters and to fully account for any rota-
tional effects in isotropic environments on the intramolecular
dynamics. Thus, it may be useful, for instance, in calculations
of emission spectra or dissociation rates resulting from pulsed
laser excitation. We have also shown that there exists a large
family of quantizers (parametrized by c1 and ξ ), including the
two variants that are especially convenient for calculation of
averages or the normalization of quasiprobability distributions,
and a version fully consistent with the Stratonovich-Weyl
formalism. One can easily switch between these represen-
tations via the simple nonunitary transformation developed.
Along with its practical potential, this quantizer also has
the pedagogical value of establishing the bridge between the
formal quantization of the spin degrees of freedom [12] and
the classical Euler equations.
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The second proposed {�,L′} quantizer has the important
feature of translating the angular momentum conservation laws
into conservation of the parameters L′

1, L′
2, and L′

3 in the
course of free rotations. This feature allows for natural paral-
lelization of the code via splitting the initial six-dimensional
problem into a series of independent four-dimensional ones
for evolution of the parameters �m (m = 0, . . . ,3). Note that
several known representations (see, e.g., [37,38]) allow a
similar trick. However, their generalized parametric spaces are
not singularity-free and suffer from the gimbal lock problem.
The latter problem can be resolved in the framework of the
standard Wigner quantization procedure only by introducing
artificial degrees of freedom [35,36]. In contrast, both of the
proposed quantizers resolve the gimbal lock issue without
paying this price [we recall that the {�,L′} quantizer with the
scalar product (57) is effectively six dimensional]. That is, they
allow convenient and low-dimensional grid discretizations in
numerical dynamical simulations. In addition, they benefit
from expressing the generators of free motion as low-order
differential operators of continuous arguments. This should
facilitate relatively inexpensive propagation of the evolution
equations and is an important prerequisite for effective
application of the initial value approximations.

On the conceptual level, our findings uncover the direct
connection [Eq. (44)] between the quaternion parameters and
the raising and lowering operators entering the Schwinger
oscillator model. This connection clarifies the physical mean-
ing and the nature of the mathematical beauty of this
model.

We also established the relationship between the {�,L′}
quantizer and the Nasyrov representation [38]. The latter
formally allows one to reduce the quantum Liouville equation
for free linear and symmetric tops to the form identical to
the classical Liouville equation and propagate it using the
familiar method of characteristics. In addition, we presented
exact differential expressions for the key Bopp operators in
this representation (Appendix E).

We hope that all the mentioned advantages will make
the proposed representations useful for analysis of future
experiments in quantum physics and quantum chemistry
involving the complex semiclassical rotational dynamics of
polyatomic molecules.

Finally, it is worth noting that the {�,L′} quantizer cannot
be derived within the standard Stratonovich-Weyl formalism.
This fact indicates that the proposed generalized Wigner
quantization method nontrivially extends the conventional pro-
cedure and may be useful to better balance the numerical utility
and physical transparency. At the same time, the proposed
method is semiphenomenological and lacks the mathematical
rigor at the stage of the choice of the underlying set of
postulates. Hence, additional research is needed to determine
if it can be systematically applied to other nonstandard phase
spaces.
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APPENDIX A: FINDING THE IMAGES OF ANGULAR
EIGENSTATES IN �L

W FOR THE CASE c1 = −3 IN (20)

Consider the orthogonality relation (3) for the set of Weyl
symbols of operators îl :(�

i l1 ,
�
i l2

)
W ∝ δl1,l2 . (A1)

The Weyl symbols
�
i l can only depend on the scalar argument

L =
√

L2
1 + L2

2 + L2
3 due to isotropy of the operators îl and

must be the solutions of the eigenvalue problem
�

L2
�
i l(L) = �

2l(l + 1)
�
i l(L). (A2)

The general solution of the fourth-order differential equation
(A2) depends on four free parameters cα,β (α,β = ±1):

�
i l(L) =

∑
α,β=±1

cα,β

e−4L/�

(L/�)1−ξ
L

(2αξ )
(2l+1)β−αξ−1/2

[
8L

�

]
, (A3)

where L
(j )
i denotes the associated Laguerre polynomial. The

particular solution of interest satisfies the conditions (A1) and
�
i l(L)|L→∞ → 0:

�
i l(L) =

√
(2l + 1)26ξ+1

�(2l−ξ+3/2)�(2l+ξ + 3/2)

e−4L/�

√
π�3/2

(
L

�

)ξ−1

×
(

U (−2l + ξ − 1/2,2ξ + 1,8L/�)

− �(2l + ξ + 3/2)

�(−2l + ξ − 1/2)
U (2l+ξ+3/2,2ξ+1,8L/�)

)
,

(A4)

where the U (a,b,z) are the confluent hypergeometric functions
of the second kind and l > − 1

2 . Equation (A4) allows us to find

the basis functions
�
ρl,l;l,l :

�
ρl,l;l,l = 1

[�2l(2l)!]2
(

�

L1 − i
�

L2)2l(
�

L1 + i
�

L2)2l
�
i l . (A5)

In the special case of ξ = 1/2 only one of cα,β is nonzero:

�
i l(L)|ξ=1/2 = 4

�
√

πL

(−1)2le−4L/�L
(1)
2l (8L/�)√

L/�
,

l = 0,
1

2
,1,

3

2
, . . . . (A6)

Using (A6) and the relation

e−γ x =
∞∑
i=0

γ i

(1 + γ )i+α+1
L

(α)
i (x), (A7)

one can show that
�
i |ξ=1/2 = 1

�
√

πL
.

APPENDIX B: CLASSICAL AND QUANTUM
DESCRIPTION OF THE RIGID BODY DYNAMICS

IN TERMS OF QUATERNIONS

For the sake of completeness of the presentation, in this
appendix we review the key formulas of the quaternion algebra
and briefly outline the standard representation of the rotational
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motion in terms of quaternions (33) (for further details see, e.g.,
[53]). For clarity, we use bold symbols x = (x0,x1,x2,x3) for
quaternion parameters and the symbol ∗ to denote the standard
quaternion product

( y ∗ x)k =
3∑

i,j=0

m
Q
k,i,j yixj , (B1)

where the coefficients m
Q
k,i,j are defined by Eq. (35). From the

physical point of view, the product (B1) represents the result of
two successive rotations x and y. For this reason, the product
(B1) is not commutative. If the norm ‖x‖ =

√∑3
k=0 x2

i of
quaternion is not equal to one then each rotation x is also
accompanied by uniform scaling by the factor ‖x‖. The
transformation x−1 reciprocal to x [i.e., one that restores the
initial geometry xx−1 = x−1x = 1, where 1 = (1,0,0,0)] is
given by x−1 = x∗

‖x‖2 , where the quaternion x∗ is the conjugate
of x defined as x∗ = (x0,−x1,−x2,−x3). The components
ωk of angular frequency in this notation read

ωk(λ,λ̇) = 2(λ∗ ∗ λ̇)k, (B2)

where λ̇ = dλ
dt

. Equation (B2) allows us to determine the
generalized momenta pλ,k canonically conjugate to λk:

pλ = ∂ Lg

∂λ̇
= λ ∗ L̃, (B3)

where Lg is the classical Lagrangian of the rigid rotor Lg =
1
2

∑3
k=1 Ikω

2
k(λ, dλ

dt
) and L̃ = (0,L1,L2,L3). The canonical

expressions for components Lk and L′
k of angular momenta

relative to the moving and laboratory frames can be determined
by applying to (B3) a reciprocal transform and expressions (36)
for the direction cosines:

Lk = 1
2 (λ∗ ∗ pλ)k, L′

k = − 1
2 (λ ∗ p∗

λ)k. (B4)

The quaternions allow one to eliminate the singularities
inherent to integration of the dynamical equations in terms
of Euler angles. This makes them convenient for a variety of
the scientific, engineering, technical, and graphics applications
[56] including molecular-dynamics simulations [57,58].

It can be shown [35,36] that the passage to the Schrödinger
quantum description of rotations can be done in the ordinary
way by replacing the pλ,k with −i� ∂

∂λk
in Eq. (B4). Strictly

speaking, the variables λk in this picture represent the angular
quaternions up to scaling factors. For this reason, one has
to explicitly enforce the correct normalization in the potential
part of the Hamiltonian by replacing the λk with λ̂k = λk

‖λ‖ . The
associated phase-space representation can be trivially obtained
using the original Wigner recipe or via the substitutions (6) and
(8) [35,36].

It is worth mentioning that although the operators λ̂k

are Hermitian, they cannot be associated with the quantum-
mechanical observable since they include the matrix elements
corresponding to fractional changes of angular momentum
quantum number l that have never been observed in experi-
ments. The fundamental reason for that is that the correspond-
ing set of operators can be introduced only in an overcomplete
configuration space.

APPENDIX C: DERIVATION OF EQS. (48) and (49)

It follows from the definition of the quantum-mechanical
angular momentum operators that

exp

(
−2

�
�

ò

L
′
im,k

)∣∣∣∣
�→0

�
ρ = Rk(�)

�
ρ, (C1)

where
ò

L
′
im,k = −i 1

2 (
�

L′
k − �

L′
k) and Rk(�) is the classical

operator of rotation about the axis �e ′
k by the angle �, i.e.,

for Rk(�),

L′
s → cos[(1 − δk,s)�]L′

s +
3∑

n=1

εs,k,n sin(�)L′
n,

λs →
3∑

m,n=0

mQ
s,m,nrk,mλn,

qs →
3∑

m,n=0

mQ
s,m,nrk,mqn,

(C2)

where the quaternions rk,m = δ0,m cos �
2 + δk,m sin �

2 generate
rotations about each axis �e ′

k [see Eq. (33)]. Equations (C1) and
(C2) allow us to determine expressions for the imaginary parts

of
�

L′
k in different phase spaces �

�,L′
W , �

�,q
W , and �

ϡ,q
W :

ò

L
′
im,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−�

4

(∑3
m,n=0 m

Q
n,k,m�m

∂
∂�n

+ 2
∑3

m,n=1 m
Q
n,k,mL′

m
∂

∂L′
n

)
, �

�,L′
W

�

4

(
ò

μk −∑3
m,n=0 m

Q
n,k,m�m

∂
∂�n

)
, �

�,q
W

�

4
ò

μk, �
ϡ,q
W ,

(C3)

where ò

μk = −∑3
m,n=0 m

Q
n,k,mqm

∂
∂qn

. Here the transforma-
tion (43) was applied to obtain the last line in Eq. (C3).
The latter relation together with Eqs. (47) and (15) and
commutation relations identical to (46) specifies the possible

forms of the ladder operators
�

b±. The two simplest solutions
are given by the operators (48) and

�

b± = iq2±1 − q1∓1,
�

b
†
± = 1

2

(
∂

∂q1∓1
+i

∂

∂q2±1

)
(C4)

[the latter choice leads to the transpose of (49) with unbounded
right eigenstates and hence should be rejected]. The specific
choice of constant prefactors in Eq. (48) is made with the
goal to simplify the expressions for quaternion operators
(see Appendix D). Applying the transformation (43) to (47)
and (48), one obtains the following formula for the angular
momentum operators in the space �

�,q
W :

�

L′
k = L′

k(q)

L′(q)
[{ò

l′
re(q) − ò

lre(�)} + ò

lre(�)]

+ �

4

3∑
r=0

3∑
s=1

m
Q
k,r,s

(
(1 − δr,0)

L′
r (q)

L′(q)
+ iδr,0

)

×
(

ò

μs −
3∑

m,n=0

mQ
n,s,m�m

∂

∂�n

)
, (C5)
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where L′
n(q) is defined by the first of Eqs. (43) and the

operators
ò

lre(�) = �

8 [
∑3

n=0(�2
n − ∂2

∂�2
n
) − 4] and

ò

l′
re(q) =

�

4

∑3
n=0 qn

∂
∂qn

are the real parts of the operators
�

l′(q) and
�

l(�) such that

�

l′(q)[
�

l ′(q) + �] = �

L′2,
�

l(�)[
�

l(�) + �] = �

L2. (C6)

Thus, the operators
�

l′(q) and
�

l(�) are physically equivalent
(i.e., they must produce the same action when applied to any

valid physical state
�
ρ) and are mathematically distinct only

due to redundant dimensionality of the phase spaces �
ϡ,q
W

and �
�,q
W . This fact allows one to omit the term in the curly

brackets in Eq. (C5). Together with Eqs. (43) and (C6) it leads
to the following set of correspondence relations between phase
spaces �

�,q
W and �

�,L
W :

L′
n(q)↔L′

n,
ò

μk↔ − 2
3∑

m,n=1

m
Q
n,k,mL′

m

∂

∂L′
n

,

ò

l′
re(q) − ò

lre(�)↔0. (C7)

Their substitution into Eq. (C5) leads to Eq. (49). One can
directly check that Eqs. (49) and (42) are consistent with the

condition
∑3

k=1(
�

Lk
′2 − �

Lk
2) = 0.

APPENDIX D: EXPLICIT EXPRESSIONS FOR THE
WIGNER IMAGES OF THE LADDER AND QUATERNION

OPERATORS IN �
�,L
W PHASE SPACE

The aim of this Appendix is to complete the construction
of the quantum algebra of the phase space �

�,L′
W by finding

the images of the quaternion operators λ̂k . For convenience of
readers who are not interested in the technical details of the
derivation we start by providing the final result.

Consider the �
�,L′
W Wigner representation with the normal-

ization (56) in Eq. (53), the scalar product (57), and the images
of components of angular momentum defined by Eqs. (42) and
(49). The corresponding images of the quaternion operators λ̂k

are given by Eq. (D12), where the compound operators
�

aξbχ

and
�

a
†
ξ b

†
χ (ξ,χ = ±1) are specified by Eqs. (D5)–(D8).

To prove this result, we note that the images
�

λk can be
readily defined in terms of the ladder operators (45) and (48)

(see below). However, the ladder operators
�

a
†
±,

�

a± and
�

b
†
±,

�

b±
themselves can exist only in the overcomplete phase space
{ϡ,q} since their separate application leads to unphysical
states with mismatched values of the total angular momentum
measured in the laboratory and moving frames. Nevertheless,

the phase space �
�,L′
W can host the compound operators

�

aξ χb

and
�

a
†
ξ χb† , which are free of this problem.

The explicit expressions for the compound operators can
be found by applying replacements and substitutions (43) and

(C7) to their counterparts ei(π/4)�

a ξ

�

bχ and e−i(π/4)�

a
†
ξ

�

b †
χ in the

{ϡ,q} representation [see Eqs. (45) and (48)]. The result is
the following operators

�

g−
ξ,χ and

�

g+
ξ,χ :

�

g
+
ξ,χ = e−i(π/4) 1

2
√

2�L′

{
(δχ,−ξ + χδχ,ξ )

(
ξ + χ

2
(ξL′ + L′

3)+ ξ − χ

2
(L′

1 − iξL′
2)

)[
�3 − ∂

∂�3
−iξ

(
�0 − ∂

∂�0

)]

+
(

χ − ξ

2
(L′

3 − ξL′) + ξχ + 1

2
(L′

1 + iξL′
2)

)
×
[
�1 − ∂

∂�1
−iξ

(
�2 − ∂

∂�2

)]}
, (D1)

�

g
−
ξ,χ = −ei(π/4)

√
�

(χδξ,χ + δξ,−χ )

8
√

2(L′)3/2

( ∑
n=+1,−1

(L′
3 − ξnL′)(ξχ − n) + (nξχ + 1)(L′

1 − inξL′
2)

2

×
[
n

(
�2−n

∂

∂�n+1
−�n+1

∂

∂�2−n

)
− iχ + 2iL′ ∂

∂L′
3

][
�n+1 + ∂

∂�n+1
−iξ

(
�2−n + ∂

∂�2−n

)]

+
3∑

n=0

iξn

⎧⎨
⎩

3∑
k=0

3∑
s=1

3∑
j=0

[
L′

s

(
ξ + χ (1 − (3 − n)n)

2

)2

{1 − [1 − (3 − s)s][2(δj,3−n + δk,3−n) − 1]} + ξ i(1−sχ )fξ,χ,n

× (1 − δ3,s)(δj,n + δk,n)

]
m

Q
k,s,j�j

∂

∂�k

+2L′ξfξ,χ,n

(
∂

∂L′
2

+iχ
∂

∂L′
1

)

+ 4iL′
(

ξ + χ (1 − (3 − n)n)

2

)2
⎫⎬
⎭
(

�n + ∂

∂�n

)⎞⎠, (D2)
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where

fξ,χ,n = 1
2 ({L′ξ [1 − (3 − n)n] + L′

3}{1 − ξχ [1 − (3 − n)n]}
+{ξχ + [1 − (3 − n)n]}{L′

1 + iL′
2ξ [1 − (3 − n)n]})

(D3)

(the phase factors e±i(π/4) are included for consistency with the
generally accepted normalization of the rotational eigenstates
|l,m,k〉). The simplest way to study the effect of the operators
(D1) and (D2) on the Weyl symbols is to apply them to the
isotropic states (55) and (56):

∑
ξ,χ=−1,1

�

g+
ξ,χ

�

g+
ξ,χ

�
i l = μl(L

′)4
(

l + 1

2

)2�
i l+1/2, (D4)

where μl(L′) = 1
2(l+1/2)+1

2L′
�

is an additional factor compared
to the expected effect of the compound ladder operator. The
correct form of the compound operator can be found by
applying to (D1) and (D2) the following transformation, which
eliminates this factor:

�

aξbχ = S0
�

g−
ξ,χS−1

0 =
(√

2L′

�

�

g−
ξ,χ + �

δg−
ξ,χ

)√
1

2
�

l/� + 1
,

(D5)

�

a
†
ξ b

†
χ = S0

�

g+
ξ,χS−1

0 =
√

2
�

l

�
+ 1

√
�

2L′
�

g+
ξ,χ , (D6)

where S0 is the invariance operator [see Eq. (52)]

S0 =
√√√√�

(
2

�

l

�
+ 2

)
�

(
2

�

l

�
+ 2

)(
2L′

�

)−(1/�)(
�

l+�

l )

(D7)

[here �(z) is the Euler Gamma function] and

�

δg−
ξ,χ =

1∑
n=0

(L′ + χL3)δξ,−(−1)nχ + (L1 − iχL2)δξ,(−1)nχ

i−ne−iπ/44L′

×
[
�1−n + ∂

∂�1−n

+iξ (−1)n
(

�n+2 + ∂

∂�n+2

)]

×
�

l + �

l

�
. (D8)

To deduce the Wigner images
�

λk of the quaternion
operators we apply the known relations

λ̂n= (−i)n

2
D

1/2
1/2,(1−(3−n)n)/2+

ei(π/4)[(−1)n−1]

2
D

1/2
−1/2,((3−n)n−1)/2;

(D9)

D
1/2
δm,δk |l,m,k〉

=
l+1/2∑

j=l−1/2

il−j
√

(2l + 1)(2j + 1)

× (−1)δm+m−(δk+k)

(
j 1

2 l

−(δk + k) δk k

)

×
(

j 1
2 l

−(δm+m) δm m

)
|j,m + δm,k + δk〉 ,

(D10)

where Dl
m,k are Wigner D functions. Since

∣∣∣∣l + 1

2
,m + μ

2
,k + κ

2

〉
= â†

κ b̂
†
μ√

l+κk+1
√

l+μm+1
|l,m,k〉 ,

∣∣∣∣l − 1

2
,m + μ

2
,k + κ

2

〉
= â−κ b̂−μ√

l − κk
√

l − μm
|l,m,k〉

(D11)

(κ,μ = ±1), the action of the operators (D9) can be rep-
resented as a bilinear combination of the ladder operators
λ̂ |l,m,k〉 = ∑

μ,κ [â†
κ b̂

†
μc1(l,m,k) + âκ b̂μc2(l,m,k)] |l,m,k〉.

Since the operators L̂2, L̂3, and L̂′
3 commute, the coefficients

cn(l,m,k) may be replaced by the operators ĉn = cn( L̂
�
,
L̂′

3
�

, L̂3
�

).
After converting the resulting operator into the Wigner
representation using Eqs. (D5), (D6), and (51), one finally
gets

�

λn = 1

2
√

�

l/� + 1/2
[eiπ/4(−i)n

�

a
†
−1 (3−n)n−1b†

+ e(iπ/4)(−1)n
�

a
†
1 1−(3−n)nb† − e−(iπ/4)(−1)n �

a1 1−(3−n)nb

−e−iπ/4in
�

a−1 (3−n)n−1b ]
1

2
√

�

l/� + 1/2
. (D12)

One can readily check that the requested consistency

of classical limits (C̄:2) holds: lim�→0
�

λm = λm. Thus, the
Wigner {�,L} representation defined by Eqs. (42), (49), (57),
(D5), (D6), and (D12) is self-consistent and complete.

APPENDIX E: NASYROV-TYPE PHASE
REPRESENTATION OF THE ROTATIONAL MOTION

The goal of this Appendix is to derive a Wigner repre-
sentation in which the quantum generator of motion (64)
for the symmetric top coincides with the corresponding
classical Liouville operator L . We will depart from the {ϡ,q}
representation and convert it into the desired form via a series
of transformations. The procedure (and the final expressions

for
�

l and
�

Lk) in the case of variables {�,L′} remains the same.

However, in this case the expressions of the Bopp operators
�

L′
k

and
�

λm are rather cumbersome due to the complicated form
of relations �m(ϡ,L′) and will not be presented here.
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We start with the fractional Laplace transform of the
variables ϡm:

�
ρ(r,L) =

∫∫∫∫ ∞

−∞

(
3∏

m=0

dϡm

)

× exp

[
3∑

m=0

(√
2ϡmrm − ϡ

2
m

2
− r2

m

2

)]
�
ρ(ϡ,L).

(E1)

The operators in the spaces �
r,q
W and �

ϡ,q
W are connected via

the correspondence:

ϡm → rm + ∂/∂rm√
2

,
∂

∂ϡm

→ ∂/∂rm − rm√
2

. (E2)

Thus, the effect of rm and d
drm

onϡm is identical to the effect of
the ladder operators on the canonical coordinate. Treating the
variables rm as proportional to the components of a quaternion,
we can formally express them in terms of the associated Euler
angles α and γ :

r0 = R1 cos

(
α + γ

2

)
, r1 = R2 cos

(
α − γ

2

)
,

r2 = R2 sin

(
α − γ

2

)
, r3 = R1 sin

(
α + γ

2

)
.

(E3)

The quantum Liouville operator
�

L for the symmetric top in
the variables {R1,R2,α,β,L1,L1,L3} takes the form (64) with

ò

J =
�

l + �

l + �

2
= 1

4
�

(
R1

∂

∂R1
+R2

∂

∂R2
+2

)
,

ò

K =
�

L3 + �

L3

2
= 1

4
�

(
R1

∂

∂R1
−R2

∂

∂R2

)
.

(E4)

These expressions allow us to further trace the analogy of

Ri and ∂
∂Ri

with the ladder operators and consider
ò

J and
ò

K

as ± combinations of two harmonic-oscillator Hamiltonians.
Guided by this analogy, we make the operator substitution

∂

∂Rj

→e∂/∂sj
√

sj , Rj→√
sj e

−∂/∂sj (j = 1,2), (E5)

which preserves the commutation relation [ ∂
∂Ri

,Rj ] = δi,j .
Finally, we introduce the variables

J = �

4
(s1 + s2 + 2), K = �

4
(s1 − s2). (E6)

The parameters {J,K,α,β,q} constitute the required set of
variables in which the Bopp operators of the quantum Liouville

operator
�

L , the components
�

Lk , the ladder operators (45), and

the operator
�

l defined by (50) take the form

�

L = −AJ
∂

∂α
+(A − B)K

∂

∂γ
, (E7)

�

L1 ± i
�

L2 = e∓iγ

√
J ∓ K − �/2

J ± K − �/2

× �(∂/∂γ ± ∂/∂α) ± 2i(J ± K)

2
e±(�/2)(∂/∂K),

(E8)

�

L3 = K − 1

2
i�

∂

∂γ
, (E9)

�

l = J − �

2
− i

�

2

∂

∂α
, (E10)

�

a± = ei(α±γ )/2{∂/∂γ ± ∂/∂α − i[2(J ± K)/�]}
ei(π/4)(±1−1)

√
2(J ± K)/� − 1

× e(�/4)(∂/∂J±∂/∂K), (E11)

�

a
†
± = e−i(γ±α)/2

e−iπ(±1+1)/4

√
2(J ± K)/� − 1 e−(�/4)(∂/∂J±∂/∂K),

(E12)

whereas the operators
�

b± and
�

b
†
± are still defined by Eq. (48).

It is readily verified that Eqs. (E7)–(E10) have the correct
classical limits [recall that the ladder operators (E11), (E12),
and (48) are specified up to the invariance transform (52)].

One can see that the dynamic master equation (E7) exactly
coincides with its classical analog. Similarly, the expressions

for
�

l and
�

K resemble the canonical Bopp operators (6) and,
in particular, obey the relations

(
�

ln,ρ)W = ((J − �/2)n,ρ)W, (
�

L3,ρ)W = (Kn,ρ)W,

(E13)

so that the associated marginal distributions for the Wigner
functions represent the probability distributions for quantities
l and K [cf. Eq. (9) and the subsequent discussion].

The action of operators e±(�/4)(∂/∂K) and e±(�/4)(∂/∂J ) con-
tained in Eqs. (E8), (E11), and (E12) on any function of
variables J and K consist of discrete replacements J →
J ± �

4 and K → K ± �

4 . For this reason, the parameters J

and K take a discrete set of values so that the Wigner images
�
ρ1,2 of the basis functions ρ̂1,2 = |l1,m1,k1〉 〈l2,m3,k2| read

�
ρ1,2 ∝ δ2J/�,l1+l2+1δ2K/�,k1+k2 (E14)

(for more details about the explicit form and properties of such
a semidiscrete Wigner functions see [38]).
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